
RESEARCH NOTES IN STATISTICAL MACHINE LEARNING

JINGHUA YAO

Abstract. The probability foundations for statistical machine learning is of fundamental
importance. It is our opinion that as the trend of automation of machine learnings develops,
the probability or more primarily the mathematical background behind the machine learn-
ing algorithms will become more and more important for people who want to use machine
learning technique correctly and effectively. We collect the probability distributions used in
machine learning study and give the detailed derivations for some related quantities such as
expectation, variance and characteristic functions. Meanwhile, we present the expectation
maximization (EM) algorithm in integral form, supply the hidden Markov model (HMM)
with a specific example to demonstrate the computation of probabilities using forward or
backward algorithm, and illustrate the predictions in HMM using Viterbi algorithm. Also,
we collect some typical computations and ideas in using machine learning algorithms includ-
ing the artificial neural network. We give some concentration inequalities with proofs, and
record some useful ideas of the author in this evolving notes. We emphasize the geometrical
intuition and methods from calculus of variations during the writing.
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1. Statistics Historical Notes

1. 1890—1900, Francis Galton and Karl Pearson.
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Galton: the concepts of standard deviation, correlation, regression analysis and the

Pearson: Pearson product-moment correlation coefficient, the method of moments for the
fitting of distributions to samples and the Pearson distribution Ronald Fishe: null hypoth-
esis.

2. 1910—1920, William Gosset, Ronald Fisher

Fisher: the concepts of sufficiency, ancillary statistics, Fisher’s linear discriminator and
Fisher information

3. 1930s, Egon Pearson and Jerzy Neyman

the concepts of “Type II” error, power of a test and confidence intervals.

4. Today

Statistical methods are applied in all fields that involve decision making. The use of modern
computers has expedited large-scale statistical computations, and has also made possible
new methods that are impractical to perform manually.

2. Maxwell-Boltzmann distribution

The distribution is given by

fpvq “
´ m

2πkT

¯3{2
4πv2 expp´mv2

2kT
q

for v P r0,`8q. Using variance of normal distribution, it is easy to verify that
ż 8

0

fpvq dv “ 1.

Let α “ m
2kT

. We have

fpv;αq “
´α

π

¯3{2
4πv2 expp´αv2q.

fpvq satisfies the following ODE
#

kTvf 1pvq ` fpvqpmv2 ´ 2kT q “ 0,

fp1q “ p2{πq1{2 expp´m{p2kT qqpm{pkT qq3{2.
(2.1)

In unitless form, it is as follows
$

&

%

a2xf 1pxq ` px2 ´ 2a2qfpxq “ 0,

fp1q “ 1
a3

´

2
π

¯1{2
e´ 1

2a2
(2.2)



4 JINGHUA YAO

3. Probability distributions

3.1. Bernoulli distribution. (a) Distribution. Consider toss a coin and denote the result
by X P t1 “ head, 0 “ tailu where ppX “ 1|µq “ µ. Consequently, ppX “ 0|µq “ 1´µ. The
distribution can be written as

X „ Bernoullipx|µq “ µxp1 ´ xq1´x, x P t0, 1u.

It is easy to verify that ErXs “ µ and V arrXs “ µ ´ µ2.

(b) Maximum likelihood estimate. Assume that X „ Bernoullipx|µq and we independently
sampled N data points D “ tx1, ¨ ¨ ¨ , xNu. We aim to estimate the parameter µ. For this,
we consider the log maximum likelihood function

ln ppD|µq “ lnpΠiBernoullipxi|µqq “
ÿ

i

ln Bernoullipxi|µq

“
ÿ

i

txi lnµ ` p1 ´ xiq lnp1 ´ µqu.
(3.1)

Letting

d ln ppD|µq
dµ

“ 1

µ

ÿ

j

xi ´ 1

1 ´ µ

ÿ

i

p1 ´ xiq “ 0,

we get

µML “
ř

i xi

N
.

