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Instructional Objectives 
 
At the end of this lesson, the student should have adequate knowledge of 
 
• Simple stresses in machine elements; tensile, compressive, bearing and 

shear stresses. 
• Flexture formula and their limitations. 
• Torsion formula and its limitations. 
• Design of members subjected to combined bending, torsion and axial loading. 
• Buckling of beams. 
 

 

2.1.1 Introduction 
Stresses are developed in machine elements due to applied load and 

machine design involves  ensuring that the elements can sustain the induced 

stresses without yielding. Consider a simple lever as shown in figure-2.1.1.1: 

 

 

 

 

 

 

 

 

 

 

 

2.1.1.1F-  A simple lever subjected to forces at the ends. 

 

A proper design of the spring would ensure the necessary force P at the lever 

end B. The stresses developed in sections AB and AC would decide the optimum 

cross-section of the lever provided that the material has been chosen correctly. 
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The design of the hinge depends on the stresses developed due to the reaction 

forces at A. A closer look at the arrangement would reveal that the following 

types of stresses are developed in different elements: 

Lever arms AB and AC  -   Bending stresses 

Hinge pin    -   Shear and bearing stresses. 

Spring     -   Shear stress. 

It is therefore important to understand the implications of these and other simple 

stresses. Although it is more fundamental to consider the state of stress at a 

point and stress distribution, in elementary design analysis simple average 

stresses at critical cross-sections are considered to be sufficient. More 

fundamental issues of stress distribution in design analysis will be discussed later 

in this lecture. 

 

2.1.2 Some basic issues of simple stresses 
 

Tensile stress 
The stress developed in the bar ( figure-2.1.2.1) subjected to tensile loading is 

given by  

 

 

 

 

 
 
 

2.1.2.1F- A prismatic bar subjected to tensile loading. 

 
Compressive stress 
The stress developed in the bar ( figure-2.1.2.2) subjected to compressive 

loading is given by  
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2.1.2.2F- A prismatic bar subjected to compressive loading. 

 

 

Here the force P is the resultant force acting normal to the cross-section A. 

However, if we consider the stresses on an inclined cross-section B ( figure-

2.1.2.3) then the normal stress perpendicular to the section is  

 

 

and shear stress parallel to the section  

 

 

 

 

 

 

 

 

2.1.2.3F- Stresses developed at an inclined section of a bar subjected to tensile 

loading. 
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Bearing stress 
When a body is pressed against another, the compressive stress developed is 

termed bearing stress. For example, bearing stress developed at the contact 

between a pillar and ground (figure- 2.1.2.4a) is                 ,  at the contact 

surface between a pin and a member with a circular hole (figure- 2.1.2.4b)  

is                and at the faces of a rectangular key fixing a gear hub on a shaft 

(figure- 2.1.2.4c) is                     . 
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2.1.2.4F- The bearing stresses developed in pillar and machine parts. 

 

The pressure developed may be irregular in the above examples but the 

expressions give the average values of the stresses. 

 

Shear stress 
When forces are transmitted from one part of a body to other, the stresses 

developed in a plane parallel to the applied force are the shear stresses ( figure-

2.1.2.5)  and the average values of the shear stresses are given by  
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                                                                 in double shear 
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                      . 

 

 

 

 

 

 
2.1.2.5F- Stresses developed in single and double shear modes 

 

In design problems, critical sections must be considered to find normal or shear 

stresses. We consider a plate with holes under a tensile load (figure-2.1.2.6) to 

explain the concept of critical sections. 

 

 

 

 

 

 

 
2.1.2.6F- The concept of critical sections explained with the help of a loaded 

plate with holes at selected locations. 

 

Let the cross-sectional area of the plate, the larger hole H1 and the smaller holes 

H2 be A, a1, a2 respectively. If 2a2 > a1 the critical section in the above example is 

CC and the average normal stress at the critical section is  
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2.1.3 Bending of beams 
2.1.3.1 Bending stresses 
Consider two sections ab and cd in a beam subjected to a pure bending. Due to 

bending the top layer is under compression and the bottom layer is under 

tension. This is shown in figure-2.1.3.1.1. This means that in between the two 

extreme layers there must be a layer which remains un-stretched and this layer is 

known as neutral layer. Let this be denoted by NN′.  

 

 

 

 

 

 

 

 

 

 
 
 
 

2.1.3.1.1F- Pure bending of beams 

 

We consider that a plane section remains plane after bending- a basic 

assumption in pure bending theory. 

