

50+ Linux Commands before
joining a Company

Aditya Chatterjee x Benjamin QoChuk

Introduction
Linux and its variants like Ubuntu, RedHat, OpenSUSE and others are the
preferred development workspace for most serious developers today.
Moreover, when one is developing a software system that will be used by
customers, it is important to test in different Linux variants and the key is to
use Linux smoothly for wide collaboration.

This book will prepare you to use Linux in a way a professional developer
would use. You can fit in any developer group instantly and will feel
confident in using your computing system.

We have covered over 50 commands, and this will enable you to use Linux
efficiently for any basic development work. All commands are important and
has been chosen by analyzing the development work done in top companies.

High level ideas we have covered are:

Get hardware details about your system
Get software details about your system
Running and handling processes efficiently and in background
Handling file system
Other key commands

At the end, we have present key advices of using Linux that will make you a
“great developer” clearly.

Let us get started directly by capturing the details of the current computing
system.

This is important so that you can share the details along with the main work
(may be an application or benchmark data) so it is reproducible.

Get details about your system
Getting information about a system and recording it correctly is important for
a wide range of use cases. This allows one to recreate the same system
environment and hence, work in same flow and get same performance
measurements.
This involves both hardware and software details.

While working in a professional setting, often, one is required to keep a track
of System details for every measurement/ experiment done. This is because at
a later point the same performance can be replicated by creating same
environment.

This is how a basic record of our system configuration looks like:

System Information
Attribute Value

Model Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz
NUMA nodes 4

Sockets 2
Cores 28

Threads per socket 2
CPUs 112

Hyperthreading OFF
Frequency 2494.256 MHz

RAM 512 GB
Rank 2

DIMMs 4
Clock Frequency 4200 MHz

Clock Speed 2133 MT/s
Software Information

Attribute Value
Kernel Linux linux-mzys 4.4.162-94.72-default

GCC version GCC (SUSE Linux) 6.2.1 20160826
OS OpenSUSE 12.3 (Dartmouth)

We will go through the process so that you can recreate the details for your
own system.

It is highly suggested that you try the commands in your system

We will get started with the process.

lscpu command
lscpu command will provide information about the CPU architecture by
reading two files:

sysfs
/proc/cpuinfo

The output is the first step of collecting system configuration information.
This command provides some key information which is used to run processes
efficiently. The idea is that there are commands to control the execution of
processes and we have explored this later in this book.

Command:

lscpu

We will present the output in our system first so that you can go through it
and analyze it. We explain the background knowledge and go through the
command following this.

It provides several information, so it is highly advised that you examine it
carefully on your own first.

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 112

On-line CPU(s) list: 0-111

Thread(s) per core: 2

Core(s) per socket: 28

Socket(s): 2

NUMA node(s): 4

Vendor ID: GenuineIntel

CPU family: 6

Model: 85

Model name: Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz

Stepping: 4

CPU MHz: 2494.256

BogoMIPS: 4988.51

Virtualization: VT-x

L1d cache: 32K

L1i cache: 32K

L2 cache: 1024K

L3 cache: 39424K

NUMA node0

CPU(s): 0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,100,104,108

NUMA node1

CPU(s): 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61,65,69,73,77,81,85,89,93,97,101,105,109

NUMA node2

CPU(s): 2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,66,70,74,78,82,86,90,94,98,102,106,110

NUMA node3

CPU(s): 3,7,11,15,19,23,27,31,35,39,43,47,51,55,59,63,67,71,75,79,83,87,91,95,99,103,107,111

Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36

clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art

arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf eagerfpu pni

pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca

sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm

abm 3dnowprefetch ida arat epb invpcid_single pln pts dtherm intel_pt kaiser tpr_shadow vnmi

flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx

avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt

xsavec xgetbv1 cqm_llc cqm_occup_llc pku ospke

A system has a couple of NUMA nodes which is a division of the entire
system. The idea is that processes can run on separate NUMA nodes without
any interference and overhead for memory access point of view.
Each NUMA node has a set of CPUs and separate memory assigned to it.
In our case, with the lscpu command, we get the following information:

We have 4 NUMA nodes
We have 112 CPUs
We get the entire list of CPUs and the NUMA node each belongs to.

