RESEARCH NOTES IN STATISTICAL MACHINE LEARNING

JINGHUA YAO

ABSTRACT. The probability foundations for statistical machine learning is of fundamental
importance. It is our opinion that as the trend of automation of machine learnings develops,
the probability or more primarily the mathematical background behind the machine learn-
ing algorithms will become more and more important for people who want to use machine
learning technique correctly and effectively. We collect the probability distributions used in
machine learning study and give the detailed derivations for some related quantities such as
expectation, variance and characteristic functions. Meanwhile, we present the expectation
maximization (EM) algorithm in integral form, supply the hidden Markov model (HMM)
with a specific example to demonstrate the computation of probabilities using forward or
backward algorithm, and illustrate the predictions in HMM using Viterbi algorithm. Also,
we collect some typical computations and ideas in using machine learning algorithms includ-
ing the artificial neural network. We give some concentration inequalities with proofs, and
record some useful ideas of the author in this evolving notes. We emphasize the geometrical
intuition and methods from calculus of variations during the writing.
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Galton: the concepts of standard deviation, correlation, regression analysis and the
Pearson: Pearson product-moment correlation coefficient, the method of moments for the
fitting of distributions to samples and the Pearson distribution Ronald Fishe: null hypoth-
esis.

2. 1910—1920, William Gosset, Ronald Fisher

Fisher: the concepts of sufficiency, ancillary statistics, Fisher’s linear discriminator and
Fisher information

3. 1930s, Egon Pearson and Jerzy Neyman

the concepts of “Type II” error, power of a test and confidence intervals.

4. Today

Statistical methods are applied in all fields that involve decision making. The use of modern

computers has expedited large-scale statistical computations, and has also made possible
new methods that are impractical to perform manually.

2. MAXWELL-BOLTZMANN DISTRIBUTION

The distribution is given by

m mu?

/
fv) = (27rkT>3 i xp(=5;7)

for v € [0, +o0). Using variance of normal distribution, it is easy to verify that

JOOO f(v)dv =1.

Let oo = 21%’ We have

«

flu;a) = (;)3/247rv2 exp(—av?).

f(v) satisfies the following ODE

F(1) = (2/m)"2 exp(—m/(2kT))(m/(KT))**.

In unitless form, it is as follows

{kva’(v + f(v)(mv? — 2kT) = 0,

a’zf'(z) + (1:21; 2a?) f(z) =0, .
= 5(2)"e )

e 2a2
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3. PROBABILITY DISTRIBUTIONS

3.1. Bernoulli distribution. (a) Distribution. Consider toss a coin and denote the result
by X € {1 = head, 0 = tail} where p(X = 1|u) = p. Consequently, p(X = 0|u) = 1 —p. The
distribution can be written as

X ~ Bernoulli(z|u) = p*(1 — 2)'™*, z€{0,1}.

It is easy to verify that E[X]| = g and Var[X] = u — p?.
(b) Maximum likelihood estimate. Assume that X ~ Bernoulli(z|u) and we independently

sampled N data points D = {xq,--- ,xy}. We aim to estimate the parameter p. For this,
we consider the log maximum likelihood function

In p(D|p) = In(T1;Bernoulli(x;|p)) = Z In Bernoulli(x;|u)

:Z{xilnqu (1 —2;)In(1 — p)}. (3.1)

Letting

we get

3.2. Binomial distribution. (a) Distribution. Consider N times independent Bernoulli
trails Xy, -+, Xy and consider the number of heads X obtained, i.e., X = X7 + -+ + Xy.
The probability p(X = m) form =0,1,--- , N is

P(X =m) = (Z) P (L= N,

which is the Binomial distribution, denoted by X ~ Binomial(y, V).

(b) E[X] and Var[X]. We can easily show that

E[X]=Np, Var[X]=N(u—u?)
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by noticing the independence of X, Xs, ---, Xy. Next, we give a direct verification. For
E[X], we have

ElXT = Z " N—N’)?!’L)' T — )N
SN (N —-1)! m—1 N—1)—(m—1
SRV (T i) et L (3.2)
3 N-1) N—-1—j ’
- ;) (N(— 1 _;)ljluj(l 1)
— Np(p+ 1 — )Nt
= Nu.

For Var[X], it is sufficient to compute E[X?] and use the relation Var[X| = F[X?]-E[X]*.

N NI

E[X*] =) m2—(N _m)!m!;/”(l — )N

o (v 1) o
RGP I o gy i ey A A
S (V-1 L (N=D=(m—1)

Ni 2 = D g )

N-1 N— 1) . ng N—1 N
:N“{ ij](N(—1—;)!]|“]<1 4 _1—3 j!“(l 2 }
= Np{E[Binomial(p, N — 1)] + 1}
— Nu((N — Dp+ 1)

(3.3)

from which we get

Var[X] = B[X?] - E[X]* = Nu((N = D+ 1) = (Np)* = Nu(1 - p).

3.3. The Beta distribution. (a) Preliminary on the Beta function B(z,y) and Gamma
function I'(x). The Beta function, also known as Euler integral of the first kind, is defined
as

1
B(z,y) = f t" 11 —t)"1dt, Re(x)>0,Re(y) > 0.
0
It is easy to see that B(z,y) = B(y,z) and B(1,1) = 0. The function I'(x) is defined as
o0
[(x) = J u” e "du, Re(w) > 0.

It is easy to see that I'(1) = 1 and I'(z + 1) = zI'(z), hence I'(n) = (n — 1)!. Some other
special values are

T@2) =1, T(1/2) = vr T(3/2) = v1/2.
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In particular, if n is a positive integer, we have I'(n + 1) = n!. Therefore, the I'-function can
be regarded as a generalization of factorial to the complex variable case. For the factorial,

we know that Stirling’s formula which says
(Stirling’s formula) In(n!) =nlnn—n+ O(Inn), n — +oo0.
More precisely, we have
n

n
n! ~ 27m(—> , N — +00.
e

For the Gamma function, there is a Stirling’s formula which reads
(Stirling’s formula) I['(z +1) ~ 27TZ<E> , z— o arg(z+ 1) <7m—e.
e

An equivalent form is

e AN EA
(Stirling’s formula) T'(2) = 4 /? <E> (1 + 0(1/2)), z — o, |arg(2)] < ™ —e.

The following approximation is now obvious

lim D)
n—x ['(n)n®

where o € C!.

Proposition 3.1.

Proof. Consider I'(x)T'(y):

Q0
J e "u*" 1d:xf e Y ldy
0

0 0
J J u+v) T— 1,Uy 1dUdU
u=0 Jv=0

Using the change of variables

ie.,

U
z=u+v, t=
U+ v
we have
o(u,v)
= Z’
d(z,1)
and
e} e}
_ J —(u+v) w l,Uy—l dUd’U
u=0 Jv= 0

8

1
f e Pt (1 — )V dedt
t=0

o

F (x —|— y)B(x,y).

I
%

00 1
fz :L"er 1 dZJ tmfl(l - t)yfl dt
t

=0

(3.4)

(3.5)

(3.6)

(3.9)

(3.10)
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Definition 3.2. (Multivariate Beta function) The multivariate Beta function is defined as

[, (ay)

Blai, as, - an) = S5~

P a5)

(b) The Beta distribution. Let u € [0,1] and X ~ Beta(u|a,b) for a > 0 and b > 0 is the
following pdf on the interval [0, 1]:

1

Beta(u|a,b) := T =) = T (1 ) 3.11
(ula, b) B (1—p) T ()" (1—p) (3.11)
Proposition 3.3. Let X ~ Beta(ula,b). Then
a ab
ElX| = Var|X| = .
] a+b’ ar[X] (a+0)2(a+b+1)

Proof. We use the relation between Gamma and Beta functions to give the proof.
[(a+0b)

MWW*IU — )’ dp

(3.12)

Fla+b+1) I'(a)

Similarly, we could get

(3.13)

(a+1)a
(@+b+1)(a+b)

Therefore, we get

2 2 (a+1a a \? ab
Var[X] = E[X7] - E[X]" = (a+b+1)(a+b) <a+b) - (a+b+1)(a+0b)?
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O

Definition 3.4. (Conjugate distributions) Let X ~ p(z|f) and consider its maximum like-

lihood function L(6) = [ [, p(z;|6) with respect to N independent samples D = {z1,--- ,zn}.

If we choose a prior for the parameter p(0) oc L(0). Then the posterior distribution p(0|D) oc p(0)L(6).
If p(8)L(0) and p(#) have the same functional form, we say that p(6) is the conjugate prior

of the maximum likelihood of X ~ p(x|6).

In other words, for a given probability distribution p(Z|fi), we can seek a prior p(ji) that is
conjugate to the likelihood function, so that the posterior distribution p(f|D) (computed
using Bayes’ Theorem) after observing D = {x;,--- ,xx} has the same functional form as
the prior.

Proposition 3.5. The beta distribution is a conjugate prior for the Binomial distribution.

Proposition 3.6. The Dirichlet distribution is a conjugate prior for the multinomial dis-
tribution.

Proposition 3.7. For the Gaussian X ~ N(x|u,c?) with o* being fized, we consider the
inference of p. Then the conjugate prior distribution of u is Gaussian; If we fized p, consider
the inference of the precision X := 1/0?, then the conjugate prior for X\ is the Gamma
distribution; If we vary both p, and X\, then the conjugate prior for (u,\) is the Gaussian-
Gamma distribution. For multivariate Gaussian N(x|p, A1), if both p and A are to be
inferred, then the conjugate prior for (u, A) is the Gaussian- Wishart distribution.

3.4. Multinomial Variables. (a) Consider the set D of K dimensional binary vectors
x = (21,22, -+ ,x1)" where 2, € {0,1} for all k and >, 2, =1, i.e.,

D = {X: (xla"' y Lhy " 7'IK)T;'I]<:E {Oal}azxk = ]-}
k

Assume p(zy, = 1) = py, € [0,1] and >, px = 1, and denote

po= ()"
For any x € D, we have

p(xlp) = | [ugt == .

k

We can see easily that

Do) =1, Elx|p] = ZXP x|u) d

X

(b) Maximum likelihood function. Assume we have N independent samples D = {x1, - Xy},
then the maximum likelihood function is

p(Pl) =T T] T = [ Tw™ =TT (3.14)
k k

where ny is the number of observatlons with x, = 1. We can estimate the parameter p with
Lagrangian multiplier method by considering In p(D|u) + A(D5, . — 1) to get

pet =m/N, k=12, K.
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(¢) Multinomial distribution of my, - - - , mg. From (3.14), and choosing proper normalization
constant, we get the multinomial distribution with parameters p and N as below
N K
Multinomial(mq, ma, - -+ ,mg; p, N) = ok 3.15
mima i) = (N )T 61)

where >, my, = N and

N N
my, Mg, -+, MK milme! - mg!’

(d) Multinomial theory. From (c) above, we know that
Z Multinomial(my, ma, - -, mg; pu, N) = (g + po + - + pg) = 1.

mi, MK

Multiplying the above equality by M¥ for any nonzero number M, we have

K
N
(Mpy + -+ + Mpg) > ) (mhm%,,, ’mK> |_|(Muk) :
mi+--+mg=N k=1

Denote Mm;, = a;, we have

N
N E: mg
a1+ ---+a = a .
( 1 K) (mb”LZa"' 7"”K) k

mi+-+mg=N k=1

The above derivation restricts all a; are of the same sign. Actually, if we regard these ay
as symbols, then formally, the above equality holds for any a,. Therefore, it holds for any
a=(aj,as, - ,ar) € RE. Therefore, we have

Theorem 3.8. (Multinomial theorem) Let a = (ay,as,- - ,ax) € RE and N be a positive
integer. Then

K

N
N E | | my,
(a1 + as + + ak) (ml,m2,~-- ,mK> ay, -

mi+-+mg=N k=1

3.5. The Dirichlet distribution. Let x be as in the multinomial distribution. We consider
the conjugate prior for u to get the Dirichlet distribution

Dirichlet(u|a) = ! ﬁ p Tt = L2 ) ﬁ et (3.16)
Blo, -+ ak) 1 F (o) - T(ak) B .
where oy, can be interpreted as
ap = {x;xp = 1}

for the >, oy, samples in multinomial distribution.