If the rotation of cd with respect to ab is dφ the contraction of a layer y distance 

away from the neutral axis is given by ds=y dφ and original length of the layer is 

x=R dφ, R being the radius of curvature of the beam. This gives the strain ε in the 

layer as 
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We also consider that the material obeys Hooke’s law σ = Eε. This is another 

basic assumption in pure bending theory and substituting the expression for ε we 

have 

                                                                                      

 
Consider now a small element dA y distance away from the neutral axis. This is 
shown in the figure 2.1.3.1.2 
 
 

 

 

 

 

 

 

 

2.1.3.1.2F- Bending stress developed at any cross-section 

 

Axial force on the element dFx=        and considering the linearity in stress 

variation across the section we have where σx and σmax are the 

stresses at distances y and d respectively from the neutral axis. 

The axial force on the element is thus given by dFx max y dA
d

σ
= . 

For static equilibrium total force at any cross-section F=    

 

This gives  and since A≠ 0,  .This means that the neutral axis 

passes through the centroid. 

Again for static equilibrium total moment about NA must the applied moment M. 

This is given by  
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For any fibre at a distance of y from the centre line we may therefore write 
 

 

We therefore have the general equation for pure bending as  

 

 

2.1.3.2 Shear stress in bending 
In an idealized situation of pure bending of beams, no shear stress occurs across 

the section. However, in most realistic conditions shear stresses do occur in 

beams under bending. This can be visualized if we consider the arguments 

depicted in figure-2.1.3.2.1 and 2.1.3.2.2. 

 

 

 

 

 

 

 
              No change in bending moment         Bending moment changes along               
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2.1.3.2.1F- Bending of beams with a steady and varying moment along its length. 
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dM
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x
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 A beam element        Stress distribution in the               Forces on the layer AC12  
 ACDB of length dx      section ACDB.  
 

2.1.3.2.2F- Shear stress developed in a beam subjected to a moment varying 
along the length 

 

When bending moment changes along the beam length, layer AC12 for example, 

would tend to slide against section 1243 and this is repeated in subsequent 

layers. This would cause interplanar shear forces F1 and F2  at the faces A1 and 

C2 and since the force at any cross-section is given by , we may 

write  

  

                             and    

 

Here M and dM are the bending moment and its increment over the length dx 

and                            Q is the  1st moment of area about the neutral axis. Since 

shear stress across the layers can be given by and                shear force 

is given by V =               we may write    

 
 

2.1.4 Torsion of circular members 
A torque applied to a member causes shear stress. In order to establish a 

relation between the torque and shear stress developed in a circular member, the 

following assumptions are needed: 
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1.   Material is homogeneous and isotropic 

2.   A plane section perpendicular to the axis of the circular member remains 

plane  even  after twisting i.e. no warping. 

3. Materials obey Hooke’s law. 

 

Consider now a circular member subjected to a torque T as shown in  figure 

2.1.4.1 

 

 

 

 

 

 

 

 

 

 

 

2.1.4.1F- A circular member of radius r and length L subjected to torque T. 
 
 
The assumption of plane section remaining plane assumes no warping in a 
circular member as shown in figure- 2.1.4.2        
 
 
 
 
 
 
 
 
 
 
 
 

2.1.4.2F- Plane section remains plane- No warping. 
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However, it has been observed experimentally that for non-circular members 
warping occurs and the assumption of plane sections remaining plane does not 
apply there. This is shown in figure-2.1.4.3. 
 
  
 

 

 

 

 

 

 

 

             

2.1.4.3F-Warping during torsion of a non-circular member. 

 

Let the point B on the circumference of the member move to point C during 

twisting and let the angle of twist be θ. We may also assume that strain γ varies 

linearly from the central axis. This gives 

 

 

where τ is the shear stress developed and G is the modulus of rigidity. This gives 

     G
r l
τ θ
=   

Consider now, an element of area dA at a radius r as shown in figure-2.1.4.4. 

The torque on the element is given by   
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2.1.4.4F- Shear stress variation in a circular cross-section during torsion. 

For linear variation of shear stress we have 
max

r
R

τ
=

τ
 

Combining this with the torque equation we may write  

                                                   T max

R
τ

= 2r dA∫ . 

Now 2r dA∫ may be identified as the polar moment of inertia J . 

And this gives  T max

R
τ

= J. 

Therefore for any radius r we may write in general 

We have thus the general torsion equation for circular shafts as  

 

 

2.1.5 Buckling  
The compressive stress of P/A is applicable only to short members but for long 

compression members there may be buckling, which is due to elastic instability. 

