
16 Torsion of circular shafts and 
t h i n-wal led tubes 

16.1 Introduction 

In Chapter 3 we introduced the concepts of shearing stress and shearing strain; these have an 
important application in torsion problems. Such problems arise in shafts transmitting .heavy 
torques, in eccentrically loaded beams, in aircraft wings and fuselages, and many other instances. 
These problems are very complex in general, and at th~s elementary stage we can go no further than 
studying uniform torsion of circular shafts, thin-walled tubes, and thin-walled open sections. 

16.2 Torsion of a thin circular tube 

The simplest torsion problem is that of the twisting of a uniform thin circular tube; the tube shown 
in Figure 16.1 is of thickness f, and the mean radius of the wall is r, L is the length of the tube. 
Shearing stresses T are applied around the circumference of the tube at each end, and in opposite 
directions. 

Figure 16.1 Torsion of a thin-walled circular tube. 

If the stresses T are uniform around the boundary, the total torque Tat each end of the tube is 

T = (25rrt) Tr = 2xr2  t T (16.1) 

Thus the shearing stress around the Circumference due to an applied torque Tis 

(16.2) 
T 

T = -  
2nr2t 
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We consider next the strains caused by these shearing stresses. We note firstly that 
complementary shearing stresses are set up in the wall parallel to the longitudinal axis of the tube. 
If 6s is a small length of the circumference then an element of the wall ABCD, Figure 16.1, is in 
a state of pure shearing stress. If the remote end of the tube is assumed not to twist, then the 
longitudinal element ABCD is distorted into the parallelogram ABC'D', Figure 16.1, the angle of 
shearing strain being 

T 
Y = -  (1 6.3) G 

if the material is elastic, and has a shearing (or rigidity) modulus G. But if 8 is the angle of twist 
of the near end of the tube we have 

yL  = re  (16.4) 

Hence 

(1 6.5) e = -  YL = & 
r Gr 

It is sometimes more convenient to defme the twist of the tube as the rate of change of twist per 
unit length; this is given by (WL), and from equation (16.5) this is equal to 

T 
(16.6) - - -  0 -  

L Gr 

16.3 Torsion of solid circular shafts 

The torsion of a thm circular tube is a relatively simple problem as the shearing stress may be 
assumed constant throughout the wall thickness. The case of a solid circular shaft is more complex 
because the shearing stresses are variable over the cross-section of the shaft. The solid circular 
shaft of Figure 16.2 has a length L and radius a in the cross-section. 

Figure 16.2 Torsion of a solid circular shaft. 
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When equal and opposite torques Tare applied at each end about a longitudinal axis we assume 
that 

0)  the twisting is uniform along the shaft, that is, all normal cross-sections the same 
distance apart suffer equal relative rotation; 

(ii) cross-sections remain plane during twisting; and 

(iii) rahi remain straight during twisting. 

If 8 is the relative angle of twist of the two ends of the sha 
elemental tube of hckness 6r and at radius r is 

?-e 
y = -  L 

then the shearing strain y of an 

(16.7) 

If the material is elastic, and has a shearing (or rigidity) modulus G, Section 3.4, then the 
circumferential shearing stress on this elemental tube is 

The thickness of the elemental tube is 6r, so the total torque on this tube is 

(21cr6r)rr = 2nr2r6r 

The total torque on the shaft is then 

T = /oa27cr2rdr 

On substituting for T from equation (16.8), we have 

T = 2n($) loa r3dr 

(16.8) 

(16.9) 

Now 

(16.10) 
na 

2 
271 La r3dr  = - 

This is the polar second moment of area of the cross-section about an axis through the centre, and 
is usually denoted by J. Then equation (1 6.9) may be written 

GJB 
L 

T = -  (16.11) 
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We may combine equations (1 6.8) and (16.1 1) in the form 
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GO I ’ -  T -  
J r L ( 1 6.1 2) - - - - -  

We see from equation (1 6.8) that T increases linearly with r, from zero at the centre of the shaft to 
GaB/L at the circumference. Along any radius ofthe cross-section, the shearing stresses are normal 
to the radius and in the plane of the cross-section, Figure 16.3. 

16.4 Torsion of a hollow circular shaft 

It frequently arises that a torque is transmitted by a hollow circular shaft. Suppose a,  and u2 are 
the internal and external radii, respectively, of such a shaft, Figure 16.4. We make the same 
general assumptions as in the torsion of a solid circular shaft. If r is the shearing stress at radius 
r, the total torque on the shaft is 

T = fa: 2 ~ r ~ ~ d r  (16.13) 

Figure 16.3 Variation of shearing stresses Figure 16.4 Cross-section of a hollow 
over the cross-section for elastic torsion of a 

solid circular bar. 
circular shaft. 