We have sockets which are the number of distinct physical components. Each
socket has a set of cores assigned to it.
Each core can have several CPUs assigned to it and the number of CPUs is
same as the number of threads assigned to a core.
Note: A CPU can run only one thread at a time. A thread means one line of
execution/ one process.
From our lscpu output, we get the following details:

2 sockets

28 cores per socket
2 threads per cores

If you do the calculation, the numbers will match on your system.

(Number of Sockets) x (Number of cores per socket) x (Number of
threads per core) = (Number of CPUs)

2 x 28 x 2 = 112

Note: If hyperthreading (a property) is on, then the above calculation will not
hold, and we will get the twice the number of CPUs. In hyperthreading, the
number of threads per core is doubled. Hence, this gives us another key
information: the state of hyperthreading.

If hyperthreading is on, then:

(Number of Sockets) x (Number of cores per socket) x (Number of
threads per core) = (Number of CPUs) x 2

2 x 28 x 4 = 112 x 2

With this, we got a good idea of the system design. This information shall be
recorded and will be used extensively in our later sections where we run
processes efficiently.

We get other important details to identify our system as well. These are:

Model name: Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz

CPU frequency is 2494.256 MHz. This is important as it impact performance
of programs directly and must be same to enable us to replicate a benchmark
result.

The flag values indicate the different features supported by the system. For
example, AVX2 and AVX512 are supported in our system. For common
systems, AVX512 is not supported and the performance of specific

applications may be low which use AVX512 to their benefit.

This gives a good indication why the performance of the same application
may vary significantly across systems.

Following is the summary of the key information we recorded using lscpu
command:

System Information (lscpu)
Attribute Value

Model Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz
NUMA nodes 4
Sockets 2
Cores 28
Threads per
socket 2
CPUs 112
Hyperthreading OFF
Frequency 2494.256 MHz

You must take a note of these details for your system as well. Do this before
moving on to the next command.

uname -a
This command will provide the kernel name. This is important so because
operating systems play a major role.
In most benchmarking setting, measurements are taken on different operating
systems and hence, kernel is a key information.

Command:

uname -a

Sample output:

Linux linux-mzys 4.4.162-94.72-default #1

SMP Mon Nov 12 18:57:45 UTC 2018 (9de753f)

x86_64 x86_64 x86_64 GNU/Linux

Following is the record of our kernel information:

System Information (uname -a)
Attribute Value

Kernel Linux linux-mzys 4.4.162-94.72-default

sudo dmidecode
This command provides several important information such as Desktop
Management Interface and is linked to System Management BIOS. It
provides the memory structure, system components, device information and
much more.

We will investigate parts of it one by one to understand and get relevant
information quickly.

Clock speed
The first information we need is the clock speed. We can grep MT on the
output of sudo dmidecode to get this information conveniently. Grep is a
UNIX tool which allows us to filter text.

sudo dmidecode | grep MT

Output:

MTRR (Memory type range registers)

 Speed: 2133 MT/s

 Configured Clock Speed: 1067 MT/s

In this command, we will get the Physical memory slot using grep DDR

sudo dmidecode | grep DDR

Output:

Type: DDR4

To get the memory rank, grep Rank as follows:

sudo dmidecode | grep Rank

Output:

Rank: 2

To get the clock frequency, use the following command:

sudo dmidecode | grep MHz

Output:

External Clock: 100 MHz

Max Speed: 4200 MHz

Current Speed: 3400 MHz

To get the DIMM information, get the following command:

sudo dmidecode | grep DIMM

Output:

Form Factor: DIMM

Locator: DIMM 0

Form Factor: DIMM

Locator: DIMM 1

To get the system memory/ RAM:

sudo dmidecode | grep GB

Output:

Maximum Capacity: 512 GB

Range Size: 128 GB

Range Size: 128 GB

Range Size: 128 GB

Range Size: 128 GB

Hence, our system has 512GB of RAM (Random Access Memory).