3.6. The Gamma distribution. We say that a continuous random variable X € (0, +o0]

obeys gamma distribution with parameters a > 0 and b > 0, denoted by X ~ Gamma(z|a, b),
iff
r+dx 1
P[X € (z,z +dx)] = J mb“)\“’l exp(—bA) d, (3.17)
a

T
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1
Gamma(x|a,b) = ——b"2* ' exp(—bx).

['(a)

It is easy to compute that

Indeed, we have

and

E[X] =a/b, Var(X) = a/b*.

[+0 .
— b2 exp(—bx)x dx
L T p{~bz)

- J; - ﬁ(bx)a exp(—bx) d(l;x)

e —ua
a

du

1 exp(—u); (b 1= u)

[+00

a,.a—1 o 2
_F(a)b 2% exp(—bx)x” dx

[ 1 a 2 d(b$)
= () (bx)® exp(—bz)(bx) -

[
o

(&
o
S

(+o0 1
— u**? exp(—u)

Jo  0?I'(a)

du

(b 1= u)

1
= mf(a + 2)

_ (a+1)al(a)
b?I'(a)

(a+1)a
v

When a = 1 in the Gamma distribution, X obeys the exponential distribution

X ~bexp(—bx), b>0.

Typically we write the parameter b as A. Therefore,

Obviously,

X ~ Exp(A) = Aexp(—=Az), A > 0.

E[Exp(A)] = 1/A, Var[Exp(\)] = 1/)*.

(3.18)

(3.19)
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3.7. Gaussian-Gamma distribution. Let (u, \) be a random vector where u € R and
A > 0. We say (u, A) obeys the Gaussian-Gamma distribution with parameters pg, 3, a, b iff

p(ﬂ“? /\|:u07 ﬁ7 a, b) = N(,LL|/,L0, 1/(6)‘))Gamma(>\‘a’ b)

It is easy to check that

f N (u|po, 1/(BN))Gamma(A|a, b) dAdu

1
D ———b" X" exp(—b)) dA\dp

J —0 Ja=0 \/27’(’ exp (1 = u0)*/2(51e) )F(a)

— J { O;j \/ﬂ_—exp /vL - /1’0)2/2(5#)71) dﬂ}ﬁba)\al eXp(—bA) A\ (320)

+00

A=0 F(a)
1.

A exp(—bA) dA

3.8. The multivariate Gaussian. Let X € R”. We say X obeys multivariate Gaussian
distribution iff X has the following pdf:

N (. B) = s oo 5w k=), (3.21)

with
BE[X] =p, Var[X]=E[(X - p)(X —p)'] =%

The matrix A := X! is called the precision.

3.9. The Student’s t-distribution. As the conjugate prior for the precision in the uni-
variate normal distribution is the Gamma distribution. Assume that we have a univariate
Gaussian N (z|p, 771) where 7 > 0 is the precision. and that 7 has a prior Gamma(|a, b).
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Then the marginal distribution of x is

[+00

p(z|p,a,b) = N(z|p, T_I)Gamma(ﬂa,b) ir

J1r=0
[ 1 1 1 a_a—1

N Jr=0 \/FQXP{ B 5(:13 w7 ,u)}mb T exp(—br) dr
[ Tl/2 1 2 a_a—1

= ), Vo exp{ - 5(9& - M) T}_F(a)b T eXp(—bT) dr
[ Tl/2 1 2 1 a_a dT

- | mexp{ a 5(93 — 1) T}_F(a)b 7% exp(—br) —

= b—a + ex { — T[b + (I‘ — )2/2]}7_61-"-1/2 dr
T(a)yvar J—o ¥ [

— b—a[b + (z — Iu)2/2]—a_1/2 f*oo exp(—Z)za+1/2 @ (r[b+ (z — M)Q/Q] — 2)
(a)var &

ba

TN A R T

Letting v = 2a and A = a/b, we have

a

p(.%‘,u, a, b) = W

- S i (55) N + (o 2

_ L(v/2+1/2) [< 1 ( v >—1/2] [(i)y/2+l/2[1//(2)\) ‘(o u)2/2]71//271/2]

[0+ (z = p)?/2] "I (a + 1/2)

T(v/2) 2m)1/2 \ 2\ 2
D(v/2+1/2)r A2 | Mo —p)? 212
T TR B :

(3.23)

Definition 3.9. A real-valued random variable X is said to obey the Student’s ¢-distribution
iff it has pdf

) e

where ) is called precision, v is called the degrees of freedom, and E[X] = p.

Student(z|u, A\, v) = ) (3.24)

When v = 1, the Student’s t-distribution is called Cauchy distribution with the pdf becoming
A\/2 1

Cauch A) = : 3.25
auchy (z|u, A) T 1+ Nz —p)? ( )
In particular, we have
1 1
Cauch 0,1) = — . 3.26
anchy(e]0, 1) = ———— (3.20)

It is easy to verify that
E[Cauchy(z|u,\)] = u, E[Cauchy?(z|u, \)] = +oo.



© JINGHUA YAO 13

When v — 400, we have Student(x|u, A, v) — N(x|u, \~!). This is an easy consequence of
Stirling’s formula and lims_o(1 + 0)"? = e:

F(y/z + 1/2) [ A ]1/2 [1 N )\(x _ #)2],,/21/2

L(v/2) Llav v A
<) [%]1/2{ [1 . M]v/(/\uu)%}z(wu)g [1 . M]1/2 5
R (e
~ N(x|p, A7),

Proposition 3.10. Let X be a random variable with pdf f(x). Then'Y = aX + b has pdf
F}L'f(yT_b) fora # 0.

Proof. First, consider the case a > 0.

(y=b)/a 1

PIY <y) = PX < (-0/al = [ fle)de= [ Lf(ty- by

—00

For the case a < 0, we have

PIY < y] = PIX = (y - b)/a] = f( 7 e de

y—b)/a
[ ir-vaa= [ - v

O

Remark 3.11. The general form of the above proposition is the change of measures formula.
It is the idea that is important here. Consider X with pdf p(z), and we want to get the pdf
of Y = f(X). We do the following for y € Range(Y):

PIY <y] = P[/(X) < y] = f{ o )

then we use

d d
pdfy (y) = ——P[Y <y]

i p(x) de.

Ay (s (x)<y)

In particular, if f is monotonically increasing, we have

) -1
paty () = 7 [ ptae)de =)L,

In (3.22), we use the following change of variables

v=2a A=a/b, n=r1b/a.
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As 7 ~ Gamma(7|a,b), then n has pdf b/LaGamma(an/bm, b) which is

a 1 a a—1 armn

gmb (an/b) eXp{—bj}

_ ﬁaana—l exp{—an} (328)
= Gamma(n/|a,a) = Gamma(n/|v/2,v/2).

Now, we can write (3.22) as follows, which is useful to generalize Student’s ¢-distribution to
multi-dimensional case

+00

Student(z|u, A\, v) = ) N (x|, (n\) 1) Gamma(n/|v/2,v/2) dn. (3.29)

Now in (3.29), we use multivariate normal N (x|u, A) to get D-dimensional Student’s t-
distribution

+o0
Student(x|u, A, v) = [‘ N (x|p, (nA)~H)Gamma(n/|v/2,v/2) dn
JO
+00 0 D/2| A [1/2 2
f n %A nA 1 v/2—1
4 S el G —un/2
2n)07 expi—— DDk exp{—vn/2}dn

(-

n=0
r&-oo 77D/2|A‘1/2

Jymo  (2m)PP2
[‘+oo (V/2)y/2 |A|1/2
=0 L(v/2) (2m)P7°
(g(A2 +v):=z)
(D)2 +v/2) |A|1/2
L(v/2)  (wv)PP

exp{—[A? + V> dy (x = )" Ax — 1) = A?)

exp{—2}[22(A? + v) | PRRUA? Ly dz

[

]
(3.30)
If X ~ Student(x|u, A, v), we can also verify that
ElX]|=p, v>1,

v

Var[ X] = )

AT v > 2,

and

mode[ X | = p.
3.10. The x? distribution. (a) Let us first state a simple proposition.
Proposition 3.12. If X ~ N(0,1), then X? has pdf

0, =<0,
= . ].
/(@) {ﬁx”z exp{—z/2}, x>0. (3:31)
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Proof. Tt is sufficient to consider the probability P[X? < x] for z > 0. We have

exp{—t?/2} dt

Voo
-z 2T

exp{—t2/2}dt (t* := ) (3.32)

Ve

\ 2T

vl —1/2
= — exp!{—u/2} du.
| e enmt-uzy

O

Remark 3.13. We can do, as in Remark 3.11, the following proof which is more general
d VT
—va \ﬁ

_ %2? exp{~12/2}

exp{—t*/2} dt
Wo 1 : d(—y7)
s dz Ton exp{—t~/2} s (3.33)

1
= —— exp{—x/2}z"1/?

V2r

Definition 3.14. Let X4, -, X, be ii.d standard normal distributions. Then

= X7+ + X

has pdf
1

ST (2) " exp{—x/2}, (3.34)

which is called the y2-distribution with n degrees of freedom.

Next, we show that X? + -+ + X2 has pdf (3.34). We know each X? has density given by
(3.32). We will use convolution to give an inductive proof.

If n = 2, we know the density of X7 + X2 is given by f * f as below

fole) =+ f(a) = f m y)1/2exp{—<x—y>/2}¢%y1/2exp{—y/2}dy

- _\/—2?_ " expl— x/Q}J y) PPy Py (y = ta)

S
= ex{ z/2} )TV At (y = ta)

:\/12?:2 P f ! (3.35)
- Wori exp{—z/2}B(1/2,1/2)
L P D/2T(2)
- [52) entma 2

1 2/2—1

- W@/Q)x 21 exp{—x/2}.
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Assume the conclusion holds for n. Let us consider the n + 1 case. We have

fos1 = f m —y) P exp{—(z — y)/2 }Qn/gr( 72 y"* exp{—y/2}

1
= n/2—1/2 —1x/2 f 1—¢ 71/2tn/271 dt
N T e B R
1
= 2112 el 1 /2Y B(1/2,n/2
22T (n)2) " exp{—x/2}B(1/2,n/2)
1

- @2n/2r(n/z)xn/21/2 exp{—z/2}T'(1/2)T'(n/2)/T'(n/2 + 1/2)
1

_ (n+1)/2—1 /9
20020 ((n + 1)/2)" exp{—/2}.

(3.36)

We can also verify that
E[x*(n)] =n, Var[x*(n)] = 2n. (3.37)
First, in view of E[X?] = 1, it is easy to see that

E[*(n)] = E[X?] + - E[X]] = n
Now, in view of independence of the X;, hence independence of X?, we have
Var[x*(n)] = nVar[X?] = n(B[X"] - (E[X?])*) = n(E[X"] - 1) = 2n,

where we have used the fact E[X?]| = 3. This fact can be verified using characteristic function

E[e"X] = e7¥/2 for a standard normal distribution X. Hence E[X*] = 41| /2 =3,
t=0

3.11. Periodic random variables: the von Mises distribution. Consider the random
variable © which is periodic with period 2. Assume O has pdf p(f) and so p(#) satisfies

27

p(0) =0, J p(0)do =1, p(f+2m)=p0).

0

To derive the von Mises distribution, we consider the two dimensional Gaussian with mean
p = (u1, 2)? and covariance 3 = 02I,. Then the pdf is

p(z1,x9) = L exp{ - (1 = )° + (22 — p2)” } (3.38)

2702 202
The contours of p(xq,x2) = constant are circles

B (21— p1)? + (w2 — p2)?

952 = constant.
o

Next, we shall condition on the unit circle z7 + 22 = 1. Use polar coordinates

x1 =rcosl, wmo=rsinf; puy; =rgcosby, fo = rosinby,
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and consider the exponent with r» = 1:

(@ =)+ (22— p)?
202

—1

= ﬁ{(r cosf — rq cos 00)2 + (rsinf — rg sin90)2}
o
—1

= ﬁ{l + 12 — 2r cos 0 cos By — 27 sin@sin&o}
o

r
= —g cos(f — 6y) + constant independent of ¢
o

(3.39)

= mcos(0 — 6p) + constant independent of § (m := T—(; > 0).
o

Definition 3.15. (von Mises, or circular normal) © obeys von Mises distribution if it has

pdf

(0109, m) — m expim cos(6 — 6)}, (3.40)

where E[©] = m > 0 and m is the concentration parameter playing the role precision 1/0?
and

1 27
Iy(m) := %L exp{m cos 0} db.