If we assume, as before, that radii remain straight during twisting, and that the material is elastic, 
we have 

GA 
L 

T = -  

Then equation (1 6.13) becomes 

(16.14) 
T = [: (T) 25rr3dr = - GJB 

L 

where 
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J = Jo: 2xr3dr (16.15) 

Here, J is the polar second moment of area or, more generally, the torsion constant of the cross- 
section about an axis through the centre; J has the value 

J = [ y  2xr3dr = E (a; - a:) 
2 

(16.16) 

Thus, for both hollow and solid shafts, we have the relationship 

T -  T -  G9 
J r L 
- - - - -  

Problem 16.1 What torque, applied to a hollow circular shaft of 25 cm outside diameter and 
17.5 cm inside diameter will produce a maximum shearing stress of 75 MN/m2 
in the material (Cambridge) 

So Iution 

We have 

r, = 12.5 cm, rz = 8.75 cm 

Then 

x J = - [(0.125)4 - (0.0875)4] = 0.292 x m4 
2 

If the shearing stress is limited to 75 MN/m*, the torque is 

Problem 16.2 A ship's propeller shaft has external and internal diameters of 25 cm and 15 cm. 
What power can be transmitted at 1 10 rev/minute with a maximum shearing 
stress of 75 MN/m2, and what will then be the twist in degrees of a 10 m length 
of the shaft? G = 80 GN/m2. (Cambridge) 
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Solution 

In this case 

rl = 0.125 m, r2 = 0.075 m, I = 10 m 

x J = - [(0.125)4 - (0.075)4] = 0.335 x m 4  
2 

Then 

At 110 rev/min the power generated is 

The angle of twist is 

= 0.075 radians = 4.3" e = - -  TL - (201 x io3) (IO) 
GJ (80 x io9) (0.335 x 10-3) 

Problem 16.3 A solid circular shaft of 25 cm diameter is to be replaced by a hollow shaft, the 
ratio of the external to internal lameters being 2 to 1. Find the size of the 
hollow shaft if the maximum shearing stress is to be the same as for the solid 
shaft. What percentage economy in mass will th~s change effect? (Cambridge) 

Solution 

Let r be the inside ra lus  of the new shafi; then = 2r the outside radius of the new shaft 

7t J for the new shaft = - (16r4 - r4) = 7 . 5 7 ~ ~  
2 

7t J for the old shaft = - x (0.125)4 = 0.384 x m 4  
2 
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If Tis the applied torque, the maximum shearing stress for the old shaft is 

T(0.125) 
0.384 x 

and that for the new one is 

If these are equal, 

T(0.125) - T(2r) 
0.384 x 7.5xr4 

- -  

Then 

r3  = 0.261 x m 3  

or r = 0.640m 

Hence the internal diameter will be 0.128 m and the external diameter 0.256 m. 

area of new cross-section - (0.128)2 - (0.064)* - o.785 
area of old cross-section (0.125)2 

- ~ -  

Thus, the saving in mass is about 21%. 

Problem 16.4 A shp's propeller shaft transmits 7.5 x lo6 W at 240 rev/min. The shaft has an 
internal diameter of 15 cm. Calculate the minimum permissible external 
diameter if the shearing stress in the shaft is to be limited to 150 MN/m*. 
(Cam bridge) 

Solution 

If Tis the torque on the shaft, then 

Thus 

T = 298 kNm 
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If dl is the outside diameter of the shaft, then 
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1[ J = - (d: - 0.1504) m 4  
32 

If the shearing stress is limited to 150 MN/m2, then 

- -  Td' - 150 x lo6 w 

Thus, 

Td, = (300 x 106)J 

On substituting for J and T 

(298 x 103)d, = (300 x lo6) ($) (d: - 0.1504) 

This gives 

[L)4-3[L)-I 0.150 0.150 = 0 

On solving thls by trial-and-error, we get 

d, = 1.54(0.150) = 0.231 m 

or d ,  = 23.1 cm 

16.5 Principal stresses in a twisted shaft 

It is important to appreciate that uniform torsion of circular shafts, of the form discussed in Section 
16.3, involves no shearing between concentric elemental tubes of the shaft. Shearing stresses T 
occur in a cross-section of the shaft, and complementary shearing stresses parallel to the 
longitudinal axis, Figure 16.5. 