3.2. Binomial distribution. (a) Distribution. Consider N times independent Bernoulli
trails X1, ¨ ¨ ¨ , XN and consider the number of heads X obtained, i.e., X “ X1 ` ¨ ¨ ¨ ` XN .
The probability ppX “ mq for m “ 0, 1, ¨ ¨ ¨ , N is

P pX “ mq “
ˆ

N

m

˙

µmp1 ´ µqN´m,

which is the Binomial distribution, denoted by X „ Binomialpµ,Nq.

(b) ErXs and V arrXs. We can easily show that

ErXs “ Nµ, V arrXs “ Npµ ´ µ2q
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by noticing the independence of X1, X2, ¨ ¨ ¨ , XN . Next, we give a direct verification. For
ErXs, we have

ErXs “
N
ÿ

m“0

m
N !

pN ´ mq!m!
µmp1 ´ µqN´m

“ Nµ

m´1“N´1
ÿ

m´1“0

pN ´ 1q!
rpN ´ 1q ´ pm ´ 1qs!pm ´ 1q!µ

m´1p1 ´ µqpN´1q´pm´1q

“ Nµ

N´1
ÿ

j“0

pN ´ 1q!
pN ´ 1 ´ jq!j!µ

jp1 ´ µqN´1´j

“ Nµpµ ` 1 ´ µqN´1

“ Nµ.

(3.2)

For V arrXs, it is sufficient to compute ErX2s and use the relation V arrXs “ ErX2s´ErXs2.

ErX2s “
N
ÿ

m“0

m2 N !

pN ´ mq!m!
µmp1 ´ µqN´m

“ Nµ

m´1“N´1
ÿ

m´1“0

m
pN ´ 1q!

rpN ´ 1q ´ pm ´ 1qs!pm ´ 1q!µ
m´1p1 ´ µqpN´1q´pm´1q

“ Nµ

m´1“N´1
ÿ

m´1“0

pm ´ 1 ` 1q pN ´ 1q!
rpN ´ 1q ´ pm ´ 1qs!pm ´ 1q!µ

m´1p1 ´ µqpN´1q´pm´1q

“ Nµ
!

N´1
ÿ

j“0

j
pN ´ 1q!

pN ´ 1 ´ jq!j!µ
jp1 ´ µqN´1´j `

N´1
ÿ

j“0

pN ´ 1q!
pN ´ 1 ´ jq!j!µ

jp1 ´ µqN´1´j
)

“ Nµ
 

ErBinomialpµ,N ´ 1qs ` 1
(

“ NµppN ´ 1qµ ` 1q,
(3.3)

from which we get

V arrXs “ ErX2s ´ ErXs2 “ NµppN ´ 1qµ ` 1q ´ pNµq2 “ Nµp1 ´ µq.

3.3. The Beta distribution. (a) Preliminary on the Beta function Bpx, yq and Gamma
function Γpxq. The Beta function, also known as Euler integral of the first kind, is defined
as

Bpx, yq “
ż 1

0

tx´1p1 ´ tqy´1 dt, Repxq ą 0,Repyq ą 0.

It is easy to see that Bpx, yq “ Bpy, xq and Bp1, 1q “ 0. The function Γpxq is defined as

Γpxq “
ż 8

0

ux´1e´udu, Repxq ą 0.

It is easy to see that Γp1q “ 1 and Γpx ` 1q “ xΓpxq, hence Γpnq “ pn ´ 1q!. Some other
special values are

Γp2q “ 1, Γp1{2q “
?
π, Γp3{2q “

?
π{2.
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In particular, if n is a positive integer, we have Γpn` 1q “ n!. Therefore, the Γ-function can
be regarded as a generalization of factorial to the complex variable case. For the factorial,
we know that Stirling’s formula which says

pStirling’s formulaq lnpn!q “ n lnn ´ n ` Oplnnq, n Ñ `8. (3.4)