When m = 0, the von Mises distribution reduces to uniform distribution on [0, 27]:

1
p(0165,0) = 5—Ijo.2m)(0)- (3.41)
e

When m — +00, the von Mises distribution turns to be N(0|6y,1/m).

3.12. The exponential family of pdfs.

Definition 3.16. We say that the random variable X belongs to the exponential family if
it has the pdf of the form

p(x[n) = h(x)g(n) exp{n"u(x)}, (3.42)

where x can be continuous or discrete, 7 is called the natural parameters of the distribution,
and u(x) is some function of x. The function g(n) satisfies the normalization requirement:

o) | 1) expln u(x)) dx = 1. (3.43)

The distributions we have seen above are all members of the exponential family. Let us look
at several examples.

Bernoulli distribution. Let X € {0,1} and p € [0,1] and X has the pdf

x

plalp) = p(1 = p)' =,
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We can write the above pdf as follows
p= (1 — )" = exp {xln,u + (1 —2)In(1 — ,u)}

p 1
(1-— )exp{xlnl_u} [Tf 1111_
= (1 —a(n)) exp{naz}

= o(—n) exp{nz}.

:=n,then = ——— :=
1t 1 + exp{—n}

Therefore, the Bernoulli distribution takes the form

p(zln) = o(—n) exp{nz},

which belongs to the exponential family with

w@) ==z, h(z)=1, gn)=o(-n).
Multinomial distribution!. The multinomial distribution pdf

p(x|p) = H pF = exp { Z x In Mk} (3.45)

where 1, € [0,1] and Y}, px = 1, x is binary vectors with >, zx = 1. Due to the constraint
Dotk = 1, we assume In gy, =, — S, e,

pr = exp{ne}/exp{S}, k=1,---,K (softmax functions), (3.46)

and we have exp{S} = Zle exp{nk}. Now, the multinomial pdf can be written as

p(x]7) :exp{gxk(nk—S)} zexp{x-ﬁ—S} = %, (3.47)

which belongs to the exponential family with

CSE exping

Normal distribution. Consider the pdf N(z|u, 0?):

1 1 9
N(z|p,o ) m Xp{ —T‘Q(x—ﬂ) }
1 1 5 p 1 5 3.48
= —(27r02)1/2 eXp{ _Tﬂx +;x—27‘2ﬂ } ( )
= h(x)g(7) exp{n”u(z)}

where h(x) = G5, ul@) = (x,2%)", 7 = (u/0?, ~1/20*)" and g(77) = (—2n2)"? exp{ni /4ns}.
Therefore, the normal distribution belongs to the exponential family.

1See also Section 6.
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3.13. Poisson Distribution. Let X be a discrete random variable taking nonnegative in-
teger values. X is the Possion distribution with parameter A > 0 iff

P[X =kl =e\/k!, k=0,1,2,--
It is easy to verify >, P[X = k] =1, and
E[X] =X\, Var[X?] =\

Actually, we can compute the characteristic function p(t) := E[e®*] of X:

E[eitX] _ ZeitkP[X _ k?] _ Zeitke—)\)\k/k!
k

) ()\eit)k
- ; k!
= exp {\(e" —1)}.

Proposition 3.17. (Sum of independent Possion random variables) Let X ~ Poisson()\)
andY ~ Possion(u) for some X > 0 and p > 0 be two independent Poisson random variables.
Then X +Y is still Poisson: X +Y ~ Poisson(\ + p).

Proof. As X and Y are independent, the pmf of X + Y is the convolution of those of X
and Y. Notice also that X and Y both take nonnegative integer values. We have for any
nonnegative integer s that

P[X+Y=s]=iP[X=s—k]P[Y=k]

:ie—A AT e—u“_k

o R A (3.49)
- e S s! ASH
ST (s — k)]
= e_(H#)% (Binomial Theorem).
0

Proposition 3.18. (Stirling’s formula, Problem 27.18, Page 370 in Billingsley) Let S, :=
X1+ Xy + -+ X, where X,, are independent and each has Poisson distribution with
parameter 1. Define X~ := max{—X,0} > 0 for a random variable. Then, with respect to
n}

n —n n nn+l/267n
o {0 ] - () -

(f) =N

Consequently, the following hold




20 JINGHUA YAO

and

n! ~ 27rn<ﬁ>n.

(&

Let us give some digestion about N~. N~ = max{—N,0}. When N > 0, we have N~ = 0;
when N < 0, we have N~ = —N > 0. Therefore,

P[N~ = 0] = P[N > 0] = 1/2,

and
1

—e 1t

P[N‘>x]:P[—N>x]:P[N<—x]:J_x .

Therefore, the distribution of N~ is a mixture of pmf and pdf

{P[N‘ = 0] =1/2, (3.50)

Therefore, for N—, we have

E[N-] - [:OO PN~ > 2] de — roo J_x
B (0 —t Leftz/Q i
“—00{ 0o Vem ! }dt (3.51)

(0 1 2
= | —e T (—t)dt
J_oo V2T

1

e 2 dt dx

We can use exactly the same idea to compute E[N '] which is defined as N* = max{N, 0}.
When N < 0, when have N* = 0; when N > 0, we have N* > 0. Therefore,

P[N+ =0] = P[N < 0] =1/2,
and

P[N* > z] = P[N > ] = e 2 dt.

|

Therefore, the distribution of N* is a mixture of pmf and pdf

(3.52)
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Therefore, for N*, we have

oo

P[N* > z]d f v foo L 22
> xldr = —e tdx
.Jo 0 « V2w

r+00 t 1 t2/2
—e d:c} dt

Jo {L V2T
[+ 1 t2/2 d

—c " /7tdt
Jo V2T

1
V2

In fact, comparing (3.51) and (3.52), we notice that they have the same distribution. This
fact is due to the symmetry of the normal distribution V.

E[N"]

(3.53)

We can also see E[|N|] = E[NT + N™] = 2E[N*] = 2E[N~] = 2/3/27 = /2/7.

We first prove (a). The first equality in (a) is nothing but the definition of E[(%%”)i]

We only need to show
k n+1/2

Z": (n — k) nt _n
=\ n )k n!
This is very easy by splitting the left hand side:

(n _ k) nk k12 nk—1/2

N _

kK (k=1

Due to cancellation, we have
Zn: <n —k
o Ve

Now, we prove (b). Notice that F[X;] = 1 and Var(X;) = 1. By Central Limit Theorem, we
know

k k+1/2 n+1/2

)n n n
k! k! lk=n n!

S, —n
\n

Define the function ¢(x) which is 0 for x > 0 and —x for z < 0 (in fact, ¢(z) = —ReLu(—x)).
Obviously, ¢(x) is a continuous function. Then, we have due to continuity of ¢(x) and the
definition of convergence in distribution that

S, —n
=7
Then we observe that ¢(X) = X~ for a random variable. Therefore, we have

S, —n
O

= N(0,1).

) = ¢(N(0, 1)).

) =
and (b) is proved.

Now, due to (b), we immediately have

£ (E57) ] m -
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In view of (a), we conclude that
nn+1/2

By now, we complete the proof.

4. DENSITY ESTIMATION

1.The concept of density estimation.

Given a set of n data samples x, ..., X,,, we can estimate the density function p(x), so that
we can output p(x) for any new sample z. This is called density estimation.

2. Some nonparametric methods.

In a broad sense, all probabilistic models are some ways of modeling the probabilistic dis-
tributions. Some nonparametric methods are:

e Histogram method
e Kernel method
e K nearest neighborhood method

We briefly discuss the kernel density method here. To estimate a pdf p(z), we consider a
small domain R in R”, the probability is P = {, p(z) dz. When |R|:= V is small, we may
assume P ~ p(x)V. Assume we have N data points and each has probability P lying inside
R. So the number K of points inside R among the N data points is Binomial(K|N, P).
Binomial (K| N, P) is peaked around K ~ N P. Therefore, we have

p(z) ~ P/V ~ K/NV. (4.1)
Below, we shall take R to be a unit cube:

1, if |y <1/2,Vi=1,2,---D;
W:{, if Ju <1/2,¥ i = 1,2, D;

. (4.2)
0, otherwise.

k(-) is the so-called Parzen window. The scaled function k((z — x,)/h) can be interpreted
as the indicator function of unit cube centered at x, or x with side length h. Then let
K =N k((x —,)/h) be the number of data z,, that lie insider a cube centered at z with
side length 1. Therefore, the (4.1) can be written as

11 & AR R —"
:N_DZ (x — x,)/h) = N2 th( - ). (4.3)

For inference, we can regard 3., k((x — ,,)/h) as a count of the number of windows of z,
which contain x due to the symmetry of distance. Here 5k(25%2) := ky(x — x,,) is the L
scaling of k(+).

Some thoughts. The kernel density methods suffer from the problem of discontinuity,
for example, it may be due to the bins’ boundaries in histogram method, or due to the
choice of kernel functions in kernel method. The idea of approximation of identity may
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be used to smooth out the discontinuity. The main consideration is that we shall keep the
normalization property of pdfs. Actually , this is guaranteed during the process. The process
is as follows. Let 0 < p(z) € C*(R”) be a mollifier with { p(z) dz = 1 and support B(0, 1),
and p.(x) = p(x/e)/eP is the L' scaling for a small positive parameter . Then given any
kernel k(z), we consider the convolution k = p.(z) := {k(z — y)p.(y) dy. Then for any ¢ > 0,
k = p. is a valid kernel function for density estimation and we have k = p. > 0,
support(k = p.) < {x; dist(x, support(k(-))) < €},
and
|]€ * IOE‘Ll = |k’L1'

A reference for the kernel density estimation. https://arxiv.org/abs/1704.03924.

5. THE ROBBINS-MONRO ALGORITHM

(a) The problem. Consider two random variables § and z governed by the joint distribution
p(6, 2). The conditional expectation of z given 6 E[z|6] is a function of 6:

f(0) := E[z]0] = sz(zw) dz. (5.1)

We call E[z|0] a regression function. The problem is to find the root 0* of f(6).

(b) The Robbins-Monro algorithm. We assume that E[(z— f)|f] < oo and that f is increasing
near 6*. The iteration step is given below:

) = N gy (0N, (5.2)

where the sequence {ay} of positive numbers satisfies:

0 0

lim ay =0, ZaNzoo, Za?\,<oo.
N—oo
N=1 N=1

See Robbins and Monro (1951), Blum (1965) for mathematical details.

6. THE SOFTMAX FUNCTIONS AND CROSS ENTROPY

Assume P, (@ are two probability distributions on the same o-field (2, 7). Then the cross
entropy H (P, Q) is defined as

H(P,Q) = Fp[- 108 Q] (6.1)
If both P and () are absolutely continuous with an Borel measure, for example, the m-
dimensional Lebesgue measure dx

v, ), (62)

then
H(P,Q) = f ~p(x) log g(z) dx (6.3)

m
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It is easy to verify that
H(P,Q) = H(P) + Dk.(P||Q) (6.4)

where
H(P) = Er[~10g P] = - | p(a) logp(s) do

and

= x) 10 ZE Xz
Dis(PIIQ) = | ple)og B

The softmax functions for K-class classification are

%:_gﬂ@_31<i<K (6.5)
21 €xP(2k)
which form a probability distribution.
Similar to that of a Sigmoid function, a good property of the softmax functions is
Yi
= (1 — ;). 6.6
(1) (6.6)
More generally, we have
0y,
=y (05 — yi). 6.7
02 yi(05i — vi) (6.7)
Assume the predicted probabilities for the K classes are t1, s, -+ ,tx, the the cross entropy
cost function is
K
j=1

We also have

0,,C = Zayjoaziyj
_Z ti/vi)y;(05i — i)
— Z_ i
j
=Y —t;.

7. BAYESIAN INTERPRETATION OF WEIGHT CONSTRAINT (A.K.A WEIGHT DECAY) IN
NEURAL NETWORK

(1) Assume the interpretation of the network is y. = f(input,; W) and

exp(—(te — ye)?/207).

1
p(telye) = o

(tc - yc)2
202

Then, we see

—log p(te|ye) = + constant. (7.1)
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Therefore, maximizing the log probability is equivalent to minimizing the squared distance
for Gaussian prior.

(2) (Bayesian Theorem) From P(W|D)P(D) = P(D,W) = P(D|W)P(W), we see
P(DW)P(W)
P(D)

where P(D) can be regarded as a normalization of the numerator

P(W|D) =

P(D) = fw P(D|W)P(W).

