
6 Thin shells under internal pressure 

6.1 Thin cylindrical shell of circular cross-section 

A problem in which combined stresses are present is that of a cylindrical shell under internal 
pressure. Suppose a long circular shell is subjected to an internal pressurep, which may be due 
to a fluid or gas enclosed w i b  the cyhder, Figure 6.1. The internal pressure acting on the long 
sides of the cylinder gives rise to a circumferential stress in the wall of the cylinder; if the ends of 
the cylinder are closed, the pressure acting on these ends is transmitted to the walls of the cylinder, 
thus producing a longitudinal stress in the walls. 

Figure 6.2 Circumferential and longitudinal 
stresses in a thin cylinder with closed ends 

under internal pressure. 
Figure 6.1 Long thin cylindrical shell with 

closed ends under internal pressure. 

Suppose r is the mean radius of the cylinder, and that its thickness t is small compared with r. 
Consider a unit length of the cylinder remote from the closed ends, Figure 6.2; suppose we cut t h ~ s  
unit length with a diametral plane, as in Figure 6.2. The tensile stresses acting on the cut sections 
are o,, acting circumferentially, and 02, acting longitudinally. There is an internal pressure p on 
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the inside of the half-shell. Consider equilibrium of the half-shell in a plane perpendcular to the 
axis of the cylinder, as in Figure 6.3; the total force due to the internal pressure p in the direction 
OA is 

p x (2r x 1) 

because we are dealing with a unit length of the cylinder. This force is opposed by the stresses a,; 
for equilibrium we must have 

p x (2r x 1) = ai x 2(t x 1) 

Then 

(6.1) P' a, = - 
t 

We shall call this the circumferential (or hoop) stress. 

Figure 6.3 Derivation of circumferential stress. Figure 6.4 Derivation of longitudinal stress. 

Now consider any transverse cross-section of the cylinder remote from the ends, Figure 6.4; the 
total longitudinal force on each closed end due to internal pressure is 

p x x J  

At any section this is resisted by the internal stresses a2, Figure 6.4. For equilibrium we must have 

p x  nJ = a2 x 2xrt 

which gives 

(6.2) 
Pr a2 = - 
2t 
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We shall call this the longitudinal stress. Thus the longitudinal stress, (T~ ,  is only half the 
circumferential stress, 0,. 

The stresses acting on an element of the wall of the cylinder consist of a circumferential stress 
oI, a longitudinal stress ( T ~ ,  and a radial stressp on the internal face of the element, Figure 6.5. As 
(r/t) is very much greater than unity, p is small compared with (T] and 02. The state of stress in the 
wall of the cylinder approximates then to a simple two-dimensional system with principal stresses 
IS] and c2. 

Thin shells under internal pressure 

(ii) (iii) 

Figure 6.5 Stresses acting on an element of the wall of a circular 
cylindrical shell with closed ends under internal pressure. 

The maximum shearing stress in the plane of (T, and ( T ~  is therefore 
1 r 

4t 
Tma = z(", - 02) = 2- 

This is not, however, the maximum shearing stress in the wall of the cylinder, for, in the plane of 
0, and p, the maximum shearing stress is 
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1 P r  
2 2t 

Tma = -@,) = - (6.3) 

sincep is negligible compared with G,; again, in the plane of o2 andp, the maximum shearing stress 
is 

1 P' 
2 4t 

T m m  = - ( 0 2 )  = - 

The greatest of these maximum shearing stresses is given by equation (6.3); it occurs on a plane 
at 45" to the tangent and parallel to the longitudinal axis of the cylinder, Figure 6.5(iii). 

The circumferential and longitudinal stresses are accompanied by direct strains. If the material 
of the cylinder is elastic, the corresponding strains are given by 

E l  = -(q 1 - Y O 2 )  = E ( b T V )  1 
E Et 

The circumference of the cylinder increases therefore by a small amount 2nrs,; the increase in 
mean radius is therefore 'E, The increase in length of a unit length of the cylinder is E,, so the 
change in internal volume of a unit length of the cylinder is 

6~ = n (r + re1? (1 + E ~ )  - x r 2  

The volumetric strain is therefore 

- -  6V - (I + E l ?  (1 + E2) - 1 
nr 

But E ,  and q are small quantities, so the volumetric strain is 

(I + El? (I + E2) - 1 t (1 + 2E1) (1 + E2) - 1 

= 2E1 + E2 

In terms of G, and o2 this becomes 
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Problem 6.1 A thin cylindrical shell has an internal diameter of 20 cm, and is 0.5 cm thick. 
It is subjected to an internal pressure of 3.5 MN/m2. Estimate the 
circumferential and longitudinal stresses if the ends of the cylinders are closed. 