The critical load for buckling of a column with different end fixing conditions is 

given by Euler’s formula  ( figure-2.1.5.1)  
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ends hinged n=1, columns with one end free and other end fixed n=0.25, 

columns with one end fixed and other end hinged n=2, and for columns with both 

ends fixed n=4. 

 
 
 
 
 
 
 
 
 
 

2.1.5.1F-  Buckling of a beam hinged at both ends 

 

2.1.6 Stress at a point—its implication in design 
The state of stress at a point is given by nine stress components as shown in 

figure 2.1.6.1 and this is represented by the general matrix as shown below. 
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2.1.6.1F- Three dimensional stress field on an infinitesimal element. 

 

Consider now a two dimensional stress element subjected only to shear 

stresses. For equilibrium of a 2-D element we take moment of all the forces 

about point A ( figure-2.1.6.2) and equate to zero as follows: 

 

 

 

 

 

 

 

 

2.1.6.2F- Complimentary shear stresses on a 2-D element. 

 

This gives τxy=τyx indicating that τxy and τyx are complimentary. On similar 

arguments we may write τyz=τzy and τzx=τxz . This means that the state of stress 

at a point can be given by six stress components only. It is important to 

understand the implication of this state of stress at a point in the design of 

machine elements where all or some of the stresses discussed above may act. 
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For an example, let us consider a cantilever beam of circular cross-section 

subjected to a vertical loading P at the free end and an axial loading F in addition 

to a torque T as shown in figure 2.1.6.3. Let the diameter of cross-section and 

the length of the beam be d and L respectively. 

 

 

 

 

 

 

2.1.6.3F- A cantilever beam subjected to bending, torsion and an axial loading. 

 

 

The maximum stresses developed in the beam are : 

 

Bending stress,  

 

Axial stress,          

 

Torsional shear stress,  

 

It is now necessary to consider the most vulnerable section and element. Since 

the axial and torsional shear stresses are constant through out the length, the 

most vulnerable section is the built-up end. We now consider the three elements 

A, B and C. There is no bending stress on the element B and the bending and 

axial stresses on the element C act in the opposite direction. Therefore, for the 

safe design of the beam we consider the stresses on the element A which is 

shown in figure 2.1.6.4.  
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2.1.6.4F- Stresses developed on element A in figure-2.1.6.3 

  

Principal stresses and maximum shear stresses can now be obtained and using 

a suitable failure theory a suitable diameter of the bar may be obtained. 

 

 

2.1.7 Problems with Answers 
 
Q.1: What stresses are developed in the pin A for the bell crank mechanism 

shown in the figure-2.1.7.1? Find the safe diameter of the pin if the 

allowable tensile and shear stresses for the pin material are 350 MPa and 

170 MPa respectively. 
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A.1: 

 Force at B = 5x0.1 3.33KN
0.15

=  

 Resultant force at A= 2 25 3.33+ kN = 6 kN. 

 Stresses developed in pin A: (a)  shear stress (b)   bearing stress 

 Considering double shear at A,  pin diameter d =
3

6
2x6x10 m 4.7 mm
x170x10

=
π

 

 Considering bearing stress at A,  pin diameter d =
3

6
6x10 m 8mm

0.01x7.5x10
=     

 A safe pin diameter is 10 mm. 

 

Q.2: What are the basic assumptions in deriving the bending equation? 

A.2: 
 The basic assumptions in deriving bending equation are: 

a) The beam is straight with a constant area of cross-section and is 

       symmetrical about the plane of bending. 

    b) Material is homogeneous and isotropic. 

    c) Plane sections normal to the beam axis remain plane even after 

bending. 

 d) Material obeys Hooke’s law 

Q.3: Two cast iron machine parts of cross-sections shown in figure-2.1.7.2 are 

subjected to bending moments. Which of the two sections can carry a 

higher moment and determine the magnitude of the applied moments? 

 

 

 

 

 

                 (a)                      (b) 
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A.3: 
 Assuming that bending takes place about the horizontal axis, the 2nd 

moment of  areas of the two sections are:                                                                  

( ) ( )
3

23 4

a b

b b2b 2b
b.b b 2 b2 2I I 2 2
12 36 2 3 12

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎝ ⎠= = + =⎜ ⎟⎜ ⎟

⎝ ⎠
 

a bI I∴ =  

 Considering that the bending stress σB is same for both the beams and 

moments  applied Ma and Mb, we have   

     a a b b
B

a b

M y M y
I I

σ = =  

            Here, ya = 0.5b, yb = b/ 2 . Then a bM 2M=  

Q.4: Under what condition transverse shear stresses are developed in a beam 

subjected to a bending moment? 