More precisely, we have

n! „
?
2πn

´n

e

¯n

, n Ñ `8. (3.5)

For the Gamma function, there is a Stirling’s formula which reads

pStirling’s formulaq Γpz ` 1q „
?
2πz

´z

e

¯z

, z Ñ 8, | argpz ` 1q| ď π ´ ε. (3.6)

An equivalent form is

pStirling’s formulaq Γpzq “
c

2π

z

´z

e

¯z´

1 ` Op1{2q
¯

, z Ñ 8, | argpzq| ď π ´ ε. (3.7)

The following approximation is now obvious

lim
nÑ8

Γpn ` αq
Γpnqnα

“ 1, (3.8)

where α P C
1.

Proposition 3.1.

Bpx, yq “ ΓpxqΓpyq
Γpx ` yq .

Proof. Consider ΓpxqΓpyq:

ΓpxqΓpyq “
ż 8

0

e´uux´1dx

ż 8

0

e´vvy´1dy

“
ż 8

u“0

ż 8

v“0

e´pu`vqux´1vy´1 dudv

(3.9)

Using the change of variables

u “ zt ě 0, v “ zp1 ´ tq ě 0,

i.e.,

z “ u ` v, t “ u

u ` v
,

we have
Bpu, vq
Bpz, tq “ z,

and

ΓpxqΓpyq “
ż 8

u“0

ż 8

v“0

e´pu`vqux´1vy´1 dudv

“
ż 8

z“0

ż 1

t“0

e´zzx`y´1tx´1p1 ´ tqy´1 dzdt

“
ż 8

z“0

e´zzx`y´1 dz

ż 1

t“0

tx´1p1 ´ tqy´1 dt

“ Γpx ` yqBpx, yq.

(3.10)

�
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Definition 3.2. (Multivariate Beta function) The multivariate Beta function is defined as

Bpa1, a2, ¨ ¨ ¨ , anq :“
ś

j Γpajq
Γpřj ajq

.

(b) The Beta distribution. Let µ P r0, 1s and X „ Betapµ|a, bq for a ą 0 and b ą 0 is the
following pdf on the interval r0, 1s:

Betapµ|a, bq :“ 1

Bpa, bqµ
a´1p1 ´ µqb´1 “ Γpx ` yq

ΓpxqΓpyqµ
a´1p1 ´ µqb´1. (3.11)

Proposition 3.3. Let X „ Betapµ|a, bq. Then

ErXs “ a

a ` b
, V arrXs “ ab

pa ` bq2pa ` b ` 1q .

Proof. We use the relation between Gamma and Beta functions to give the proof.

ErXs “
ż

µ
Γpa ` bq
ΓpaqΓpbqµ

a´1p1 ´ µqb´1 dµ

“
ż

Γpa ` bq
ΓpaqΓpbqµ

a`1´1p1 ´ µqb´1 dµ

“ Γpa ` bq
ΓpaqΓpbqBpa ` 1, bq

“ Γpa ` bq
ΓpaqΓpbq

Γpa ` 1qΓpbq
Γpa ` 1 ` bq

“ Γpa ` bq
Γpa ` b ` 1q

Γpa ` 1q
Γpaq

“ a

a ` b
.

(3.12)

Similarly, we could get

ErX2s “
ż

µ2 Γpa ` bq
ΓpaqΓpbqµ

a´1p1 ´ µqb´1 dµ

“
ż

Γpa ` bq
ΓpaqΓpbqµ

a`2´1p1 ´ µqb´1 dµ

“ Γpa ` bq
ΓpaqΓpbqBpa ` 2, bq

“ Γpa ` bq
ΓpaqΓpbq

Γpa ` 2qΓpbq
Γpa ` 2 ` bq

“ Γpa ` bq
Γpa ` b ` 2q

Γpa ` 2q
Γpaq

“ pa ` 1qa
pa ` b ` 1qpa ` bq .