(3) Taking -log in (7.2), we have
cost := —log P(W|D) = —log P(D|W) — log P(W) + log P(D) (7.3)

where log P(D) is independent of W and can be regarded as a constant in the optimization
process.

Assume that P(w;) = \/# exp(—w?/20?) and again
1
P(telye) = —(te — ye)*/207).
(Telye) WeXp( (te = ye)™/207)

Then, minimization in (7.3) is equivalent to the minimization
1 1
cost = — —t.)? + — ) w? + constant, 7.4
and further equivalent to

2
2 _ 2, 9D 2
207 cost = E (Ye —te)” + oy E w; + constant. (7.5)

c

8. HEURISTICS ABOUT “ENSEMBLE AVERAGE IMPROVES LEARNING”

(1) Minimizing squared error function. Assume the N predictors’ predictions for the ground
truth are y;, 1 <7 < N. Then there average would be

y=<yiyi = %Zyz
We examine the following equality
=y =t =9) + (T = y) i
= ((t=9)i + 2t = 9) @ = ya)yi + = v:))i
= (t=9)" + {7 — )" + 20t = 9X(G — v
= (t =9+ {7 — )"
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From the above expression, we can conclude that

{5 =) <t —wi)* i

Actually, the above idea is equivalent to the fact that
arg min E[(X — ¢)?] = E[X].

(2) Maximizing log probability. Assume N predictors predicts a class label with probability
p; for 1 < i < N. Then due to concavity of log and Jensen’s inequality, we have

logp =log((p1 + p2+ -+ pn)/N) = (logpl +logps + - -+ + log pyn)/N. (8.1)

9. CONCAVITY OF ENTROPY

Proposition 9.1. Let P = {p1,p2, -+ ,pn} be a discrete probability distribution. Then the
function HP) = =3 pilogp; is concave. H(P) attains its mazimum at the uniform
distribution P = {1/n,--- ,1/n}.

To show the above proposition, we first verify that —D?H (P) is positive definite. An easy
computation shows that

1

pipi

Therefore, we know
—D?*H(P) = diag{1/p1, - ,1/pa} > 0.

From the above computation, we know that the function f(p) = —plogp for pe I = (0,1)
is concave. Note also f have two zeros 0, 1, and attains maximum at p = 1/e.

Second, the maximum of H(P) can be computed using Lagrange Multiplier. Consider the
function F(P, \):

F(P,)\) = HP) + /\(ipi —1).

It is easy to show that

Op ' =—(1+logp;) + A, i=1,2---.,n,
aAF:Z?:lpi—l.

Letting 0, F = 0 and 0, F = 0, we have
pi=expA—1)=1/n, i=1,2--n.
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Definition 9.2. Let X be a random variable on the probability space (2, F, P) with prob-
ability density function f(z) with respect to the Borel measure dz. Then the entropy
H(X) := H(f) is defined as

- f f(x)log f (x) dx

H is a functional on (2, F, P). We could compute its first and second variations as follows.
Let ¢ be a density function such that §¢(x)dz = 0 and f + t¢ is still probability density
function for |t| < e. Then

DH(f). &) = GH(f +19)|_ = [(1+10g o,

2

(D H(ovo) = Gl +16) =~ [ /s e

Example 9.3. Let X obey uniform distribution on a interval I = (a, b), i.e, X ~ Uniform(a, b).
The probability density function (pdf) for X is p(z) = ;£ for all z € (a,b) and p(z) = 0 for
other x. Then the entropy of X is

Jf Vo f(x f ! lnbl de = n(b— a). 9.2)

b—a —a

From the above result, we see that the large the length |b— al is, the large the entropy H(X)
is for the uniform distribution. In particular, if |b — a| = 1, then H(X) = 0.

Example 9.4. The entropy of f ~ N(u,o?) ~ \/ﬁ exp(—(z — p)?/20?).

\/2;7 exp(—(z — 1)?/20%)(log \/2;7 — (z— p)2/20?)

1 1 )
= lOg W - r‘zVar(N(,u, g ))
1
=lo —1/2
& V2mo? /

1
=3 log(2mea?).

Therefore, H(f) = 3 log(2mea?)

Proposition 9.5. Let X ~ f,Y ~ g be two independent random variables with joint proba-
bility density function p(z,y) = f(x)g(y). Then H(p) = H(f) + H(g).
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Proof.

p(z,y)logp(z,y) dedy

[

= ff y)(log f(z) + log g(y)) dzdy
ff y) log f(x) dxdy + Jf y) log g(y) dzdy
[ £

fa)log F(z) d [ g(udy + [ gl logaly)du [ f(a)da
= —H(f) = H(g)-
0J
Example 9.6. Let X ~ N(u1,0%) - N(tn,02). Then from the above example about the

entropy for one dimensional Gaussian, we know

1 1
H(X) = 2 3 log(2mea?) = 3 log ((2me)"a7 - -+ 07).

Proposition 9.7. Consider probability density functions f belonging to the set
={f;—0 < E[f] =p < w0, —0 < E[f?*] =0 <0}

Then
argmax{f € A; H(f)} = N(1,0%).

Proof. Directly use of variational methods with constraints. 0

Definition 9.8. (Conditional entropy of Y given X, continuous version) Let (X,Y) ~
p(z,y) and p(Y|X) ~ p(y|z). Then the conditional entropy of Y given X is defined as

HY|X) = - f pl,y) In plyle) dydz
_ j f [—p(yle) Inp(yle)] dyp(x) dz

= JH(Y|X = x)p(z)dx

where H(Y|X = z) := {[—p(y|z) Inp(y|z)] dy.

(9.3)

Remark 9.9. It is easy to see that
H(Y|X) = HX,Y) — H(X).
Similarly, we see
H(X]Y) = H(X,Y) - H(Y).
Here H(X,Y) = — (p(x,y) Inp(x,y) dzdy.
Definition 9.10. (Conditional entropy of Y given X, discrete version) Assume (X,Y") obey
the joint distribution

p<X:xi7Yzyj):pij7 =12, =12 m,
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and the marginal distribution
pX=x)=p;, i1=12-- n.
Then the conditional entropy H (Y| X) is defined as

Y’X Zpl] lnp = yj’X = xz)
= sz Z —p(Y =y X = 2) lnp(Y = y|X = 2,)]) (9.4)
= Zpi Y|X = xi)?

where H(Y|X = x;) = —Zj[p(Y = y;| X = z) Inp(Y = y;|X = z;)].

Example 9.11. (Empirical entropy and empirical relative entropy) Let D be the training
dataset and |D| be the number of instances in D. Assume there are K classes with class

labels C1, - - - , Cg, and |Cy| is the number of instances in D with class label Cy for 1 < k < K.
Therefore, |D| = >, |Ck|. Assume that a specific feature A for instances of D has n levels,
denoted by {ai,---,c,}. According to feature A, the dataset is divided into n subsets

Dy, -+, D,, in other words, D; = {x € D;A(z) = a;} for 1 < i < n, and |D| = >, |D;l.
Assume among the subset D;, the set of instances of D belonging to class C}, is Dy, i.e.,
D = D; n Cy, and |Dy| is the number of instances. Then the entropy H(D) of D with
respect to the classification Cy, -+ ,Ck is
Z |Cl |Ck
!D|

The conditional entropy of H(D|A) glven A with respect to the classification is
|Ds |Dil 5 [Dinl | [ Dil
H(DJ|A) = — :
Z \D| 2 DI 4 2 D "D
From here we can define the mformatwn gain of D due to A by

9(D,A) = H(D) — H(D[A)

and the relative information gain by

grelative(D7 A) = g(D’ A)/H(D) =

H(D) — H(D|A)
H(D)
Definition 9.12. (Kullback-Leibner divergence) Assume p(z) and ¢(z) are two pdfs. The

Kullback-Leibner divergence Dgr(pl||q) is defined as

= — x nM x
Dgr(pllg) = fp( )1 ) dz.

— 1 H(D|A)/H(D).

Definition 9.13. (Cross-entropy) As above, the cross entropy H.,.ss(p, q) is defined as

Hcross(p7 Q) = - fp(:l:‘) In Q(.CC) dx.

Remark 9.14. It is easy to see from the above two definitions that
DKL(pHQ) cross(p’ Q) - H(p>

Meanwhile, by Jensen’s inequality, we see that Dk (p||q) is always nonnegative, and is zero
if and only if p(z) = ¢(x) in law.
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Definition 9.15. (Mutual information) Assume (X,Y) ~ p(z,y) and X ~ p(x) and Y ~
p(y). Then the mutual information of XY is defined as

p\x)ply
HXY) = Dicalple ) = — [ o) m 50 iy
Remark 9.16. When XY are independent, we have p(z,y) = p(z)p(y), which implies
I(X,Y) =0, as desired. We can easily see

I(X,Y)=HX)+ HY)-HX,Y) = HX) - HX|Y) = HY) — HY|X).

10. PrRINCIPLE COMPONENT ANALYSIS (PCA)

.
Xy

Let x; € R™ (1 <i < n) be n points and X = e R™™ be the dataset. We assume for

Sy

X

convenience E[XU)] = 0 € R” for each column of X for 1 < j < m.

Definition 10.1. The PCA of X is the eigenvalue decomposition of the covariance matrix

XTX e Rm*m,
Assume the eigenvalues in descending order are given by o2 > 02 > --- > 02, and the
corresponding unit eigenvectors are wy, wa, -+ , Wyy,.
Definition 10.2. The w;s are called principle components; the matrix W = [wy, wy, -+, wy,]| €
R™™ is called loadings; T' = XW e R™* is called scores.
We have

XTX = Wdiag{o?,--- 02 W™ (10.1)

Definition 10.3. (Dimension reduction) W, := [wy, -+ ,w,| € R™*" and T, := XW, € R"*"
is called the projected data.

Reconstruction and reconstruction error. The reconstruction from projected data
towards the original data is X, ocovered = T,WT, which equals XW;W7F. The construction

error Error = || X q — X[ is thus [ X(W;W, —1,)| in a suitable norm.

recovere

Explained variance. Denote by o2 = Y. 02 the total variance of X. The ratio of

1=1"1 )
s
2i19;

o2

explained variance, denoted by n?(r), is defined by n*(r) =

Definition 10.4. The singular value decomposition (SVD) of X is defined as X = UXV*
where U € C™*", V e C™*™ are unitary matrices, and ¥ € C™*™ comprise the singular
values {01,049, -+ ,0,} of X is the main diagonal.

By SVD, we know that
X*X = (USVH*(USV*) = V(EZ*S)V* = Vdiag{o], - ,02 }V*. (10.2)
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Comparing (10.1) and (10.2), we can identify, up to a sign, that
W=V
Meanwhile,
T=XW=UXV*W =UZV*V =UY,
and
T, = U2,

with U, being the (n x r)-block of U and 3, the principle (r x r)-block of X.

11. EM ALGORITHM

EM Algorithm, the expectation maximization algorithm, is a general method for finding
maximum likelihood solutions for probabilistic model having latent variables (Dempster et
al. 1977; McLachlan and Krishnan, 1997; Neal and Hinton, 1999).

Here we aim to demonstrate the EM algorithm (the £-function maximization-maximization,
the F-function maximization-maximization) in integral form.

Consider a probabilist model. Assume the observables X; € R” and hidden variables Z; € RX
for i = 1,2,---,N. We shall denote X = (X1, -, Xy)T € RV*P the observable dataset
and Z = (Z1,---,Zn)T € RV*E the latent dataset. We assume that the complete data is
{X, Z} obey the joint distribution p(X, Z|#) where 6 is the model parameter. Our goal is to
maximize to maximum likelihood function

mm&:memm. (11.1)

Proposition 11.1. (The decomposition of log mazimum likelihood function) Assume the
latent variable Z obeys the distribution q(Z). Then for any choice of q(Z), the following
decomposition holds

Inp(X|0) = L(q,0) + KL(q||p(Z[X, 0)) (11.2)
where
fq ) pX p(X,Z|0)
z a2) (11.3)
Lq Y Inp(X, Z|6) + H(q).
and

Kilalp(ix.0) - - [ a@mE50. (11.4)
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Proof.
p(X, Z|0) p(Z[X,0)
E(q,9)+KL(QIlp(ZIX,9))=LQ(Z)(1H 1Z) —In (Z) >
B p(X, Z|0)
- J,am P(ZIX.0) (11.5)
- | a@mpxp)

= Inp(X]|0).
O

Remark 11.2. As KL(q||p(Z|X, 8)) = 0, we know that the function £(q, ) is a lower bound
of the Inp(X|#). In some books (e.g., Li Hang’s), £(q, 8) is called the F-function. Note also
that Theorem 9.1 in Li Hang’s book is a direct consequence of the above decomposition.