Figure 16.5 Principal stresses in the outer surface of a twisted circular shaft. 
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An element ABCD in the surface of the shaft is in a state of pure shear. The principal plane 
makes angles of 45" with the axis of the shaft, therefore, and the principal stresses are +T. If the 
element ABCD is square, then the principal planes are AC and BD. The direct stress on AC is 
compressive and of magnitude r; the direct stress on BD is tensile and of the same magnitude. 
Principal planes such as AC cut the surface of the shaft in a helix; for a brittle material, weak in 
tension, we should expect breakdown in a torsion test to occur by tensile fracture along planes such 
as BD. The failure of a twisted bar of a brittle material is shown in Figure 16.6. 

Figure 16.6 Failure in torsion of a circular bar of brittle cast iron, showing a tendency 
to tensile fracture across a helix on the surface of the specimen. 

The torsional failure of ductile materials occurs when the shearing stresses attain the yield stress 
of the material. The greatest shearing stresses in a circular shaft occur in a cross-section and along 
the length of the shaft. A circular bar of a ductile material usually fails by breaking off over a 
normal cross-section, as shown in Figure 16.7. 

Figure 16.7 Failure of torsion of a circular bar of ductile cast iron, showing a 
shearing failure over a normal cross-section of the bar. 

16.6 Torsion combined with thrust or tension 

When a circular shaft is subjected to longitudinal thrust, or tension, as well as twisting, the direct 
stresses due to the longitudinal load must be combined with the shearing stresses due to torsion in 
order to evaluate the principal stresses in the shaft. Suppose the shaft is axially loaded in tension 
so that there is a longitudinal direct stress (T at all points of the shaft. 

Figure 16.8 Shearing and direct stresses due to combined torsion and tension. 
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If T is the shearing stress at any point, then we are interested in the principal stresses of the 
system shown in Figure 16.8; for this system the principal stresses, from equations (5.12), have the 
values 

L Of L @ T 2  
2 2  

and the maximum shearing stress, from equation (5.14), is 

(1 6.17) 

(1 6.1 8) 

Problem 16.5 A steel shaft, 20 cm external diameter and 7.5 cm sternal, is subjected to a 
twisting moment of 30 kNm, and a thrust of 50 kN. Find the shearing stress 
due to the torque alone and the percentage increase when the thrust is taken 
into account. (RhJC) 

Solution 

For this case, we have 

rl = 0.100 m, r2 0.0375 m 

2 2  A = ~ ( r ,  - r , )  = 0.0270 m 2  

The compressive stress is 

Now 

J = 2 (r; - r;) = 0.00247 m 4  
2 

The shearing stress due to torque alone is 

The maximum shearing stress due to the combined loading is 
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1 

= L [d + 4 t ] i  = 1.53 MN/m2 ‘c, 2 

Problem 16.6 A thin steel tube of 2.5 cm diameter and 0.16 cm thickness has an axial pull of 
10 kN, and an axial torque of 23.5 Nm applied to it. Find the magnitude and 
direction of the principal stresses at any point. (Cambridge) 

Solution 

It wdl be easier, and sufficiently accurate, to neglect the variation in the shearing stress from the 
inside to the outside of the tube. Let 

T = the mean shearing stress due to torsion 

r = the mean radius = 0.0109 m 

t = thehckness = 0.016m 

then the moment of the total resistance to shear 

= 2 d ~ t  = (1.19 x 10-6)TNm 

If this is equal to 23.5 Nm, then 

T = 19.75MN/m2 

The area of the cross-section is approximately 

27trt = 0.1098 x lO-3  m2 

Hence, the tensile stress is 

o =  10 x lo3 = 91.1 m / m 2  
0.1098 x l O - 3  
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The principal stresses are 
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1 r i. f /-) = - (91.1 f 99.3) MN/mZ 
2 2 

Then 

0, = -4.1 MN/m2, (r2 = +95.2 MN/mZ 

the positive sign denoting tension. The planes across which they act make angles 8 and (8 + n/2) 
with the axis, where 

39*5 - 0.434 tm2e = -  2r - - - - 
tJ 91.1 

giving 8 = 11.75'. 