(3.13)

Therefore, we get

V arrXs “ ErX2s ´ ErXs2 “ pa ` 1qa
pa ` b ` 1qpa ` bq ´

´ a

a ` b

¯2

“ ab

pa ` b ` 1qpa ` bq2 .
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�

Definition 3.4. (Conjugate distributions) Let X „ ppx|θq and consider its maximum like-
lihood function Lpθq “ ś

i ppxi|θq with respect to N independent samples D “ tx1, ¨ ¨ ¨ , xNu.
If we choose a prior for the parameter ppθq 9Lpθq. Then the posterior distribution ppθ|Dq 9 ppθqLpθq.
If ppθqLpθq and ppθq have the same functional form, we say that ppθq is the conjugate prior
of the maximum likelihood of X „ ppx|θq.

In other words, for a given probability distribution pp~x|~µq, we can seek a prior pp~µq that is
conjugate to the likelihood function, so that the posterior distribution pp~µ|Dq (computed
using Bayes’ Theorem) after observing D “ tx1, ¨ ¨ ¨ ,xNu has the same functional form as
the prior.

Proposition 3.5. The beta distribution is a conjugate prior for the Binomial distribution.

Proposition 3.6. The Dirichlet distribution is a conjugate prior for the multinomial dis-
tribution.

Proposition 3.7. For the Gaussian X „ Npx|µ, σ2q with σ2 being fixed, we consider the
inference of µ. Then the conjugate prior distribution of µ is Gaussian; If we fixed µ, consider
the inference of the precision λ :“ 1{σ2, then the conjugate prior for λ is the Gamma
distribution; If we vary both µ, and λ, then the conjugate prior for pµ, λq is the Gaussian-
Gamma distribution. For multivariate Gaussian Npx|µ,Λ´1q, if both µ and Λ are to be
inferred, then the conjugate prior for pµ,Λq is the Gaussian-Wishart distribution.

3.4. Multinomial Variables. (a) Consider the set D of K dimensional binary vectors
x “ px1, x2, ¨ ¨ ¨ , xkqT where xk P t0, 1u for all k and

ř

k xk “ 1, i.e.,

D “
 

x “ px1, ¨ ¨ ¨ , xk, ¨ ¨ ¨ , xKqT ; xk P t0, 1u,
ÿ

k

xk “ 1
(

.

Assume ppxk “ 1q “ µk P r0, 1s and ř

k µk “ 1, and denote

µ “ pµ1, ¨ ¨ ¨ , µKqT .
For any x P D, we have

ppx|µq “
ź

k

µxk

k :“ µx.

We can see easily that
ÿ

x

ppx|µq “ 1, Erx|µs “
ÿ

x

xppx|µq dx “ µ.

(b) Maximum likelihood function. Assume we haveN independent samplesD “ tx1, ¨ ¨ ¨xNu,
then the maximum likelihood function is

ppD|µq “
ź

n

ź

k

µxnk

k “
ź

k

µ
ř

n xnk

k “
ź

k

µnk

k , (3.14)

where nk is the number of observations with xk “ 1. We can estimate the parameter µ with
Lagrangian multiplier method by considering ln ppD|µq ` λpřk µk ´ 1q to get

µML
k “ mk{N, k “ 1, 2, ¨ ¨ ¨ , K.
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(c) Multinomial distribution ofm1, ¨ ¨ ¨ ,mK . From (3.14), and choosing proper normalization
constant, we get the multinomial distribution with parameters µ and N as below

Multinomialpm1,m2, ¨ ¨ ¨ ,mK ;µ,Nq “
ˆ

N

m1,m2, ¨ ¨ ¨ ,mK

˙ K
ź

k“1

µmk

k , (3.15)

where
ř

k mk “ N and
ˆ

N

m1,m2, ¨ ¨ ¨ ,mK

˙

“ N !

m1!m2! ¨ ¨ ¨mK !
.