As we know, L(q,60) as a functional of ¢(Z) is a linear perturbation of the entropy H(q),
hence, £(q,0) is a concave functional of ¢(Z). We have the following proposition.

Proposition 11.3. The mazimum of L(q,0) over all admissible probability distributions
q(Z) is attained at the posterior distribution §(Z) = p(Z|X, ), and

£(3.0) = mex,e) lnp(X. ZI6) + H(p(Z/X. 6)).

When q(Z) = ¢(Z), we have L(q,0) = Inp(X]0).

Proof. (Lagrangian Multiplier method) Consider the first variation of £(g,#) with respect
to ¢(Z) under the constraint §, ¢(Z)dZ = 1, i.e., consider the functional f(g, \):

(a0 = £(0.9) + A(f 4(Z)dZ 1),

zZ

It is easy to obtain that
(Duf.6) = | (p(X,2]6) - na(2) ~ 1+ NodZ (116)
Z

and Dyf =, q(Z) — 1 where ¢(Z) is such that §, ¢(Z)dZ = 0.
Letting(D, f, ¢) = 0, we have

Inp(X,Z|#) —Ing(Z) -1+ X=C
for some constant C'. Therefore, we see

p(X,Z|0) = exp(C + 1 — N)gq(Z). (11.7)

Integrating over Z in (11.7) and using D, f = 0, we obtain

f p(X,Z]0)dZ = exp(C +1—\).
z
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Then from (11.7), we obtain

q(Z)

p(X,Z19)/ exp(C + 1 - A) = p(X, Z|9),/ me, 7|0) dz

p(X,Z10)/p(X]0)
p(Z|X,0).

(11.8)

O

Definition 11.4. (Q-function) Q(6,607) := {, p(Z|X,0%)Inp(X, Z|6) is known as the O-
function for the EM algorithm.

Now, we are ready to state the EM algorithm based on Propositions 11.1 and 11.3. The
algorithm can be understood as the maximization-maximization of the L-function.

(Maximization-maximization of the L-function.) Suppose the current parameter is
0@, (1) E-step. We maximize max, £(g,0?) to find arg max, £(q,0%) = p(Z|X,09) := q.
Then we compute £(q,0%) = E,z1x g0y [In p(X, Z]6)]+ H (p(Z|X, 6?)) in order to maximize
maxy £(G,0®). (2) M-step. We consider the problem maxy £(G,0@). As H(p(Z|X,0)) is
constant for the problem, we see

arg max L£(,09) = arg max Ezix 00 [Inp(X, Z|0)].

Note that E,zx oo [Inp(X, Z|0)] is exactly the Q-function. We iterate through the above
two-stage procedure to approach the optimal parameter 6.

Using @-function, we state the EM algorithm as follows

(EM algorithm.) Given observable data X, assume Z is the latent data and {X, Z} obeys
the joint distribution p(X,Z|#) and conditional distribution p(Z|X,6). We aim to find
the model parameter 6. (1) Initialize §°) and begin to iterate; (2) E-step: let 8@ be the
parameter value for iteration 7. In iteration ¢ + 1, compute the Q-function:

Q6.6 = | p(ZIX.09) Inp(X. Z]6).
z
(3) M-step: compute §0+Y = argmax{6; Q(#,0")}. (4) Repeat (2) and (3) until convergence
or break at a threshold value.

(Derivation of @-function, another formulation of Proposition 11.1.)

We aim to maximize Inp(X|0) := L(0), i.e., the log maximum likelihood of the observable
data with respect to @ via iteration. Assume the current parameter value is 8. Consider

the difference L(#) — L(0®). We hope to find #¢*Y such that the difference is greater than
zero.

First, we have

L(0) = Inp(X]|0) = lnf

p(Y.Zjp)dz = In (Lp(xz,e)p(zw) dz). (11.9)
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Therefore,

L(0) — L(0¥) = In (J (X2, 0)p(ZI6) dZ) — np(X|6)

- p(X|Z, 0)p(Z|0) o .
_ln< K g X0 )dZ)—lnp(X|9 ) o
PX|ZQ (Z|9> () (i) '
Lln I 6 >p(zyx,9 )dZ) In p(X|0)

f W (PXIZ,0)p(Z]0)
znpzme )p(X[00)

)p(Z|X, 09) dZ.

Denote by
B(6,6%) =L(0(i))+Lln( (z(é',zeue))g(( || ) )> p(Z[X,09) dZ.

We see that L(#) = B(#,0%) and L) = B(6®, 0%)). Therefore, in order to make L(f)

increase, it is sufficient to make B(6,0") increase.

Now, we consider the problem arg max{f; B(6,0®)}. Ignoring the irrelevant terms for the
maximization, we have

arg max{6; B(#,0")} = arg maX{Q;J In (p(X|Z,0)p(Z|0))p(Z|X, 6D dZ}.
zZ
The expression in the right hand side is nothing but the Q-function:

| W X1z, 0m(z10)p(2IX, 60) i = (0.6,

(Monotonicity of the maximum likelihood function sequence p(X|[0®").).

We aim to show that p(X|00*1) > p(X|6@) for the EM iteration sequence. It is sufficient
to show Inp(X|00+1) > Inp(X|6®)). By Bayes’ Theorem, we know

p(X, Z|9)

In p(x|g) = D229

X0 = p@x)

Recall that
Q6.0 = | (X, 219))p(ZIX. 67) a2}
z
and define

H(6,0%) ;:f In (p(Z|X,0))p(Z|X,07) dZ}.
Z
It is easy to see
Inp(X|0) = Q(6,0%) — H(6,0).
Therefore, we have
Inp(X[0) = Inp(X[0) = [Q(OU,0%) = (O, 09)] — [Q(O", ) — Q0+, 6)]

= [Q(Q(z#l), Q(i)) _ Q<Q7 Q(i))] + KL(p(Z|X, g(z))Hp(Zp(7 9(i+1)>>
(11.11)

Both of the two terms in (11.11) are nonnegative, we conclude that In p(X[00*+1) > In p(X|0®).
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Remark 11.5. For an example of application of EM on Gaussian mixture model, see [Li];
for more applications, see [Bishop].

12. HIDDEN MARKOV MODEL

1. The HMM concept.

Definition 12.1. (Hidden Markov Model, a.k.a HMM) An HMM is a probabilistic model
for time sequence. A state sequence is generated randomly by a hidden Markov chain, then
the state sequence generates an observable random sequence, called observation sequence.
The indices of the sequences are called time sequence.

An HMM is determined by initial probability distribution 7, probability transition matrix
A and observation matrix B. Assume the state set is given by @ = {q1,q2, - ,qn}, the

observation set is V' = {vy, vy, -+ ,vp}. Then 7€ RV, A e RV*N and B e RV*M,
Assume [ = (iy,19, - ,ir) (where i; € Q) is a state sequence of length |/| = T and O is the
corresponding observation sequence O = (01,09, ,07) with o, € V fori =1,2,--- | T. We

shall define A, B and 7 as follows:
A = [ag]nxn, aij := Plig1 = q;lic = i,

B = [bjk]nxk,  bj(k) := Plo; = viliy = g5,
and

= (m,m2, 0, TN), mi = Pliy = q¢].
Denote the HMM by A := (A, B, 7) and make the following Markovian assumptions:

(1) Homogeneous Markov property.

P[it|it—la0t—l7 e ailaol] = P[it|it—l]7 1<t < Ta

(2) Observation Independence.

P[Ot|7/T7OT77/T—17OT—17 Ty U415, Ot415, Uy U—1, Ot —1, 7 77'1701] = P[Ot|lt]7 I<t < T.

The above assumptions can be summarized in terms of the joint distribution Ploy, iy, -, or, ir]
as follows for any T > 1:

T
Ploy, iy, -+ ,or,ir] = Ploy|ia] | [ Plitlie—1]Plorli].
=2

The three questions we are interested in are:

e Compute probabilities. For example, given A := (A, B,7) and O = (01,09, - ,0r),
compute P[O|A]. We may use forward- or backward-algorithm.
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e Learning. Given O = (01,09, -+ ,0r), estimate the parameters A, B, 7 such that the
posterior probability P[O|A] is maximal. We can use the Baum-Welch algorithm,
which is the application of EM algorithm in HMM.

e Inference/prediction/Decoding. Given A := (A, B,7) and O = (01,09, -+ ,0r), find
the corresponding state sequence [ = (iy,is,--- ,i7) such that P[I|O] is maximal.
We can use the Viterbi algorithm, which is a dynamic programming method for
finding the optimal path.

2. Some probabilities.

Given \ := (A, B,7), O = (01,09, -+ ,0or) and I = (iy,i3,--- ,ir). The probability for the
state sequence [ is

PlIA] = iy Qiyiy Qigiy Qi (12.1)
For a given I = (iy,4s,- - ,ir), the probability of observing O = (01,09, - ,o0r) is
P[O|], )\] = bi1 (01)[)1'2 (02) cot biT (OT). (122)

Therefore, O and I happen simultaneously is

PO, I|A\] = P[O[I, A]P[I|A] = [bi, (01)biy (02) - - - by (07) | [7i; @iy Qg+ Wiy ]

= [mi,bi, (01)][@4yi,0i5 (02)] - - - [@ip_ i i (07)]. (12.3)

Marginalizing with respect to I, we get

P[OJA] = ZPOI|/\] D [mabi (00)][@iisbiy (02)] -+ [@ir_yinbir (07)], (12.4)

11,82, 51T

where

DI IS

11,82, 17 11€Q 12€Q iT7eQ
Define the forward probability o (i) := ay(q;) as
at<Q1> = P[Ob 02, 70t7it = QZ|)\]7

i.e., the probability that the observation is o1, -- ,0; up to time ¢ and the state at time ¢ is
;-

Proposition 12.2. (Forward algorithm)
N N
v (i Z J)ajibi(oi41),  P[OJA] = > ag(i). (12.5)
O i—1

Here in ayy1(i), the subindex corresponds to time sequence and i in the parentheses corre-
sponds to state q;.
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Proof. The second equality follows from definition. For the first equality, we have
at—i—l( ) - P[017 o 70t70t+17it+1 = QZ]
= Plog1|o1,02, 01,8001 = qi] X Plo1,02, ;01,0141 = qi]

= Plog1]its1 = ¢i] x Z Plo1, 09, ,01,0: = q;,0+1 = ¢i] (Observation independence)

= bi(0t+1)ZP[it+1 = %‘01>02> T, 0p, 1 = Qj]P[Oh T, 04,0 = Qj]
J

= b;(0441) Z Pligs1 = qilic = gj]Plo1, -+ , 0,4 = qj] (Homogeneous Markov property)
- bi(OtJFl) Z a(Ij(IiP[Oh e 7Ot7 Iit = QJ]

= bi(0141) Z ajio (7).

(12.6)

Define the backward probability (i) := B;(q;) as

ﬁt(%‘) = P[0t+170t+27 T 70T\Z't = qi, /\]-

Proposition 12.3. (Backward algorithm) Set pr(i) = 1,Vi € {1,2,--- ,N}. For anyt €
{T—1,T—2,---,2,1}, there hold

N

615(@) = Z aijbj(0t+1)/8t+1( O|)\ Zﬂ-z 101 ﬁl (127>

j=1
Using both the forward and the backward probabilities, we have

P[O|A] = ZZat )aibi(0041)Besr (), ¥ t € {1,2,--- | T —1}. (12.8)

i=1j5=1

When t = 0, 1, the above equation can be modified to be Proposition 12.3; whent =T —1,T,
it can be modified to be Proposition 12.2.