Solution 

From equations (6.1) and (6.2), 

0, = F = (3.5 x lo6) (0.1025)/(0.005) = 71.8 MN/m2 
c 

and 

o2 = F = (3.5 x lo6) (0.1025)/(0.010) = 35.9 MN/m2 
2t 

Problem 6.2 If the ends of the cylinder in Problem 6.1 are closed by pistons sliding in the 
cylinder, estimate the circumferential and longitudinal stresses. 

Solution 

The effect of taking the end pressure on sliding pistons is to remove the force on the cylinder 
causing longitudinal stress. As in Problem 6.1, the circumferential stress is 

c1 = 71.8 MN/mz 

but the longitudinal stress is zero. 

Problem 6.3 A pipe of internal diameter 10 cm, and 0.3 cm thick is made of mild-steel 
having a tensile yield stress of 375 MN/m2. What is the m a x i m u  permissible 
internal pressure if the stress factor on the maximum shearing stress is to be 4? 

Solution 

The greatest allowable maximum shearing stress is 

+(+ x 375 x lo6) = 46.9 MN/m2 

The greatest shearing stress in the cylinder is 

0.0°3 x (46.9 x lo6) = 5.46 MN / m2 2t 
r 0.05 15 

Then p = - ( ~ - ) =  
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Two boiler plates, each 1 cm thick, are connected by a double-riveted butt 
joint with two cover plates, each 0.6 cm thlck. The rivets are 2 cm diameter 
and their pitch is 0.90 cm. The internal diameter of the boiler is 1.25 m, and 
the pressure is 0.8 MN/mz. Estimate the shearing stress in the rivets, and the 
tensile stresses in the boiler plates and cover plates. 

Problem 6.4 

Solution / 

Suppose the rivets are staggered on each side of the joint. Then a single rivet takes the 
circumferential load associated with a % (0.090) = 0.045 m length of boiler. The load on a rivet 
is 

- 1.25) (0.045) (0.8 x lo6) = 22.5 kN 
[:( 1 

Area of a rivet is 
IT - (0.02)2 = 0.3 14 x lO-3  m2 
4 

The load of 22.5 kN is taken in double shear, and the shearing stress in the rivet is then 
1 - (22.5 x lo3) l(0.314 x lO-3) = 35.8 MN/m’ 
2 

The rivet holes in the plates give rise to a loss in plate width of 2 cm in each 9 cm of rivet line. The 
effective area of boiler plate in a 9 cm length is then 

(0.010) (0.090 - 0.020) = (0.010) (0.070) = 0.7 x l O - 3  m’ 

The tensile load taken by this area is 
1 - (1.25) (0.090) (0.8 x lo6) = 45.0kN 
2 

The average circumferential stress in the boiler plates is therefore 

= 6 4 . 2 ~ ~ 1 r n ’  
45.0 x io3 
0.7 x 1 0 - ~  

0, = 
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This occurs in the region of the riveted connection. 
circumferential tensile stress is 

Ol = - 

Remote from the connection, the 

pr = (0.8 lo6) (0.625) = 50.0 m/m~ 
t (0.010) 

In the cover plates, the circumferential tensile stress is 

45'0 lo3 = 53.6 M N / m 2  
2(0.006) (0.070) 

The longitudinal tensile stresses in the plates in the region of the connection are difficult to 
estimate; except very near to the rivet holes, the stress will be 

o2 = E = 25.0 MN/m2 
2t 

Problem 6.5 A long steel tube, 7.5 cm internal diameter and 0.15 cm h c k ,  has closed ends, 
and is subjected to an internal fluid pressure of 3 MN/m2. If E = 200 GN/mZ, 
and v = 0.3, estimate the percentage increase in internal volume of the tube. 

Solution 

The circumferential tensile stress is 

The longitudinal tensile stress is 

o2 = E = 38.3 MN/m2 
2t 

The circumferential strain is 

and the longitudinal strain is 

1 
E 

E2 = - (Dl - VO,)  
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The volumetric strain is then 
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1 
E 

2E1 + E2 = - [201 - 2va2 + (T2 - vo,] 

1 
E 

= - [(r, (2 - v) + (T2 (1 - 2v)j 

Thus 

(76.6 x IO6) [(2 - 0.3) + (1 - 0.6)] 2E1 + E2 = 
200 x 109 

The percentage increase in volume is therefore 0.0727% 

Problem 6.6 An air vessel, whch is made of steel, is 2 m long; it has an external diameter 
of 45 cm and is 1 cm h c k .  Find the increase of external diameter and the 
increase of length when charged to an internal air pressure of 1 MN/m*. 