(d) Multinomial theory. From (c) above, we know that
ÿ

m1,¨¨¨ ,mK

Multinomialpm1,m2, ¨ ¨ ¨ ,mK ;µ,Nq “ pµ1 ` µ2 ` ¨ ¨ ¨ ` µKqN “ 1.

Multiplying the above equality by MN for any nonzero number M , we have

pMµ1 ` ¨ ¨ ¨ ` MµKqN “
ÿ

m1`¨¨¨`mK“N

ˆ

N

m1,m2, ¨ ¨ ¨ ,mK

˙ K
ź

k“1

pMµkqmk .

Denote Mmk “ ak, we have

pa1 ` ¨ ¨ ¨ ` aKqN “
ÿ

m1`¨¨¨`mK“N

ˆ

N

m1,m2, ¨ ¨ ¨ ,mK

˙ K
ź

k“1

amk

k .

The above derivation restricts all ak are of the same sign. Actually, if we regard these ak
as symbols, then formally, the above equality holds for any ak. Therefore, it holds for any
a “ pa1, a2, ¨ ¨ ¨ , aKq P R

K . Therefore, we have

Theorem 3.8. (Multinomial theorem) Let a “ pa1, a2, ¨ ¨ ¨ , aKq P R
K and N be a positive

integer. Then

pa1 ` a2 ` ¨ ¨ ¨ ` aKqN “
ÿ

m1`¨¨¨`mK“N

ˆ

N

m1,m2, ¨ ¨ ¨ ,mK

˙ K
ź

k“1

amk

k .

3.5. The Dirichlet distribution. Let µ be as in the multinomial distribution. We consider
the conjugate prior for µ to get the Dirichlet distribution

Dirichletpµ|αq “ 1

Bpα1, ¨ ¨ ¨ , αKq
K
ź

k“1

µαk´1
k “ Γpřk αkq

Γpα1q ¨ ¨ ¨ΓpαKq
K
ź

k“1

µαk´1
k , (3.16)

where αk can be interpreted as

αk “ tx; xk “ 1u
for the

ř

k αk samples in multinomial distribution.

3.6. The Gamma distribution. We say that a continuous random variable X P p0,`8s
obeys gamma distribution with parameters a ą 0 and b ą 0, denoted byX „ Gammapx|a, bq,
iff

P rX P px, x ` dxqs “
ż x`dx

x

1

Γpaqb
aλa´1 expp´bλq dλ, (3.17)
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i.e., X has pdf

Gammapx|a, bq “ 1

Γpaqb
axa´1 expp´bxq.

It is easy to compute that

ErXs “ a{b, VarpXq “ a{b2.

Indeed, we have

ErXs “
ż `8

0

1

Γpaqb
axa´1 expp´bxqx dx

“
ż `8

0

1

Γpaqpbxqa expp´bxqdpbxq
b

“
ż `8

0

1

bΓpaqu
a`1 expp´uqdu

u
pbx :“ uq

“ 1

bΓpaqΓpa ` 1q

“ aΓpaq
bΓpaq

“ a

b
,

(3.18)

and

ErX2s “
ż `8

0

1

Γpaqb
axa´1 expp´bxqx2 dx

“
ż `8

0

1

b2Γpaqpbxqa expp´bxqpbxq2dpbxq
bx

“
ż `8

0

1

b2Γpaqu
a`2 expp´uqdu

u
pbx :“ uq

“ 1

b2ΓpaqΓpa ` 2q

“ pa ` 1qaΓpaq
b2Γpaq

“ pa ` 1qa
b2

.

(3.19)

When a “ 1 in the Gamma distribution, X obeys the exponential distribution

X „ b expp´bxq, b ą 0.

Typically we write the parameter b as λ. Therefore,

X „ Exppλq “ λ expp´λxq, λ ą 0.