Given A and O, define the probability that at time ¢, the state is g; is (i) := Pli; = ¢;|O, A].
Using conditional probability, we know
V(i) = Pliy = i, O|A]/P[O|A].
In view of the definition of forward and backward probability, we see
0 (i)Bi) = Pliv = 4, O], (12.9)
Therefore, we have

V(i) = 0u(1) (i) _ () By (7)
t P[O|)] Z;\; o (NBeG)

(12.10)
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Given X\ and O, define the probability that at time ¢, the state is ¢; and at time ¢ + 1, the
state is ¢j, is &(4,7) := Plir = ¢, 141 = ¢;]O, A]. Similarly, we have

Pliy = qi, 1141 = q5, O[N]

gt(z’aj) = P[Zt = Qz’»it+1 = q]’07 )‘] =

P[O[A]
_ Pli; = gi,ity1 = g5, O[A\] (12.11)
Z1<¢<N Z1<j<zv Pliy = i, i1 = dj, O|)] ’
_ au()aibi(0041) B4 (5)
i i(i)aizbi(op1) B (4)
From the definitions of (i) and &(i, j), we have
T
E|q; occurs|O, \] = Z%(i), (12.12)
t=1
T-1
Elqg; transmites|O, A\] = Z Ye(i), (12.13)
t=1
and
T-1
Elq; transmites to ¢;|O, A\] = Z &(1,7). (12.14)
t=1

3. Viterbi algorithm.

Viterbi method is a way of finding optimal path I* = (i¥, 45, -+ %) by dynamic program-
ming. A useful property about the optimal path is used.

Proposition 12.4. (A property of optimal path) If I* is an optimal path in predicting I for
gwen X and O, then with i3, - -- i} fizved, the path iy, --- 5. is also optimal among the paths
starting at iy and ending at 7.

Proof. An easy contradiction argument. O

Define the largest probability among the paths (i1, 9, - ,4;) with i; = ¢; by
0i(1) :== max Pliy =d,9_1, - ,i1,04 - ,01|Al, i€ {1,2,--- | N},
1,82, i1
We have the recursion relation
5t+1(i) =~ max i P[it-i-l = iaitait—lv e 7i170t7 e 701|)\]
21,22, 50t —1,5
) 12.15
— max (5 i (00c1). (12.15)

1<j<N

Define the (¢t — 1)th index of the path (i1, - ,4;_1,4) which has maximal probability among
paths with i, = ¢; as W;(7) := arg maxy<;<n{0t—1(7)a i}

The Viterbi algorithm is as follows:

Given input A = (A, B, 7) and observation sequence O = (01,09, - ,0r), find the optimal
path I* = (if,4, -+ ,i%) that maximize P(I|O).
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(1) Initialization. d1(i) = m;b;(01) for i =1,2,--- | N; ¥(i) = 0 for all 4.

(2) Recursion. For ¢t = 2,3,--- T, recursively compute

6¢(1) = mj,ix{étfl(j)aji}bi(Ot), i=1,2,---,N,

W,(i) = argmax{d,_1(j)aj}, i=1,2,--- N,
J

(3) Stop. P* = max; 6r(i), i5 = argmax;{dr(i)}.
(4) Find the optimal path. For ¢t =T — 1,7 — 2,2, 1, i = We (it + 1)).
4. An example of HMM.

Let A = (A, B,7) with 7 = (0.2,0.4,0.4)T and

0.5 0.2 0.3 0.5 0.5
A=103 05 02|, B=104 06
0.2 03 0.5 0.7 0.3

corresponding to the states q1, g2, g3 and observations vy, ve. In other words, |@Q] = N = 3 and
V| = M = 2. (a) Assume O = (v, v2,v1), compute P[O|A]. (b) Assume O = (vq,vq,v1),
find the optimal state sequence I* = (iF, 45, 4%).

(a) Here we use forward algorithm to compute P[O]\].

(al) Initialization oy (i) := m;b;(01) = m;b;i(vy).

ap(1) = mby(vy) = 0.2 x 0.5 = 0.1,
— 0.4 x 0.4 = 0.16,
=04 x0.7=0.28.

2b2(U1

3b3(U1

)
)
(a2) Recursion au (i) = X5; ar—1(j)azibi(oq).
(1) = Y en(f)an]bi(vz) = (0.1 x 0.5+ 0.16 x 0.3 +0.28 x 0.2) x 0.5 = 0.077,
j

ay(2) = [Z a1(j)aja]be(v2) = (0.1 x 0.2+ 0.16 x 0.5 + 0.28 x 0.3) x 0.6 = 0.1104,
J
az(3) = [ e () ays]bs(vz2) = (0.1 x 0.3+ 0.16 x 0.2 + 0.28 x 0.5) x 0.3 = 0.0606.
J
az(1) = )" aa(jf)ajibi(vi) = (0.077 x 0.5 + 0.1104 x 0.3 + 0.0606 x 0.2) x 0.5 = 0.04187,
J
a3(2) = )" aa(j)ajaba(vi) = (0.077 x 0.2 + 0.1104 x 0.5 + 0.0606 x 0.3) x 0.4 = 0.03551,
J

a3(3) = Y an(j)ajsbs(vi) = (0.077 x 0.3 + 0.1104 x 0.2 + 0.0606 x 0.5) x 0.7 = 0.05284.
J

(a3) Stop. P[O|A] = as(1) + as(2) + as(3) = 0.04187 + 0.03551 + 0.05284 = 0.13022.
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(b) We use Viterbi algorithm to find the optimal path.

(b1) Initialization 1 (2) = m;b;(vy).
01(1) = mby(v1) = 0.2 x 0.5 = 0.1,
01(2) = maba(vy) = 0.4 x 0.4 = 0.16,
01(3) = m3bz(vy) = 0.4 x 0.7 = 0.28.
We have Wy (i) =0 for i = 1,2, 3.

(b2) Recursion d2(7) = max;[d1(7)a;i|b;(v2).

First, compute d2(1) = max;[d1(7)a;1]b1(ve). We have
d1(1)ay; = 0.1 x 0.5 = 0.05,
51(2)as = 0.16 x 0.3 = 0.048,
51(3)azs = 0.28 x 0.2 = 0.056,
Therefore, d2(1) = 0.056 x 0.5 = 0.028. Also, Uy(1) = 3.

Second, 62(2) = max;[d;(j)aj2]b2(v2). We have
51(1)ar = 0.1 x 0.2 = 0.02,
51(2)ass = 0.16 x 0.5 = 0.08,
51(3)azs = 0.28 x 0.3 = 0.084,
Therefore, 62(2) = 0.084 x 0.6 = 0.0504. Also, ¥9(2) = 3.

Third, §2(3) = max;[d1(j)a;3]bs(v2). We have
51(1)awz = 0.1 x 0.3 = 0.03,
51(2)azs = 0.16 x 0.2 = 0.032,
01(3)ass = 0.28 x 0.5 = 0.14,
Therefore, 62(2) = 0.14 x 0.3 = 0.042. Also, U5(3) = 3.

Now, we do another recursion d5(2) = max;[d1(7)a;i]b;(v1).

First, compute d3(1) = max;[d2(j)a;j1]b1(v1). We have
3o(1)an = 0.028 x 0.5 = 0.014,
5o(2)az = 0.0504 x 0.3 = 0.01512,
85(3)az: = 0.042 x 0.2 = 0.0082,
Therefore, d2(1) = 0.01512 x 0.5 = 0.00756. Also, ¥3(1) = 2.

Second, compute 03(2) = max;[d2(j)a;2]b2(v1). We have
8o(1)arz = 0.028 x 0.2 = 0.0056,
55(2)ass = 0.0504 x 0.5 = 0.0252,

5o(3)azs = 0.042 x 0.3 = 0.0126,
Therefore, d2(1) = 0.0252 x 0.4 = 0.01008. Also, U5(2) = 2.
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Third, compute d3(3) = max;[d2(j)a;3]bs3(v1). We have
d2(1)a1z = 0.028 x 0.3 = 0.0084,

92(2)ags = 0.0504 x 0.2 = 0.01008,
35(3)az; = 0.042 x 0.5 = 0.021,
Therefore, d2(1) = 0.021 x 0.7 = 0.0147. Also, ¥3(3) = 3.

(b3) Stop. P* = max; d3(1) = max{0.00756,0.01008,0.0147} = 0.0147. And also, we have
i5 = argmax; d3(i) = 3, i3 = U3(i5) = U3(3) = 3, and if = Uy(i5) = ¥2(3) = 3.

(b4) Find the optimal path. I = (3,3, 3).
13. APPENDIX I: LINEAR ALGEBRA

1. Basic Matrix Identities
Proposition 13.1. (AB)T = BTAT.

Proof. [(AB)"]ij = [ABlji = Aj.Bri = [BTJu[AT ]y = [BTAT];;. O
Proposition 13.2.
(P +B"R'B)'B'R™ = PBY(BPB" + R)™*. (13.1)

Proof. Multiplying the equality by (BPBT + R) on the right, and (P~! + BTR™!B) on the
left, we obtain

B'RY(BPBT + R)=(P'+ B"R'B)PB".
It is easy to see that both sides equal to BT + BTR-'BPBT. O

In (13.1), let P = Id and B'R = A, we have
Proposition 13.3.

(I +AB)™'A=A(I + BA)™. (13.2)
Proposition 13.4. (Woodbury identity)
(A+UCV) ' =A"t— Al U(C + VAU 'vATL (13.3)

Proof.
(A+UCV)[A' —A U Cct+vA )y tvAaTt
=TI -U[CTT+ VAU VAT + UCVA —UCVATIU(CT + VAU v AT
=[I+UCVA - [UC+ VAU ' VA + UCVAIU(C + VAU VAT
=[I+UCVA™ - [U+UCVAT'U|(CT' + VAU 'V A
=[I+UCVA Y -UCC+VATIUCH+VATIU) VAT
=1 +UCVA ' -UCVA™

~ I
(13.4)
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U
Proposition 13.5. (Inverse of partitioned matriz)
A, B! M, ~MBD™!
lo, D] = {—DlOM, D'~ D'CMBD™|’ (135)
where M := (A — BD7'C)7! is the Schur complement.
2. Trace and determinant
Proposition 13.6. Tr(AB) = Tr(BA), i.e., Tris cyclic.
Proof.
Tr(AB) = A;;Bji = Bj;Aij = Tr(BA). (13.6)
0

The determinant |A| of a square matrix A is defined by

Al = > sign(0) Ato) A2e2) - Ano(n)-

€S

We have |AB| = |A||B| and |A™!| = 1/|A|. Assume A, B are matrices of size N x M, then
\Ix + AB”| = |I); = AT B].
In particular, if a, b are both N dimensional column vectors, then we have

Iy +ab’| = |, +a’b|=1+a’b.

3. Spectrum decomposition

Let A be a M x M matrix, and with right eigenvalues and eigenvectors given by
)\17)\27"' 7>\M G(CI;UDUQJ'” ,Up € (CM7
ie.,

We can assume that |u;lls = 1 for all j.

(:1Xﬂ4

We also assume vq,vo, -+ , vy € are the left eigenvectors of A associating with

M, 2y - s UK € (Cla i‘e'a
UjA = K V;.

Taking transpose of the above equation, we get
TT _ T
A Uj - M]Ujv

which shows that pi1, fi9, - - - , piar € C are eigenvalues of AT. Since det(A— A) = det(\—AT),
we easily see

{/M,MQ, T 7,MM} = {)\1,)\27 T ,)\M}-
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Assume the M eigenvectors form a basis of CM and U = [uy, -+ ,up], we can write (13.7)
in matrix form as

AU = UDiag{\, -, A} := UA,
which gives A = UAUL.

Let A* be the conjugate transpose of A. A is Hermitian iff A* = A. If A is real matrix, then
that A is Hermitian means A is symmetric.

Proposition 13.7. For a Hermitian matriz, its eigenvalues are real, and eigenvectors as-
sociated to different eigenvectors are orthogonal.

Proof. Let \,u be an eigenpair for A, i.e., Au = Au. Then we have

N|ul> = (u, Ay = {u, Au) = (u, A*u)y = (Au, u) = M|ulf?, (13.8)

which gives (A* — \)|u|? = 0, implying \* = A, i.e., X is real. Consider (Au;, u;):
Nilug, wg)y = (CAug, u )y = (ugy Augy = ANy, ug), (13.9)
which gives (A; — A\;){w;, u;) = 0, and hence (u;, u;) = 0 when \; — \; = 0. O

From the above proposition and Grad-Schmidt orthogonalization, we know that

Proposition 13.8. For a Hemitian matriz A, the eigenvectors uy,--- ,up can be made
mutually orthogonal: (w;,u;) = wfu; = 6;;, or U*U =1

From U*U = I, we see UU* = [ by definition of matrix inverse, therefore, for a Hermition
matrix A, the corresponding U has the property that both and row vectors and the column
vectors of U form a orthogonal basis of CM.