With this, following are the key information of our system which shall be
recorded for all purposes:

System Information (dmidecode)
Attribute Value

RAM 512 GB
Rank 2

DIMMs 4
Clock Frequency 4200 MHz

Clock Speed 2133 MT/s

Other dmidecode commands you should try out are:

sudo dmidecode -s system-manufacturer
sudo dmidecode | grep Product
sudo dmidecode -s system-product-name
sudo dmidecode | egrep -i 'manufacturer|product'
sudo dmidecode | egrep -i 'vendor'

These commands provide important information involving the manufacturer/
vendor of your system and much more.

A computing system has several key components like processor, motherboard
and more. These are the dmidecode commands to get information regarding
these components:

sudo dmidecode -t processor (for the processor)
sudo dmidecode -t system
sudo dmidecode -t baseboard
sudo dmidecode -t chassis
sudo dmidecode -t bios
sudo dmidecode -t cache

You must try the above commands on your system, record the output and
analyze it carefully.

cat /proc/meminfo
meminfo is a file in Linux system that stores the information related to
memory usage. To get memory statistics of your system, use this command:

cat /proc/meminfo

Output:

MemTotal: 394877600 kB

MemFree: 322057928 kB

MemAvailable: 391704744 kB

Buffers: 2735168 kB

Cached: 66592340 kB

SwapCached: 39408 kB

Active: 44374924 kB

Inactive: 25087292 kB

Active(anon): 89332 kB

Inactive(anon): 94996 kB

Active(file): 44285592 kB

Inactive(file): 24992296 kB

Unevictable: 80 kB

Mlocked: 80 kB

SwapTotal: 16779260 kB

SwapFree: 12971548 kB

Dirty: 0 kB

Writeback: 4 kB

AnonPages: 98584 kB

Mapped: 73280 kB

Shmem: 49620 kB

Slab: 2853688 kB

SReclaimable: 2744528 kB

SUnreclaim: 109160 kB

KernelStack: 20608 kB

PageTables: 7668 kB

NFS_Unstable: 0 kB

Bounce: 0 kB

WritebackTmp: 0 kB

CommitLimit: 214218060 kB

Committed_AS: 4248960 kB

VmallocTotal: 34359738367 kB

VmallocUsed: 0 kB

VmallocChunk: 0 kB

HardwareCorrupted: 0 kB

AnonHugePages: 32768 kB

HugePages_Total: 0

HugePages_Free: 0

HugePages_Rsvd: 0

HugePages_Surp: 0

Hugepagesize: 2048 kB

DirectMap4k: 669504 kB

DirectMap2M: 50388992 kB

DirectMap1G: 352321536 kB

This gives good insights and you must analyze it carefully.

gcc –version
This command is used to get the gcc version. This is an important
information to record as gcc plays a major role in a wide range of
applications.
Depending on the application/ focus on hand, we need to track different
information.

Command:

gcc --version

Output:

gcc (SUSE Linux) 6.2.1 20160826 [gcc-6-branch revision 239773]

Copyright (C) 2016 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE.

So, the GCC detected is: GCC (SUSE Linux) 6.2.1 20160826

lsb_release -a

This command is used to get details of the operating system.

Command:

lsb_release -a

Output:

LSB Version: n/a

Distributor ID: SUSE

Description: openSUSE 12.3 (Dartmouth) (x86_64)

Release: 12.3

Codename: n/a

With this, we get the operating system as OpenSUSE 12.3 (Dartmouth).

With this, we get two key information which is recorded as:

Software Information
Attribute Value

GCC version GCC (SUSE Linux) 6.2.1 20160826
OS OpenSUSE 12.3 (Dartmouth)

The entire sample record of System and Software details for our computing
system is as follows:

System Information
Attribute Value

Model Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz
NUMA nodes 4

Sockets 2
Cores 28

Threads per socket 2
CPUs 112

Hyperthreading OFF
Frequency 2494.256 MHz

RAM 512 GB
Rank 2

DIMMs 4
Clock Frequency 4200 MHz

Clock Speed 2133 MT/s
Software Information

Attribute Value
Kernel Linux linux-mzys 4.4.162-94.72-default

GCC version GCC (SUSE Linux) 6.2.1 20160826
OS OpenSUSE 12.3 (Dartmouth)

You should follow the commands, run it on your system and make your own
table of system and software information. This is important as you shall
prepare this everything you run a software on a particular system so that other
professional programmers can replicate your work.