Obviously,

ErExppλqs “ 1{λ, VarrExppλqs “ 1{λ2.
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3.7. Gaussian-Gamma distribution. Let pµ, λq be a random vector where µ P R
1 and

λ ą 0. We say pµ, λq obeys the Gaussian-Gamma distribution with parameters µ0, β, a, b iff

ppµ, λ|µ0, β, a, bq “ Npµ|µ0, 1{pβλqqGammapλ|a, bq.

It is easy to check that

ż `8

µ“0

ż `8

λ“0

Npµ|µ0, 1{pβλqqGammapλ|a, bq dλdµ

“
ż `8

µ“0

ż `8

λ“0

1
a

2πpβλq´1
expp´pµ ´ µ0q2{2pβµq´1q 1

Γpaqb
aλa´1 expp´bλq dλdµ

“
ż `8

λ“0

!

ż `8

µ“0

1
a

2πpβλq´1
expp´pµ ´ µ0q2{2pβµq´1q dµ

) 1

Γpaqb
aλa´1 expp´bλq dλ

“
ż `8

λ“0

1

Γpaqb
aλa´1 expp´bλq dλ

“ 1.

(3.20)

3.8. The multivariate Gaussian. Let X P R
D. We say X obeys multivariate Gaussian

distribution iff X has the following pdf:

Npx|µ,Σq “ 1

p2πqD{2|Σ|1{2 exp
!

´ 1

2
px ´ µqTΣ´1px ´ µq

)

, (3.21)

with

ErXs “ µ, VarrXs “ ErpX ´ µqpX ´ µqT s “ Σ.

The matrix Λ :“ Σ´1 is called the precision.

3.9. The Student’s t-distribution. As the conjugate prior for the precision in the uni-
variate normal distribution is the Gamma distribution. Assume that we have a univariate
Gaussian Npx|µ, τ´1q where τ ą 0 is the precision. and that τ has a prior Gammapτ |a, bq.
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Then the marginal distribution of x is

ppx|µ, a, bq “
ż `8

τ“0

Npx|µ, τ´1qGammapτ |a, bq dτ

“
ż `8

τ“0

1?
2πτ´1

exp
!

´ 1

2
px ´ µqτpx ´ µq

) 1

Γpaqb
aτa´1 expp´bτq dτ

“
ż `8

τ“0

τ 1{2
?
2π

exp
!

´ 1

2
px ´ µq2τ

) 1

Γpaqb
aτa´1 expp´bτq dτ

“
ż `8

τ“0

τ 1{2
?
2π

exp
!

´ 1

2
px ´ µq2τ

) 1

Γpaqb
aτa expp´bτq dτ

τ

“ ba

Γpaq
?
2π

ż `8

τ“0

exp
!

´ τ rb ` px ´ µq2{2s
)

τa`1{2 dτ

“ ba

Γpaq
?
2π

rb ` px ´ µq2{2s´a´1{2
ż `8

z“0

expp´zqza`1{2 dz

z
pτ rb ` px ´ µq2{2s :“ zq

“ ba

Γpaq
?
2π

rb ` px ´ µq2{2s´a´1{2Γpa ` 1{2q
(3.22)

Letting ν “ 2a and λ “ a{b, we have

ppx|µ, a, bq “ ba

Γpaq
?
2π

rb ` px ´ µq2{2s´a´1{2Γpa ` 1{2q

“ Γpν{2 ` 1{2q
Γpν{2q

1

p2πq1{2

´ ν

2λ

¯ν{2
rν{p2λq ` px ´ µq2{2s´ν{2´1{2

“ Γpν{2 ` 1{2q
Γpν{2q

” 1

p2πq1{2

´ ν

2λ

¯´1{2ı”´ ν

2λ

¯ν{2`1{2
rν{p2λq ` px ´ µq2{2s´ν{2´1{2

ı

“ Γpν{2 ` 1{2q
Γpν{2q

” λ

πν

ı1{2”
1 ` λpx ´ µq2

ν

ı´ν{2´1{2
.