16.7 Strain energy of elastic torsion 

In Section 16.3 we found that the torque-twist relationship for a circular shaft has the form 

T = -  GJB 
L 

This shows that the angle of twist, 8, of one end relative to the other, increases linearly with T. If 
one end of the shaft is assumed to be fEed, then the work done in twisting the other end through 
an angle 8 is the area under the T-B relationship, Figure 16.9. This work is conserved in the shaft 
as strain energy, which has the value 

1 
2 

u = -Te (16.19) 

Figure 16.9 Linear torque-twist relationship and strain energy of elastic torsion. 
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On using equation (1 6.1 1) we may eliminate either 8 or T, a d  we have 

u = ( & ) T i  = (:)e2 
(16.20) 

16.8 Plastic torsion of a circular shaft 

When a circular shaft is twisted the shearing stresses are greatest in the surface of the shaft. If the 
limit of proportionality of the material in shear is at a stress T ~ ,  then this stress is first attained in 
the surface of the shaft at a torque 

T = -  Jz Y (16.21) 
a 

where J is the polar second moment of area, and a is the radius of the cross-section. 
Suppose the material has the idealised shearing stress-strain curve shown in Figure 16.10; 

behaviour is elastic up to a shearing stress T ~ ,  the shearing modulus being G. Beyond the limit of 
proportionality shearing proceeds at a constant stress T~ Thls behaviour is nearly true of mild steel 
with a well-defined yield point. 

If we are dealing with a solid circular shaft, then after the onset of plasticity in the surface fibres 
the shearing stresses vary radially in the form shown in Figure 16.1 1. The material within a radius 
b is still elastic; the material beyond a radius b is plastic and is everywhere stressed to the yield 
stress ‘sY 

Figure 16.1 0 Idealized shearing stress-strain Figure 16.11 Elastic-plastic torsion of a solid 
curve of mild steel. circular shaft. 

The torque sustained by the elastic core is 

q = - -  Ji T y  - ? b 3  T~ 
b 2 

(16.22) 
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where subscripts 1 refer to the elastic core. The torque sustained by the outer plastic zone is 

Torsion of circular shafts and thin-walled tubes 

211 2~11r*~~dT = - T~ [a’ - b’] 
3 

(16.23) 

The total torque on the shaft is 

The angle of twist of the elastic core is 

(1  6.24) 

(16.25) 

where L is the length of the shaft. We assume that the outer plastic region suffers the same angle 
of twist; this is tantamount to assuming that radii remain straight during plastic torsion of the shaft. 

Equation (1 6.25) gives 

Then the torque becomes 

At the onset of plasticity 

Then, for any other condition of torsion, 

(16.26) 

( 1  6.27) 

(16.28) 

(16.29) 

which gives 

or (:) = T (16.30) 
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and equation (1 6.27) becomes 

T = & Ty[l - f p ) 3 1  

When 0 becomes very large, T approaches the value 

(16.3 1) 
3 

(16.32) 2na 3 
T y  = T p  (say) - 

3 

which is the torque on the shaft when it is fully plastic. For smaller values of 8, we have then 

- _  T - +) (16.33) 
3 

T,  4 8  

0/0, 

Figure 16.12 Development of full plasticity in the torsion of a solid circular shaft. 

This relationship, which is plotted in Figure 16.12 for values of 8/8, up to 5, shows that the fully 
plastic torque Ty is approached rapidly after the elastic limit is exceeded. The torque T,  at the 
elastic limit is 

T, = 2 T, (16.34) 
4 

If a torsion test is carried out on a h - w a l l e d  circular tube of mean radius r and thickness t, the 
average shearing stress due to a torque Tis 

T T = -  
2nr ' t  

from equation (16.2). If 8 is the angle of twist of a length L of the tube, the shearing strain is 
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1-8 
Y = -  

L 

from equation (16.4). Thus, from a torsion test, in whch values of T and 8 are measured, the 
shearing stress T and strain y can be deduced. The resulting variation of T and y is called the 
shearing stress-strain curve of the material; the forms of these stress-strain curves are similar to 
tensile and compressive stress-strain curves, as shown in Figure 16.13. In the elastic range of a 
material 

? = C y  

where G is the shearing modulus of the material (Section 3.4). 

Figure 16.13 Forms of shearing stress-strain curves for mild steel 
and for aluminium light alloys. 

It is important to appreciate that the shearing stress-strain curve cannot be directly deduced 
from a torsion test of a solid circular bar, although the limit of proportionality can be estimated 
reasonably accurately. 

16.9 Torsion of thin tubes of noncircular cross-section 

In general the problem of the torsion of a shaft of non-circular cross-section is a complex one; in 
the particular case when the shaft is a hollow thin tube we can develop, however, a simple theory 
giving results that are sufficiently accurate for engineering purposes. 