Fill this table for your system:

System Information
Attribute Value

Model
NUMA nodes

Sockets
Cores

Threads per socket
CPUs

Hyperthreading
Frequency

RAM
Rank

DIMMs
Clock Frequency

Clock Speed
Software Information

Attribute Value
Kernel

GCC version
OS

With this, we will move on to work with processes that is running
commands/ applications on our systems.

Run a process in background
Running a process in the background means that the process will not occupy
the screen and we can continue working on it with different commands. The
process will continue running but output can come to the screen but it will
not take any input. We can later bring it back on the screen as well.

In short, the syntax is:

<command> &

Note that this does not mean that the process will continue to run on closing

the terminal.

Note, there are two types of processes namely:

background process

foreground process

The idea is that the background process does not link with the STDOUT and
STDERR pipes of the screen session while foreground process is linked with
the STDOUT and STDERR pipes of the screen session. Hence, if the
background process produces an output in the terminal, it will get printed. So,
it is useful if a process does not produce any output or output is piped to a
file.

Note that both background and foreground processes are linked with STDIN
pipe. So, if a background process needs an input from STDIN pipe, it gets
stuck (hang) until we bring it to the foreground.

To make a process run in the background, we need to append the command
with &.

Syntax:

command &

Example:

python code.py &

It will give an output as:

[1] 121378

1 is the job id and 121378 is the process id.

Check background processes
We can check the processes that are in background as follows:

jobs

The output in our case is as follows:

[1]- Running python code.py &
[2]+ Running python opengenus.py &

The first integer is the Job ID of the command that is given along side.

For example, the command "python opengenus.py &" has Job ID 2.
We can use the Job ID to manage the background process and do several
things like:

bring a background process to foreground

killing a background process

Bring a process back

To bring a process back in foreground, we need to use the following
command:

fg %<job_ib>

Example:

fg %2

This will bring the process "python opengenus.py &" to the foreground. The
output will be like:

(base) [opengenus@localhost Desktop]$ fg %2

python opengenus.py

If your code is waiting for an input, it can be provided now.

Make a running process go into background

Now, if your process is already running and you want to take it to the
background, you can follow the following steps:

Press control key + Z

// check job id using jobs

jobs

// make job go to background

bg %<job id>

The process will have moved to the background.

If you just press control key + z. It will stop the process which we can see in
the jobs command:

[1] Running python code.py &

[2]- Running python opengenus.py &

[3]+ Stopped python code_2.py

Now, if we move the Job ID 3 to background using bg command, we can
check the impact using the jobs command.

bg %3

It will give an output as:

[3]+ python code_2.py &

Note the & sign at the end. It signifies that the process is running in the
background.

Try the jobs command:

jobs

The output will be as follows:

[1] Running python code.py &
[2]- Running python opengenus.py &

[3]+ Running python code_2.py &

Get Process ID of a job
We can get the process ID of all background jobs using the jobs command as
follows:

jobs -l

The output will be as follows:

[1] 121378 Running python code.py &

[2]- 127536 Running python opengenus.py &

[3]+ 12623 Running python code_2.py &

Note that the first number (1, 2 and 3) are Job IDs while the second numbers
(like 121378) are Process ID.

Kill a process

There are two ways to kill a process:

Kill it directly using process ID

Bring it to foreground and kill it using control + C

Once we get the process ID of a job, we can kill it directly like:

kill 121378

This will kill the first job. It will give an output as:

[1] Terminated python code.py

We can verify this using our jobs command as follows:

jobs -l

The output will be as:

[2]- 127536 Running python opengenus.py &
[3]+ 12623 Running python code_2.py &

Notice that the first background job is missing.

We will use the second approach of bring it to the foreground and killing it as
follows.

fg %3

This will give an output as:

(base) [opengenus@localhost Desktop]$ fg %3

python code_2.py

The terminal is stuck. If we press Control + C, the process will be terminated
as follows:

(base) [opengenus@localhost Desktop]$ fg %3

python code_2.py

^CTraceback (most recent call last):

 File "code.py", line 7, in <module>

 time.sleep(1)

KeyboardInterrupt

We can verify this using jobs -l command.

jobs -l

The output will be as follows:

[2]+ 127536 Running python opengenus.py &

Hence, only process is in the background.