A.4: 
 Pure bending of beams is an idealized condition and in the most realistic 

situation,bending moment would vary along the bending axis ( figure-2.1.7.3). 

 

 

 

 

 

2.1.7.3F 
Under this condition transverse shear stresses would be developed in a 

beam. 

 

Q.5: Show how the transverse shear stress is distributed in a beam of solid 

rectangular cross-section transmitting a vertical shear force. 
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A.5: 
 Consider a beam with a rectangular cross-section (figure-2.1.7.4). 

Consider now a 

longitudinal cut through the beam at a distance of y1 from the neutral axis 

isolating an area ABCD. An infinitesimal area within the isolated area at a 

distance y from the neutral axis is then considered to find the first moment of 

area Q.  

 

 

 

 

 

A simply supported beam with a  Enlarged view of the rectangular cross-section 

Concentrated load at the centre.  

    2.1.7.4F 
 

Horizontal shear stress at y, 
h
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VQ V bydy
It It

τ = = ∫  

This gives   
2

2
1

V h y
2I 4
⎡ ⎤

τ = −⎢ ⎥
⎣ ⎦

 indicating a parabolic distribution of shear 

stress across the cross-section. Here, V is shear force, I is the second 

moment of area of the beam cross-section, t is the beam width which is b 

in this case. 

 

Q.6: A 3m long cantilever beam of solid rectangular cross-section of 100mm 

width and 150mm depth is subjected to an end loading P as shown in the 

figure-2.1.7.5. If the allowable shear stress in the beam is 150 MPa, find 

the safe value of P based on shear alone. 
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  2.1.7.5F 
A.6: 

             Maximum shear stress in a rectangular cross-section is max
3 V
2 A

τ =  

  where, A is the cross-section area of the beam. 

 Substituting values we have τmax= 100P and for an allowable shear stress  

of 150 MPa the safe value of P works out to be 1.5 MN.  

 

Q.7: What are the basic assumptions in deriving the torsion equation for a 

circular member? 

A.7: 
 Basic assumptions in deriving the torsion formula are: 

a) Material is homogenous and isotropic. 

b) A plane section perpendicular to the axis remains plane even after the 

torque is applied. This means there is no warpage. 

c) In a circular member subjected to a torque, shear strain varies linearly 

from the central axis. 

d) Material obeys Hooke’s law. 

 

Q.8: In a design problem it is necessary to replace a 2m long aluminium shaft of 

100mm diameter by a tubular steel shaft of the same outside diameter 

transmitting the same torque and having the same angle of twist. Find the 

inner radius of the steel bar if   GAl = 28GPa and GSt = 84GPa. 
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A.8: 
 Since the torque transmitted and angle of twist are the same for both the 

solid and hollow shafts, we may write from torsion formula 

    Al Al
Al Al St St

St St

GJ J and
G

τ
τ = τ =

τ
 

 where τ, J and G are shear stress, polar moment of inertia and modulus of 

rigidity respectively. This gives 

   
4 4
0 i

0 i4
0

d d 28 and with d 100 mm d 90.36 mm
84d

−
= = =  

 

Q.9: An axially loaded brass strut hinged at both ends is 1m long and is of a 

square cross-section of sides 20mm. What should be the dimension of a 

steel strut of the same length and subjected to the same axial loads? 

A.9: 
 Considering that both the steel and brass strut would just avoid buckling, 

we may write 

   
2 2

br br st st
2 2
br st

E I E I
l l

π π
=  

 where the suffixes br and st represent brass and steel respectively. 

Substituting values we have, 

  br

st

I 200
I 90

=  

and this gives sides of the square cross-section of beam strut to be 16.38 mm. 

 

 

 

 

 

 

 



Version 2 ME, IIT Kharagpur 

Q.10: Show the stresses on the element at A in figure-2.1.7.6. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.1.7.6F 
A.10: 
 The element A is subjected to a compressive stress due to the vertical 

component 240 KN and a bending stress due to a moment caused by the 

horizontalcomponent 180 KN. 

 Compressive stress, c
240 48MPa

0.05x0.1
σ = =  

 Bending (tensile) stress, ( )
B 3

180x0.3 x0.03
388.8MPa

0.05x0.1
12

σ = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 Shear stress due to bending = VQ 8.64MPa
It

=  
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2.1.8  Summary of this Lesson 
 

It is important to analyse the stresses developed in machine parts and 

design the components accordingly. In this lesson simple stresses such as 

tensile, compressive, bearing, shear, bending and torsional shear stress 

and buckling of beams have been discussed along with  necessary 

formulations. Methods of combining normal and shear stresses are also 

discussed.    
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