Solution 

For steel, we take 

E = 200 GN/m2 , v = 0.3 

The mean radius of the vessel is r = 0.225 m; the circumferential stress is then 

The longitudinal stress is 

o2 = E = 11.25 MN/m* 
2t 

The circumferential strain is therefore 
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(22.5 x lo6) (0.85) 
E E 

= 0.957 x 

The longitudinal strain is 

(22.5 x IO6) (0.2) 
200 x 109 

= 0.225 x 

The increase in external diameter is then 

0.450 (0.957 x = 0.430 x m 

= 0.0043 cm 

The increase in length is 

2 (0.225 x = 0.450 x m 

= 0.0045 cm 

Problem 6.7 A thin cylindncal shell is subjected to internal fluid pressure, the ends being 
closed by: 

(a) two watertight pistons attached to a common piston rod; 

(b) flangedends. 

Find the increase in internal diameter in each case, given that the internal 
diameter is 20 cm, thickness is 0.5 cm, Poisson’s ratio is 0.3, Young’s modulus 
is 200 GN/m2, and the internal pressure is 3.5 h4N/m2. (RNC) 

Solution 

We have 

p = 3.5 MN/m2,  r = 0.1 m , t = 0.005 m 
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In both cases the circumferential stress is 

(a) In this case there is no longitudmal stress. The circumferential strain is then 

The increase of internal diameter is 

0.2 (0.35 x = 0.07 x m = 0.007 cm 

(b) In this case the longitudmal stress is 

o2 = = 35 m / m 2  
2t 

The circumferential strain is therefore 
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= 0.85 (0.35 x = 0.298 x 

The increase of internal diameter is therefore 

0.2 (0.298 x = 0.0596 x m = 0.00596 cm 

Equations (6.1) and (6.2) are for determining stress in perfect thm-walled circular cylindncal shells. 
If, however, the circular cylinder is fabricated, so that its joints are weaker than the rest of the 
vessel, then equations (6.1) and (6.2) take on the following modified forms: 

(6.6) 
Pr ol = hoop or circumferential stress = - 
' l L t  

P' o2 = longitudinal stress = - 
2% t 
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where 
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7, = circumferential joint efficiency < 1 

qL = longitudinal joint efficiency s 1 

NB The circumferential stress is associated with the longitudinal joint efficiency, and the 
longitudinal stress is associated with the circumferential joint efficiency. 

6.2 Thin spherical shell 

We consider next a thin spherical shell of means radius r, and thickness t ,  which is subjected to an 
internal pressure p .  Consider any diameter plane through the shell, Figure 6.6; the total force 
normal to this plane due top  acting on a hemisphere is 

p x nr2 

t i> (ii) 

Figure 6.6 Membrane stresses in a thin spherical shell under internal pressure. 

This is opposed by a tensile stress (I in the walls of the shell. By symmetry (I is the same at all 
points of the shell; for equilibrium of the hemisphere we must have 

p x nr2 = (I x 2nrt 

This gives 

(6.8) 
( I = -  Pr 

2t 

At any point of the shell the direct stress (I has the same magnitude in all directions in the plane of 
the surface of the shell; the state of stress is shown in Figure 6.6(ii). A s p  is small compared with 
(I, the maximum shearing stress occurs on planes at 45' to the tangent plane at any point. 

I f  the shell remains elastic, the circumference of the sphere in any diametral plane is strained 
an amount 
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(6.9) 
1 (s 

E E 
E = - ((3 - v(3) = (1 - v) - 

The volumetric strain of the enclosed volume of the sphere is therefore 

(6.10) (s PY 3~ = 3(1 - V) - = 3(1 - V) - 
E 2Et 

Equation (6.8) is intended for determining membrane stresses in a perfect thin-walled spherical 
shell. If, however, the spherical shell is fabricated, so that its joint is weaker than the remainder of 
the shell, then equation (6.8) takes on the following modified form: 

(6.1 1) Pr 
(s = stress = - 

211t 

where 
q = joint efficiency s 1 

6.3 Cylindrical shell with hemispherical ends 

Some pressure vessels are fabricated with hemispherical ends; this has the advantage of reducing 
the bending stresses in the cylinder when the ends are flat. Suppose the thicknesses t ,  and t2 of the 
cylindrical section and the hemispherical end, respectively (Figure 6.7), are proportioned so that 
the radial expansion is the same for both cylinder and hemisphere; in this way we eliminate bending 
stresses at the junction of the two parts. 

Figure 6.7 Cylindrical shell with hemispherical ends, 
so designed as to minimise the effects of bending stresses. 