(3.23)

Definition 3.9. A real-valued random variableX is said to obey the Student’s t-distribution
iff it has pdf

Studentpx|µ, λ, νq “ Γpν{2 ` 1{2q
Γpν{2q

” λ

πν

ı1{2”
1 ` λpx ´ µq2

ν

ı´ν{2´1{2
, (3.24)

where λ is called precision, ν is called the degrees of freedom, and ErXs “ µ.

When ν “ 1, the Student’s t-distribution is called Cauchy distribution with the pdf becoming

Cauchypx|µ, λq “ λ1{2

π

1

1 ` λpx ´ µq2 . (3.25)

In particular, we have

Cauchypx|0, 1q “ 1

π

1

1 ` x2
. (3.26)

It is easy to verify that

ErCauchypx|µ, λqs “ µ, ErCauchy2px|µ, λqs “ `8.
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When ν Ñ `8, we have Studentpx|µ, λ, νq Ñ Npx|µ, λ´1q. This is an easy consequence of
Stirling’s formula and limδÑ0p1 ` δq1{δ “ e:

Γpν{2 ` 1{2q
Γpν{2q

” λ

πν

ı1{2”
1 ` λpx ´ µq2

ν

ı´ν{2´1{2

„ pν{2q1{2
” λ

πν

ı1{2!”
1 ` λpx ´ µq2

ν

ıν{pλpx´µq2q)´λ
2

px´µq2”
1 ` λpx ´ µq2

ν

ı´1{2

„
” λ

2π

ı1{2
exp

!

´ λ

2
px ´ µq2

)

„ Npx|µ, λ´1q.

(3.27)

Proposition 3.10. Let X be a random variable with pdf fpxq. Then Y “ aX ` b has pdf
1

|a|fpy´b

a
q for a ‰ 0.

Proof. First, consider the case a ą 0.

P rY ď ys “ P rX ď py ´ bq{as “
ż py´bq{a

´8
fpxq dx “

ż y

´8

1

a
fppy ´ bq{aq dy.

For the case a ă 0, we have

P rY ď ys “ P rX ě py ´ bq{as “
ż `8

py´bq{a
fpxq dx

“
ż ´8

y

1

a
fppy ´ bq{aq dy “

ż y

´8

1

´a
fppy ´ bq{aq dy.

�

Remark 3.11. The general form of the above proposition is the change of measures formula.
It is the idea that is important here. Consider X with pdf ppxq, and we want to get the pdf
of Y “ fpXq. We do the following for y P RangepY q:

P rY ď ys “ P rfpXq ď ys “
ż

tx;fpxqďyu
ppxq dx.

then we use

pdfY pyq “ d

dy
P rY ď ys “ d

dy

ż

tx;fpxqďyu
ppxq dx.

In particular, if f is monotonically increasing, we have

pdfY pyq “ d

dy

ż f´1pyq

´8
ppxq dx “ ppf´1pyqqdf

´1pyq
dy

.

In (3.22), we use the following change of variables

ν “ 2a, λ “ a{b, η “ τb{a.
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As τ „ Gammapτ |a, bq, then η has pdf 1
b{aGammapaη{b|a, bq which is

a

b

1

Γpaqb
apaη{bqa´1 expt´b

aη

b
u

“ 1

Γpaqa
aηa´1 expt´aηu

“ Gammapη{|a, aq “ Gammapη{|ν{2, ν{2q.