With this, you have the complete knowledge of working with background
process.

The problem with this is that if you close the terminal it will kill the process.
To enable the process to continue even after closing the terminal, we need to
detach the process from the terminal which can be done using screen, disown
and nohup.

Screen command
Screen is an application in Linux system which is used to manage terminal
sessions and run processes even when the terminal screen is closed. In this
guide, we have demonstrated all screen commands so that you can use it in
your daily work.

The most common use of screen command is running processes in
background.

Install Screen

We can install screen application on Linux versions like Ubuntu as follows:

sudo apt-get install screen

For other systems like RedHat (RHEL), we can use:

sudo yum install screen

Start a screen session

To start a screen session, use the following command:

screen

This will open a new session with a clear screen. We can work on this screen
and use the features provided by screen application for it.

Get help of screen

To get the help options of screen application, press the following keys in
order:

Control key + A key followed by ? key

Note: for this to work, you should be within a screen session.

Following is the output:

 Screen key bindings, page 1 of 2.

 Command key: ^A Literal ^A: a

break ^B b license , removebuf =

clear C lockscreen ^X x reset Z

colon : log H screen ^C c

copy ^[[login L select '

detach ^D d meta a silence _

digraph ^V monitor M split S

displays * next ^@ ^N sp n suspend ^Z z

dumptermcap . number N time ^T t

fit F only Q title A

flow ^F f other ^A vbell ^G

focus ^I pow_break B version v

hardcopy h pow_detach D width W

help ? prev ^H ^P p ^? windows ^W w

history { } quit \ wrap ^R r

info i readbuf < writebuf >

kill K k redisplay ^L l xoff ^S s

lastmsg ^M m remove X xon ^Q q

 [Press Space for next page; Return to end.]

Exit a screen session

To exit a screen session, we can detach it using the following keys:

Control key + A followed by d

The output will be like:

[detached from 129921.pts-1.localhost]

(base) [opengenus@localhost ~]$

129921.pts-1.localhost is the name of our screen session and we can use this
name to get back into it.

This will allow us to get back into this screen session later and the processes
within it will keep running on the system. We will see later in section "Delete
a screen session" to learn how we can delete it and terminate all processes
within it.

List existing screen sessions

Once we are out of a screen session, we may go back into it. For this, we
shall use the following command:

screen -ls

In our case, following is the output:

There are screens on:

 129921.pts-1.localhost (Detached)

 120455.pts-1.localhost (Detached)

2 Sockets in /var/run/screen/S-opengenus.

We have two screen sessions namely:

129921
120455

We can go back into one of the sessions as well.

Run a command in a screen session

The advantage of using screen is that you can run a command in a screen
session and then, close the terminal and even then, the process will continue
to run. It is useful if you are working on a remote machine or need to close
the terminal.

The flow will be as follows:

// create a screen session

screen

// run the command now in background

command &

// exit the screen

control key + A followed by d

// now you can close the terminal safely

exit

Go back into a session

To go back into an existing screen session, we should get the name of the
session (say 129921) using the list screen command and use the following
command:

screen -r 129921

This will give you access to the session.

How to know you are in a screen?

The simplest way to detect is to do the screen list command and if any screen
session is active, it may signify that you or some other user is within it.

screen -ls

Alternatively, you can try to exit a screen as well. If you within a screen, it
will get detacted and if you are not in one, it will not work.

control key + A followed by d

Delete a screen session

To delete a screen session, we need to get into the screen session we want to
delete and following it, there are two options:

Use exit command as:

exit

Use the following command:

Control key + A followed by k

A prompt will come as:

Really kill this window [y/n]

On pressing y key, the screen session is terminated with the following
message:

[screen is terminating]
(base) [opengenus@localhost ~]$

This will terminate the session and kill all process within it.

Name a screen session

We may need to name a screen session so that when we list the sessions, we
can understand which session is for which task.