From equations (6.4), the circumferential strain in the cylinder is 

E( ,  - 9 
Et,  

and from equation (6.7) the circumferential strain in the hemisphere is 
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Pr 
(1 - 4% 

-(1 Pr - ,.) 1 = -(1 P' - v) 
If these strains are equal, then 

Et, 2 Et, 

This gives 

2 - v  
(6.12) r l  - 

f2 I - v  
- - -  

For most metals v is approximately 0.3, so an average value of (t,lt,) is 1.7/0.7 + 2.4. The 
hemispherical end is therefore thinner than the cylindrical section. 

6.4 Bending stresses in thin-walled circular cylinders 

The theory presented in Section 6.1 is based on membrane theory and neglects bending stresses due 
to end effects and ring stiffness. To demonstrate these effects, Figures 6.9 to 6.13 show plots of the 
theoretical predictions for a ring stiffened circular cylinde? together with experimental values, 
shown by crosses. This ring stiffened cylinder, wlmh was known as Model No. 2, was firmly fxed 
at its ends, and subjected to an external pressure of 0.6895 MPa (100 psi), as shown by Figure 6.8. 

t = 0.08 N = number of ring stiffeners 
E = Young'smodulus = 71 GPa u = Poisson'sratio = 0.3 

Figure 6.8 Details of model No. 2 (mm). 
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The theoretical analysis was based on beam on elastic foundations, and is described by Ross3. 

Figure 6.9 Deflection of longitudinal generator at 0.6895 MPa (100 psi), Model No. 2. 

Figure 6.10 Longitudinal stress of the outermost fibre at 0.6895 MPa ( 1  00 psi), Model No. 2. 

3R0ss, C T F, Pressure vessels under externalpressure. Elsevier Applied Science 1990. 
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Figure 6.1 1 Circumferential stress of the outermost fibre at 0.6895 MPa (1 00 psi), Model No. 2. 

Figure 6.12 Longitudinal stress of the innermost fibre at 0.6895 MPa (100 psi), Model No. 2. 
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Figure 6.13 Circumferential stress of the innermost fibre at 0.6895 MPa (100 psi), Model No.2. 

From Figures 6.9 to 6.13, it can be seen that bending stresses in thin-walled circular cylinders are 
very localised. 

Further problems (answers on page 692) 

6.8 A pipe has an internal diameter of 10 cm and is 0.5 cm thick. What is the maximum 
allowable internal pressure if the maximum shearing stress does not exceed 55 MN/m2? 
Assume a uniform distribution of stress over the cross-section. (Cambridge) 

A :ong boiler tube has to withstand an internal test pressure of 4 MN/m2, when the mean 
circumferential stress must not exceed 120 MN/mz. The internal diameter of the tube is 
5 cm and the density is 7840 kg/m3. Find the mass of the tube per metre run. (RNEC) 

A long, steel tube, 7.5 cm internal diameter and 0.15 cm thick, is plugged at the ends and 
subjected to internal fluid pressure such that the maximum direct stress in the tube is 120 
MN/m2. Assuming v = 0.3 and E = 200 GN/m2, find the percentage increase in the 
capacity of the tube. (RNC) 

A copper pipe 15 cm internal diameter and 0.3 cm thick is closely wound with a single 
layer of steel wire of diameter 0.18 cm, the initial tension of the wire being 10 N. If the 
)ipe is subjected to an internal pressure of 3 MN/mZ find the stress in the copper and in 
the wire (a) when the temperature is the same as when the tube was wound, (b) when the 
temperature throughout is raised 200°C. E for steel = 200 GN/m2, E for copper = 100 
GN/mZ, coefficient of linear expansion for steel = 11 x 1O-6, for copper 18 x 1O-6 per 
l "C. (Cambridge) 

A thin spherical copper shell of internal diameter 30 cm and thickness 0.16 cm is just full 
of water at atmospheric pressure. Find how much the internal pressure will be increased 

6.9 

6.10 

6.1 1 

6.1 2 
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if 25 cc of water are pumped in. Take v = 0.3 for copper and K = 2 GNIm' for water. 
(Cam bridge) 

6.13 A spherical shell of 60 cm diameter is made of steel 0.6 cm thick. It is closed when just 
full of water at 15"C, and the temperature is raised to 35°C. For this range of 
temperature, water at atmospheric pressure increases 0.0059 per unit volume. Find the 
stress induced in the steel. The bulk modulus of water is 2 GNIm', E for steel is 
200 GNIm', and the coefficient of linear expansion of steel is 12 x per 1 "C, and 
Poisson's ratio = 0.3. (Cambridge) 