Consider a thin-walled closed tube of uniform section throughout its length. The thickness of 
the wall at any point is t ,  Figure 16.14, although this may vary at points around the circumference 
of the tube. Suppose torques Tare applied to each end so that the tube twists about a longitudinal 
axis Cz. We assume that the torque Tis distributed over the end of the tube in the form of shearing 
stresses which are parallel to the tangent to the wall at any point, Figure 16.14, and that the ends 
of the tube are free from axial restraint. If the shearing stress at any point of the circumference is 
T, then an equal complementary shearing stress is set up along the length of the tube. Consider the 
equilibrium of the section ABCD of the wall: if the shearing stress T at any point is uniform 
throughout the wall thickness then the shearing force transmitted over the edge BC is T t  per unit 
length. 
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Figure 16.14 Torsion of a thin-walled tube of any cross-section. 

For longitudinal equilibrium of ABCD we must have that T t  on BC is equal and opposite to .rt 
on AD; but the section ABCD is an arbitrary one, and we must have that rt is constant for all parts 
of the tube. Suppose h s  constant value of .rt is 

T t  = q (16.35) 

The symbol ‘q’ is called the shear flow; it has the units of a load per unit length of the 
circumference of the tube. 

Suppose we measure a distance s round the tube from some point 0 on the circumference, 
Figure 16.14. The force acting along the tangent to an element of length 6s in the cross-section is 
rt6s. Suppose r is the length of the perpendicular from the centre of twist C onto the tangent. Then 
the moment of the force ~ t 6 s  about C is 

10-6s 

The total torque on the cross-section of the tube is therefore 

T = rtrak (16.36) Q 

Q Q  
where the integration is carried out over the whole of the circumference. But T t  is constant and 
equal to q for all values of s. Then 

T = rt rds = q rds (16.37) 

Now $ rds is twice the area, A ,  enclosed by the centre line of the wall of the tube, and so 

T = 2Aq (16.38) 

The shearing stress at any point is then 



3 84 Torsion of circular shafts and thin-walled tubes 

(16.39) 

To find the angle of twist of the tube we consider the strain energy stored in Le tube, and equate 
this to the work done by the torques T in twisting the tube. When a material is subjected to 
shearing stresses r the strain energy stored per unit volume of material is, from equation ( 3 . 9 ,  

t 
2G 
- 

where G is the shearing (or rigidity) modulus of the material. In the tube the shearing stresses are 
varying around the circumference but not along the length of the tube. Then the strain energy 
stored in a longitudinal element of length L, width 6s and thickness t is 

($) LtGs 

The total strain energy stored in the tube is therefore 

Ltcis 
= f,, (1 6.40) 

where the integration is carried out over the whole circumference of the tube. But rt is constant, 
and equal to q, and we may write 

(16.41) 

If the ends of the tube twist relative to each other by an angle 8, then the work done by the torques 
Tis 

1 
2 

w = -m 

On equating U and W, we have 

q2L cis 
e = G T J t  

But from equation (16.38) we have 

T 
4 = -  2A 

(1  6.42) 

(1  6.43) 

(1 6.44) 
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Then equation ( 16.43) may be written 

e = -  T: 1: - (16.45) 
2 A  G 

For a tube of d o r m  hckness t, 

0 = “ ( E )  (1 6.46) 
4A2G t 

where S is the total circumference of the tube. 

Equation (16.45) can be written in the form 

TL e = -  
GJ 

where 

4 A2 
ds 

J =  - 

‘r 
J is the torsion constant for the section; for circular cross-sections J is equal to the polar second 
moment of area, but this is not true in general. 

16.10 Torsion of a flat rectangular strip 

A long flat strip of rectangular cross-section has a breadth b, thickness t ,  and length L .  For uniform 
torsion about the centroid of the cross-section, the strip may be treated as a set of concentric thin 
hollow tubes, all twisted by the same amount. 

Figure 16.15 Torsion of a thin strip. 
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Consider such an elemental tube which is rectangular in shape the longer sides being a distance 

If 6Tis the torque carried by this elemental tube then the shearing stress in the longer sides of 
y from the central axis of the strip; the duchess of the tube is 6y, Figure 16.15. 

the tube is 

6T 
(16.47) T = -  

4bY SY 

where b is assumed very much greater than t. This relationship gives 

(16.48) - dT = 4byr 
4 

For the angle of twist of the elemental tube we have, from equation (1 6.46), 

2bLST 
16b ' y  'G6y 

o =  (1 6.49) 

where L is the length of the strip. This gives the fiuther relationship 

0 
(16.50) - -  dT - 8by'G- 

4 L 

On comparing equations (1 6.48) and (1 6.50), we have 

T = 2yG(;) (16.5 1) 

This shows that the shearing stress T vanes linearly throughout the thickness of the strip, having 
a maximum value in the surface of 

T , , , ~  = Gt( :) (16.52) 

An important feature is that the shearing stresses '5 act parallel to the longer side b of the strip, and 
that their directions reverse over the thickness of the strip. This approximate solution gives an 
inexact picture of the shearing stresses near the comers of the cross-section. 