To do this, during the creation of a screen session, we can use the following

command:

screen -S name

This will create a screen session named "name" and following is the output of
the screen list command:

There are screens on:

 113050.name (Detached)

 105349.pts-1.localhost (Detached)

 129921.pts-1.localhost (Detached)

 120455.pts-1.localhost (Detached)

4 Sockets in /var/run/screen/S-opengenus.

Lock your screen session

If you want to lock your screen session, you can use the following key
combination:

control key + A followed by x

This will turn the screen into this:

Screen used by opengenus <opengenus> on localhost.
Password:

One can enter the UNIX user password to log back into the session.

Log screen session activity

We can log all activity in a screen session by creating a session using the
following command:

screen -L

If one is already in a screen session, one can use the following key
combination:

control key + A followed by H

This will save a file with all activity.

There are several other options available with screen application. You may go
through the help option that we have demonstrate previously and try out each
option. In fact, the options we have demonstrate are enough to use screen like
a master.

File handling
We have created the folder structure with files as a workspace to work on.

--- file1

--- folder1.0.0

--- --- --- file2

--- --- --- folder1.1.0

--- --- --- --- --- --- folder1.1.1

--- --- --- --- --- --- file3

--- --- --- --- --- --- file4

--- --- --- folder1.2.0

--- folder2.0.0

--- --- --- file5

We will work on this.
ls command is used to list the files and directories in the current directory
level.

Command:

ls

Output:

file1 folder1.0.0 folder2.0.0

“ls -l” command is an incremental to the above “ls” command where other
key information are included like size of file/ directory, modified date, owner,
permissions and much more.

Command:

ls -l

Output:

total 0

-rw-rw-r--. 1 opengenus aditya 0 Aug 7 00:10 file1

drwxrwxr-x. 4 opengenus aditya 57 Aug 7 00:11 folder1.0.0

drwxrwxr-x. 2 opengenus aditya 19 Aug 7 00:11 folder2.0.0

“ls -R”
This is an important command as it lists out all files and sub-directories
recursively to any depth.

Command:

ls -R

Output:

 .:

file1 folder1.0.0 folder2.0.0

./folder1.0.0:

file2 folder1.1.0 folder1.2.0

./folder1.0.0/folder1.1.0:

folder1.1.1

./folder1.0.0/folder1.1.0/folder1.1.1:

file3 file4

./folder1.0.0/folder1.2.0:

./folder2.0.0:

file5

Other ls commands you should try quickly are:

ls -n (to display user ID and group ID of files and directories)
ls relative_or_absolute_path (ls on specific directory and not on
current working directory)
ls -i (to get inode numbers)
ls -IS (to get files in order of file size)
ls -F (to add / after every directory)
ls -lh (to display size in human readable format)
ls –help (to display the guide on using ls)

top/ htop command
While running an application, we may need to monitor how the system is
being used. This can be done using the top or htop command.
Top command comes by default.

Command:

top

Output:

To install htop, you may use the command:

sudo apt-get install htop

htop is an improvement over top and should be used preferably. It displays
the thread utilization visually.

Command:

htop

Output:

It is, highly advised in a professional development setting that you run htop
on one terminal while running an application and observe the utilization in
htop output.

vi command
To open a file, you can use the vi command simply.

Command:

vi filename

This will open a terminal where the file contents will be displayed. To start
writing, press “I” key and you will go to insert mode.

To go to command mode, press ESC key and then use the following
commands (without quotes and followed by enter):

“:q” -> quit vi editor

“:q!” -> quit vi editor without saving unsaved changes
“:w” -> save unsaved changes
“:wq” -> save unsaved changes and quit editor
“:<integer>” -> go to line number as the specified integer
:/<text> -> to find the particular text

Other related commands you must explore are:

pwd (displays the absolute path of present working directory)
du (lists out directories with memory occupied)
du -mh (same as above command + get size in MB)
cat filename (to get file contents in terminal)

There are several other commands, but these commands will give you a good
understanding and enable you to start you work smoothly without any
friction.

Key advices:

Always keep track of system details
Version of software components play a major role and can be
source of bugs. Keep track of it.
Always ensure no process is running in background before running
a new command (to ensure performance is not impacted)
Always analyze htop output while a command is running
Always run process that will consume time as a background
process (to save time)

With practice and as situation arises, you will be able to master using
Linux.

Best of luck for your upcoming job/ interview.

With the current Linux knowledge, you will be able
to work in a professional development setting

smoothly and make huge contributions from the
first day.