Definition 13.9. (Unitary matrix, normal matrix) If U*U = UU* = I, we say U is a
unitary matrix. If U*U = UU*, we say U is a normal matrix.

From definition, it is easy to see that det(U) = det(U*) = 1. Meanwhile, unitary matrix
induces unitary transformation which preserves distance and angle. Indeed,

Uv,Uw)y = U*Vv,w) = {v,w).

Proposition 13.10. (Spectral decomposition) Let A be Hermitian and U = [uq, -+ ,up| be
the unitary matriz consisting of the eigenvectors of A. Then A = UAU* and A~ = UN"1U=.
These two relations can be written as

A= Z )\iuiuiT, Al = Z)\;luiu?.

The diagonal matrix A is a representation of the linear transform A under transformed basis.
We can give a direct proof of the spectral decomposition. Let us take A = Y. \ju;ul as an
example. We regard both the left hand side and right hand side as linear transformations.
To show they are actually the same, we just need to verify that their action on a or any
basis is the same. We can use the basis {u;}¥,. For any u;, we have

T
AUj = /\jUj, 2/\1U2U1 Uj = Z)\Zuzézj = )\juj-
i i
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Comparing the above two equalities, we verified the conclusion.
4. Matrix derivatives

Matrix is a representation of linear transformations between finite dimensional spaces. More
precisely, a linear operator from R into R™ can be represented by a n xm matrix. Because in
order to map a vector u € R™ to result in a vector v € R", we must have A be a n x m matrix,
which is easily see by considering the expression Au = v. In general, a linear transformation
between two Banach spaces X,Y can be represented by a linear operator L : X — Y.

The above viewpoint is the key to understand derivatives. The idea of derivative is local
linearization. Any derivative is a linear operator. More precisely, f : X — Y for any Banach
space X, Y (in other words, both can be infinitely dimensional), D f(z) is a linear operator
from X to Y. In particular, if X = R™ and Y = R", then D f(z) is a linear operator from
R™ into R™, hence a n x m matrix.

About the gradient. Let f: R" — R! with y = f(z). The derivative of % e RY™" in other
words, a n-dimensional row vector. This is different from gradient V, f(x) which is typically

defined as a column vector. Therefore, V, f(z) = [g—g]T.

Now, we can define the derivative rules. Let x be a scaler, f,x € R"” be a vector. Then

(Dxf)ij = Do, fi-
The above rule extends naturally to any tensors.

Next, we collect some computation propositions. Let a,x be two vectors, then

Dy(a-x) =a’.

Let A, B be two matrices which can be multiplied, then
D.(AB) = (D,A)B + AD,B.

Let A be an invertible matrix, we have A=A = I,. Taking z-derivative in the equation
gives us

O (AT HA+ A0, A =0,.
From the above equation, we get

0, (A7Y) = A1 (3, A) A7,

The derivative of trace. Now we compute D4Tr(AB) for two matrices A, B. First, consider
04, Tr(AB), and we have
0, Tr(AB) = 04,,(Ai;Bji) = Bji = (B")y,
therefore, we have
04Tr(AB) = BT.
Similarly, we have
04Tr(A"B) = B,
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aATr(A) = 8ATr(AT) = [,
04Tr(ABAT) = A(B + B").

Let F' be a square matrix and |F'| be the determinant, then we have
d|F| = Te(F*)dF = |F|Te(F~Y)dF,

which F* is the cofactor matrix of F whose (i, j)-element is given by the F};’s signed cofactor,
i.e, F*/|F| = F~. In particular, we have dIn|F| = Tr(F~'dF.

The derivative of inverse matrix F'~! is given by

d(F™Y = —F Y (dF)F~.

5. Cholesky decompoistion and normal distribution

Theorem 13.11. A is Hermitian positive-definite matriz iff A = LL* uniquely for some
lower diagonal matrixz L with real and positive diagonal matriz. The decomposition is called
Cholesky decomposition.

If the matrix A is Hermitian and positive semi-definite, then it still has a decomposition
of the form A = LL* if the diagonal entries of L are allowed to be zero. When A has
real entries, L has real entries as well, and the factorization may be written A = LL7.
The Cholesky decomposition is unique when A is positive definite; there is only one lower
triangular matrix L with strictly positive diagonal entries such that A = LL*. However,
the decomposition need not be unique when A is positive semidefinite. The converse holds
trivially: if A can be written as LL* for some invertible L, lower triangular, then A is
Hermitian and positive definite.

It is well known that linear transformation of a Gaussian random vector is Gaussian. The
mean and covariance matrix determine a Gaussian vector. Therefore, we can construct
Gaussian vectors with specified mean p and real covariance matrix > which we assume
is positive semi-definite. Assume X;, X, -+, X, are n independent standard univariate
Gaussian. Then X = (X1, -+, X,)7 is a Gaussian with mean 0 and covariance matrix I,,.
Now assume ¥ = LLT for some lower diagonal matrix L with nonnegative diagonal entries.
Then Y := LX + p is Gaussian with mean p and covariance matrix ». Indeed, we have

E[Y] = E[LX + p] = LE[X] + p = p,

and
cov(Y) = E[LX(LX)"] = LE[XX"|L" = LL" = %.

14. APPENDIX II: INEQUALITIES

Lemma 14.1. (Hoeffding) Let X be any real-valued random variable with E[X] = 0 and
Pla < X <b] =1. Then for any X € R, there holds

Elexp{\X}] < exp{\*(b— a)?/8}. (14.1)
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Proof. By assumption, if one of a and b is zero, so is the other. Then X = 0 almost
surely, and (14.1) becomes E[e°] < ¢° = 1, which is obviously true. Now consider the case
a < 0 <b. As the function x — e** is convex, we consider the convex combination

b—x +x—ab
xr = a ,
b—a b—a
and use Jensen’s inequality to get
es‘”<b_xe“+x_aeb Vz € [a, b]
b—a b—a ’ T

Taking expectation in the above inequality, we have

b— E[X] E[X]-a
E s X < -~ a b EX _
] < o S (B[] =0)
. b a —a
_b—ae b—ae
= b—a e*d(—bja + e5t=)
—a
—a b—a+a
_ sa( s(b—a)
b—a’ ( a e ) (14.2)
—a _b—a a

sa

_ -1 s(b—a) o
b—a a te ) ( b—a

=01 — 0+ 0e°D)  (s(b—a) :=u)

= (1 -0+ fe")e ™

= exp{—fu +In(1 — 0 +0e")}  (—Ou+1In(1 -0 + e) := p(u))
_ o),

=0>0,—s0(b—a) = sa)

We shall find a bound of ¢(u). First ¢ : R — R is well-defined. To see this, we need to
verify that 1 — 0 + fe" > 0 is always true. Indeed, we have

1—0+0e"=0(1/0—1+¢")=0(—(b—a)/a—1+¢")=0(-b/a+¢€")>0.
Now, by Taylor’s formula, we know there exist v between 0 and u such that
1
o(u) = ¢(0) + ¢'(0)u + §¢”(v)u2-

By direct computations, we know

—0, (14.3)



© JINGHUA YAO 47

and
fe’(1 — 60 + fe’) — Oe"fe”
(1 —0+ fev)?
fe’(1 —0)
(1—6+ Oev)?

e” 1-46
(1—0+40ev)?(1— 0+ ev)?
Oe’ Oe’

R Il Sl way e

e
=t(1—1) (m::t>0)
<[(t+(1-1)/2
— 1/4.

Then from (14.3), we conclude

¢"(v) =

o(u) < u?/8 = s*(b—a)?/8.
Therefore, for the moment generating function E[e**], we have
Ele’*] < exp{s?(b— a)?/8}.
O

Proposition 14.2. (Hoeffding’s inequality, 1963) Let X1, -- , X, be independent r.v. bounded
by the intervals [a;, b;] for 1 <i < mn. Define S, := X1+ -+ X,,. Then, fort =0, there
hold

P[S, — E[S.] = t] < eXp{_ZtQ/Z(bi —a;)?},
}m&—EﬁM>ﬂ<%m&%WZ@—mﬁ.

Writing in the form of average X := S, /n, the above inequalities are

PIX — E[X] >1] < eXp{—2n2t2/Z(bz’ —a;)"},

PIIX — BIX]| > 1] < 2exp{-20%*/ Y (b — a)?}.

Proof. When t = 0, the inequalities hold trivially. In the following, assume t > 0. Then for
any s > 0, by Markov’s inequality and independence of X;s, we have

P[Sn . E[Sn] > Zf] _ P[QS(S"_E[S"]) > 6st]

< €_StE[€S(S"_E[S"])]

<e ot 1_[ E[eS(Xi—E[Xi])] (Hoeffding’s Lemma)

52 (by—a;)?
e—st 1_[ e 3

2 bz —a; 2
= exp{_st +Z¥}

N
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The quadratic function f(s) := —st+ 3. = (b al attains its minimum —2¢2/ 3. (b; — a;)* at
s =4t/ > (b; — a;)®. Therefore, we conclude

P[S, — E[S,] = 1] < exp{—ZtZ/Z(bi —a;)%}

The above proof also gives us
P[S, — E[S,] < —t] < eXP{—Qtz/Z(bz' —a;)*},
by replacing S,, by —S,, and X;s by —Xjs.

Together, we have
P[|S, — E[S,]| = 1] < 2exp{=2t*/ ) (b; — a;)*}

O

Proposition 14.3. (Sample size estimate for confidence interval) Let the random vari-
able X € [a,b]. To acquire (1 — a)-confidence interval E[X] +t, one needs at least [(b —
a)?In(2/a)/2t*] + 1 samples.

Proof. Let X;,---, X, ben samples. Then we have by Hoeffding’s inequality
E[|X — E[X]| > t] < 2e 2°F/n(b=0) _ g¢=2nt?/(b=0)”
which implies
E[|IX - E[X]|<t]>1- 9 2nt?/(b—a)®

To acquire a (1 — a)-confidence interval E[X] + t, we need 1 — 2e=2"*/(-0)* > 1 _ ¢ ie.,
2e~27/(=0)* < v from which we easily see that n > —(b— a)?In(a/2)/2t2. O

An example. Consider i.i.d Bernoulli random variables X7, X5, -+, X,, where each X, a
Bernoulli trial of tossing a coin with Plhead] = P[X; = 1] = p and P[tail] = p[X; = 0] =
1 —p. Then S, := X7 + - -- X,, is the number of heads for n independent tosses of the same
coin. We know E[ W] = ZZ_ E[X;] = np. Then for any ¢ > 0, we apply the Hoeffding
inequality to get

P[|S,, — np| = ne] < 2exp{—2(ne Q/Z 0)%} = 2exp{—2ne?}.

Therefore, we have
P[|S, —np| < ne] = 1 — 2exp{—2ne?}.

lnn

Letting ¢ = , we have

P[|S, —np| < Vnlnn] =1 —2/n?

Inn 9
P[|Sn/n—p| < “T] >1-2/n"

or in the average form
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Lemma 14.4. (Gibbs’ inequality) Let P = {p1, -+ ,pn} and Q = {q, -+ ,qn} are two
probability distributions. Then there always holds

— Y pilogyp; < — ) pilogy gi, (14.4)

i=1 1=1
with equality iff p; = q; for all ©. In other words, entropy is always less than or equal to the
cross entropy.

Proof. (A rough proof) We just need to show that

— Y pilogy g — (= Y pilogypi) = Zplloggg’/o.
=1

i=1 i=1
The above inequality is a consequence of the Jensen’s inequality in view of the convexity of
—log,:

Zpl logz sz log,)(¢i/pi) > (—log,) Z Py &)

When ¢; = p; for all 1, Jensen’s mequahty takes equality. O

The above proof also shows that the Kullback-Leibler divergence Dk (pl|q) is always non-
negative:

D (pllg) = sz logo(pi/¢i) =

Proof. (A more illuminating proof) As log,a = Ina/In2, we could use In to give a proof.
We have the following inequality:

b

Inz < x—1, for all x > 0;with“ =" when z = 1.