Figure 16.16 Directions of shearing stresses in the torsion of a thin strip. 
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We ought to consider not rectangular elemental tubes but flat tubes with curved ends. The 

The total torque on the cross-section is 
contours of constant shearing stress are then continuous curves, Figure 16.16. 

I 

(16.53) T = k''8by2G(;)dy = 1 -bt3G- e 
3 L 

The polar second moment of area of the cross-section about its centre is 

1 
12 

J = - (bt3 + b3t )  (1 6.54) 

If b is very much greater than t, then, approximately, 

1 
12 J = - b3t (16.55) 

The geometrical constant occurring in equation (16.53) is b?/3; thus, in the torsion of a thin strip 
we cannot use the polar second moment of area for J in the relationshp 

GO 
(16.56) T -  

J L 

Instead we must use 

- - -  

1 
3 J = -bt3 (16.57) 

16.1 1 Torsion of thin-walled open sections 

We may extend the analysis of the preceding section to the uniform torsion of thin-walled open- 
sections of any cross-sectional form. 

Figure 16.17 Torsion of an angle section. 
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In the angle section of Figure 16.17, we take elemental tubes inside the two limbs of the section. 
If t, and t2 are small compared with b, and b,, the maximum shearing stresses in limbs 1 and 2 are 

T~ = Gt, (;) T~ = Gt, (;) (16.58) 

where the angle of twist per unit length, O L ,  is common to both limbs. 

The total torque is the summation of the torques carried by the two limbs, and has the value 
The greatest shearing stress occurs then in the surface of the thicker limb of the cross-section. 

T = - 1 (b1( + b2t:) G (:) 
3 

(16.59) 

In general, for a h -wa l l ed  open-section of any shape the shearing stress in the surface of a 
section of thickness t is 

T = G t ( : )  

The total torque on the section is 

T = G ( : )  x i b t 3  3 

(1 6.60) 

(16.61) 

where the summation is carried out for all limbs of the cross-section. 

Further problems (answers on page 693) 

16.7 Find the maximum shearing stress in a propeller shaft40 cm external, and 20 cm internal 
diameter, when subjected to a torque of 450 kNm. If G = 80 GN/mz, what is the angle 
of twist in a length of 20 diameters? What diameter would be required for a solid shaft 
with the same maximum stress and torque? ( W C )  

16.8 A propeller shaft, 45 m long, transmits 10 MW at 80 rev/min. The external diameter of 
the shaft is 57 cm, and the internal diameter 24 cm. Assuming that the maximum torque 
is 1.19 times the mean torque, find the maximum shearing stress produced. Find also the 
relative angular movement of the ends of the shaft when transmitting the average torque. 
TakeG = 80GN/m2. (RNC) 

16.9 A steel tube, 3 m long, 3.75 cm diameter, 0.06 cm thick, is twisted by a couple of 50 Nm. 
Find the maximum shearing stress, the maximum tensile stress, and the angle through 
which the tube twists. Take G = 80 GN/m2. (Cambridge) 
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Compare the mass of a solid shaft with that of a hollow one to transmit a given power 
at a given speed with a given maximum shearing stress, the inside diameter of the hollow 
shaft being two-thirds of the outside diameter. (Cambridge) 

A 2.5 cm circular steel shaft is provided with enlarged portions A and B. On to this 
enlarged portion a steel tube 0.125 cm thick is shrunk. While the shrinlung process is 
going on, the 2.5 cm shaft is held twisted by a couple of magnitude 50 Nm. When the 
tube is f d y  set on the shaft this twisting couple is removed. Calculate what twisting 
couple is left on the shaft, the shaft and tube being made of the same material. 
(Cam bridge) 

16.1 0 

16.1 1 

16.12 A thin tube of mean diameter 2.5 cm and thickness 0.125 cm is subjected to a pull of 7.5 
kN, and an axial twisting moment of 125 Nm. Find the magnitude and direction of the 
principal stresses. (Cambridge) 