Denote I = {i;p; # 0}. Then,

—sz In(gi/pi) = — Y piln(qi/ps) — > piln(qi/ps)-

i€l S
The second term — ) .. p;In(g;/p;) = 0 and for the first term, we have
= pilnla/p) = =Y pila/pi—1) ==Y @i+ ) pi=1-),4:=0
1€l i€l i€l iel 1€l

Therefore, we have proved the inequality. When ¢;/p; = 1 for ¢ € I, we have equality. In the
meantime, as P and () are probability distributions, we must have p; = ¢; = 0 for ¢ € I°.
Therefore, when ¢; = p; for all 1 < 1¢ < n, we have equality in the entropy and cross-entropy
inequality (14.4). O
Lemma 14.5. (Log-sum inequality) Let a1, -+ ,a, and by, --- , b, are two sequences of non-
negative numbers and a 1= Y a; and b:= > b;. Then,

n

> a;log(a;/b;) = alog(a/b) (14.5)

i=1

with equality iff a;/b; are equal for all i, i.e., a; = cb; for some common positive constant c.
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Proof. We use the convexity of the function f(z) = xlogx defined for x > 0. Due to change
of base formula for logarithm, we can regard the base as e without loss of generality. In fact,
it is easy to see

f(z)y=lnz+1; [fx)=1/z>0
Using f, the left hand side of (14.6) can be written as

n

Zb (a:/b;) log(a;/b;) be a;/b;) Z Flai/b;).

Now, we can use Jensen s inequality to get
b bi/b i/bi) = b =b b) =al
;(Hﬂm/ ZfZ fafb) = alog ;.

In the above step, we have inequality iff a;/b; are equal for all 1 < i < n. 0

Remark 14.6. The log-sum inequality still holds for n = o as long as > a, < o and
> by, < 0. The log-sum inequality can also be generalized to arbitrary g such that f(z) :=
zg(z) is convex on x = 0.

Lemma 14.7. (Generalized log-sum inequality-the g-sum inequality) Let ay,--- ,a,, -+ and
by, -+ by, are two sequences of nonnegative numbers and a = Z;’il a; < o0 and b :=
Yo bi < . Then, for any function g(z) defined on x > 0 such that f(z) := xg(z) is
well-defined on x = 0 and is convez, there holds

0

Z a;g(a;/b;) = ag(a/b) (14.6)

i=1

with equality iff a;/b; are equal for all i, i.e., a; = cb; for some common positive constant c.

Next we discuss the Chernoff bound which relates the tail probability of a random variable
with moment generating functions. Consider the tail probability P[|X| > a] for a random
variable X with a positive number a, then we have the Markov inequality

PlIX| > a] = f adP < J X|dP < f X|dP = E[|X[] — P[|X] > a] < E[|X][}/a.
[1X]>a] [1X[>a] Q
Now let X = X; + --- + X,,. By Markov’s inequality, we have for any ¢ > 0, that
P[X > CL] _ P[etX > eta] 7taE taE HetX

and
n

P[X <a] = P[-X > —a] = Ple™ = "] < "E[e""] = e"E[] [e].
i=1
Lemma 14.8. (Idea of Chernoff bound) Let X is the sum of n independent random variables
Xy, , X,. Then for any positive numbers a and t, we have the following bounds

t>0

P[X > a] < mm{mf{e taﬁE[etX"]},l},

mx<@<mmﬁg¢@nEW“ﬂﬂ}
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Theorem 14.9. (Chernoff bounds) Let X = Xy + -+ + X,,, where X; = 1 with probability
p; and X; = 0 with probability 1 — p;, and all X; are independent. Let p = E[X] =" | p;.
Then

(i) (Upper tail)

2

PIX > (1+0)u] <e 35", ¥ 5> 0;

(i1) (Lower tail)
PIX<(1-8ul<e™Pv0o<d<l;

(111) (Full tail)
Pl|X —pl = 6u] <27 B v0o<i<l.

Proof. We first compute the moment generating function for each X; with ¢t € R!:
Ele™i] = e™p; + ™01 —p) = 1 + pi(e’ —1).
By the elementary inequality 1 + z < e® for all x € R!, we notice that
B[] < exp{pi(e! — 1)}.

As X is the sum of independent random variables, we know that
E[e] =] [ Ele™] < | [expipi(e’ = 1)} = exp{d pi(e' = 1)} = exp{(e' = 1)u}.
i=1 i i

(i) By Lemma 14.8, we have for the upper tail
PIX > (14 0)p] < infle™0*9 exp{(e! — Du}} = inf{explyfe’ — 1 (1 + )}
> >

Next, we compute the inf. For this, it is sufficient to minimize g(t) := e’ —1— (14 d)t. It is
easy to see that g(0) = 0 and g(+00) = +o0, and it has a global minimizer at t* such that
gt*) =e" —(1+6)=0,ie.,e” =1+4. Putting this information back to g, we have
gt*) =0 —(1+§)In(1 +9).
Now, we obtain an upper bound for the upper tail:
P[X = (1 +0)pu] < exp{ug(t*)} = exp{u[d — (1 4+ 0)In(1 + 0)]}.
To obtain the desired upper bound, we try to bound
s(0) ;=90 — (1 +9)In(1 + 9).

We use another elementary inequality

In(1 + z) > Vz > 0. (14.7)

x
1+2/2
Therefore, for any ¢ > 0, we have
) 52

s0) <6+ 055 = ~5 15

Therefore, we have

P[X = (1 + )] < exp{us(d)} < exp{—ud?/(§ +2)}.
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(ii) By Lemma 14.8, we have for the lower tail
PIX < (1= 8)u] < inf{e® P exp{(e™" — 1)u}} = inf{exp{ule™ — 1+ (1= 0)f]}}.
To control the lower tail, we consider to control the function
h(t):=e " =1+ (1-0)t.
It is easy to see that h(0) = 0, h(+o0) = +00 and I'(0) = [-e™ + (1 —0)]| = -6 <0.

t=0
Therefore, h(t) admits a global minimizer on [0, 400) at t* such that »/(t*) = —e~* +(1-0) =
0. Putting this information back to h, we have

h(t*) = =6 — (1 = §)In(1 —9).
Now, we obtained an upper bound for the lower tail
PIX < (1 - )] < exp{uh(t*)} = explu[—6 — (1 — 6)In(1 — )]},
To obtain the desired bound, we use the following bound holds

65— (1-8)In(l-0) < —52—2, v 5 eo,1]. (14.8)

Therefore, we have
P[X = (1 - )] < exp{—ud?/2}, V 5e(0,1).
(iii) For the full tail, we have for all § € (0, 1),

PIIX —pl = 6] = P[X < (L4 8)] + PIX < (1- )] < e 755 4 ¢ #7/2 < 2exp{—pd?/3}.
0

To make the above complete, we show the validity of (14.7) and (14.8). To show (14.7), we

define the auxiliary function fi(z) :=In(1+ z) — 7% Ti.73- We notice that f1(0) = 0 and

oy 1 (A+x/2)—ax1/2 (x/2)?
h@) =17 1+2/2?2  (1+a)(l+a/2)2

Therefore, (14.7) holds. To show (14.8), it is sufficient to show for § € (0,1) (at the two end
points, the desired inequality holds),

>0, Vx>0.

f2(8) :=In(1 —0) + i 1_—625/2'

It is easy to observe that f>(0) = 0 and to compute that
62/2

Therefore, (14.8) is valid.

The generalization of the Chernoff bound can lead to Hoeffding’s inequality. Now, we con-

sider an example of n independent coin tosses. Assume the coin is fair, i.e, for each Xj,
Plhead] = 1/2. Consider S, := X; + --- + X,,, the number of heads in the n tosses. Then
the weak law of large number says

P[|Sy/n—1/2| 2 €] - 0, n — +0.
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The above convergence in (probability) measure does not specify the rate of convergence.
This rate can be specified using either Chebyshev or Chernoff. Let’s first use Chebyshev:

P[|S,/n —1/2| = €] = P[|S, — n/2| = ne| < (ne)"*Var(S Z\/ar
(14.9)
= (ne) *n/4 =

4e2n’

If ¢ = 1/4, we have
P[|Sn/n—1/2] = 1/4] <

3|'4>

Now, we use Chernoff bound:

P[|S,/n —1/2| = §/2] = P[|S, —n/2| = 6n/2] < 2exp{—(n/2)6%/3} = 2exp{—nd>/6}.
(14.10)
If 6 = 1/2, we have

P[|S,/n — 1/2| = 1/4] < 2 exp{—n/24}. (14.11)

If we consider a smaller §: let § =
1 |
P[|Su/n—1/2] > 54/6"“ LAy (14.12)

15. ArPPENDIX III: ELEMENTARY THINGS

6’“% for any positive number k, we have

Proposition 15.1. 12 + 22 + ... + n? = tn(n + 1)(2n + 1).

Proof. Denote f(n) := " | i* and use induction. Forn =1, f(1) =1 = % x 1 x 2 x 3. Now
assume the desired formula holds for n, and we show it also holds for n + 1 as follows:

Fn+1) = f(n) + (n+ 1) = %n(n F1@n A1)+ (n+ 1)

= é(n + )[n@2n+1)+6(n+1)] = é(n +)(n+1+1)2(n+1)+1].

Therefore, the desired formula holds true for all n. O

Proposition 15.2. 1% + 23 + ... + n® = In?(n + 1)%.

Proof. Denote f(n) := Y., 4* and use induction. For n =1, f(1) =1 = 1 x 1 x 22. Now
assume the desired formula holds for n, and we show it also holds for n 4+ 1 as follows:

1

f(”+1)=f(n)+(n+1)3=1n( 12+ (n+1)°
_}L(nﬂ) (n? +4(n+1))—i(n+1) (n+1+1)

Therefore, the desired formula holds true for all n. O
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Some elementary inequalities. Consider the function f(x) = e®. It is convex, and the tangent

line passing through (0, 1) isy — 1 =¢"| (x—0) =z, i.e., y =z + 1. Therefore, we have

l+x<e, VweR. (15.1)
Replacing x by —z, we have
l-r<e™ VzeR. (15.2)
When 1 + x > 0, we can also apply monotone functions to (15.1) to obtain
(1+2)* <exp{az}, Va>0, (15.3)
and
(14+2)"® = exp{—az}, Va>0, (15.4)

Consider the function f(z) = In(1 + z) for x > —1. This function is concave and passes the
point (0,0). The corresponding tangent line is y = x. Therefore, we have

In(l4+2) <z, Vz>-L (15.5)
Replacing x > 1 by —z > —1, we have
In(l—2)<—z, Vo<l (15.6)

Using convexity and concavity, and local analysis, Taylor expansion, we could generate more
inequalities. For example, consider the f(z) = xlnz for x > 0. This function is globally
convex, and passes through the point (1,0). The corresponding tangent line passing through
this point is y = x — 1. Therefore, we have

r—1<zlnz, Va>D0.

Now, we use the definition of convexity or concavity to derive some inequalities. For a convex
function f, we have the Jensen ineqaulity

flazy + (1 — a)xs) < af(xr) + (1 — a)f(za),

or more generally, assume P is a probability distribution on the domain of f and X is
random variable with values in domain of f, then the Jensen inequality can be written as

FEIX]) < E[f(X)]

Now consider the power function f(x) = z® for z > 0 if @ > 0 and for z > 0 if a is
allowed to be negative. We shall consider the case o« > 0, as otherwise, we could consider
the reciprocal. We assume o = 1,2, as these two cases are either linear or well-known for
us. The power function is convex globally on its domain when o > 1. Hence, we have by
Jensen’s inequality for positive numbers a, b,

a+b, 1, 1,

( 5 ) < 5@ +2b, Va > 1.

ie.,
(a+b)* <2*Ha® +b%), Va>1.
By concavity, we have
(a+b)*=2"a"+b%), V0O<a<l. (15.7)
We also have for 0 < o < 1 that

(a+b)* <a®+b*. (15.8)
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To show (15.8), it sufficient to show that (1 + z)* < 1+ 2 for x > 0. This is an elementary

exercise: Let f(x) =1+ a* — (1 + x)*. We check that f(0) = 0 and

f’(fb’):a( ! — L >>0, Vo> 0.

= (1 +x)t-@

From (15.7) and (15.8), we have
a®+ b= (a+b)*=2a" +b%), VO<a<l.
The first “ > 7 is convenient to be generalized:

al +---an = (a4 +a,), V0<a<l.
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