(3.28)

Now, we can write (3.22) as follows, which is useful to generalize Student’s t-distribution to
multi-dimensional case

Studentpx|µ, λ, νq “
ż `8

0

Npx|µ, pηλq´1qGammapη{|ν{2, ν{2q dη. (3.29)

Now in (3.29), we use multivariate normal Npx|µ,Λq to get D-dimensional Student’s t-
distribution

Studentpx|µ,Λ, νq “
ż `8

0

Npx|µ, pηΛq´1qGammapη{|ν{2, ν{2q dη

“
ż `8

η“0

ηD{2|Λ|1{2

p2πqD{2 expt´η∆2

2
u 1

Γpν{2qη
ν{2´1 expt´νη{2u dη

“
ż `8

η“0

ηD{2|Λ|1{2

p2πqD{2 expt´η

2
r∆2 ` νsuην{2´1 dη ppx ´ µqTΛpx ´ µq :“ ∆2q

“
ż `8

z“0

pν{2qν{2

Γpν{2q
|Λ|1{2

p2πqD{2 expt´zur2zp∆2 ` νq´1sD{2`ν{2´1r∆2 ` νs´1z dz

pη
2

p∆2 ` νq :“ zq

“ ΓpD{2 ` ν{2q
Γpν{2q

|Λ|1{2

pπνqD{2

”

1 ` ∆2{ν
ı´D{2´ν{2

.

(3.30)

If X „ Studentpx|µ,Λ, νq, we can also verify that

ErXs “ µ, ν ą 1,

VarrXs “ ν

pν ´ 2q |Λ|´1, ν ą 2,

and

moderXs “ µ.

3.10. The χ2 distribution. (a) Let us first state a simple proposition.

Proposition 3.12. If X „ Np0, 1q, then X2 has pdf

fpxq “
#

0, x ď 0,
1?
2π
x´1{2 expt´x{2u, x ą 0.

(3.31)
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Proof. It is sufficient to consider the probability P rX2 ď xs for x ą 0. We have

P rX2 ď xs “ P r´
?
x ď X ď

?
xs “

ż

?
x

´?
x

1?
2π

expt´t2{2u dt

“ 2

ż

?
x

0

1?
2π

expt´t2{2u dt pt2 :“ uq

“
ż u

0

1?
2π

u´1{2 expt´u{2u du.

(3.32)

�

Remark 3.13. We can do, as in Remark 3.11, the following proof which is more general

d

dx

ż

?
x

´?
x

1?
2π

expt´t2{2u dt

“ 1?
2π

expt´t2{2u
ˇ

ˇ

ˇ

t“?
x

d
?
x

dx
´ 1?

2π
expt´t2{2u

ˇ

ˇ

ˇ

t“´?
x

dp´?
xq

dx

“ 1?
2π

expt´x{2ux´1{2.

(3.33)

Definition 3.14. Let X1, ¨ ¨ ¨ , Xn be i.i.d standard normal distributions. Then

χ2
n :“ X2

1 ` ¨ ¨ ¨ ` X2
n

has pdf
1

2n{2Γpn{2qx
n{2´1 expt´x{2u, (3.34)

which is called the χ2-distribution with n degrees of freedom.

Next, we show that X2
1 ` ¨ ¨ ¨ ` X2

n has pdf (3.34). We know each X2
i has density given by

(3.32). We will use convolution to give an inductive proof.

If n “ 2, we know the density of X2
1 ` X2

2 is given by f ˚ f as below

f2pxq :“ f ˚ fpxq “
ż x

0

1?
2π

px ´ yq´1{2 expt´px ´ yq{2u 1?
2π

y´1{2 expt´y{2u dy

“
” 1?

2π

ı2

expt´x{2u
ż x

0

px ´ yq´1{2y´1{2 dy py :“ txq

“
” 1?

2π

ı2

expt´x{2u
ż 1

0

p1 ´ tq´1{2t´1{2 dt py :“ txq

“
” 1?

2π

ı2

expt´x{2uBp1{2, 1{2q

“
” 1?

2π

ı2

expt´x{2uΓp1{2qΓp1{2q
Γp1q

“ 1

22{2Γp2{2qx
2{2´1 expt´x{2u.

(3.35)
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Assume the conclusion holds for n. Let us consider the n ` 1 case. We have

fn`1 :“ fn ˚ fpxq “
ż x

0

1?
2π

px ´ yq´1{2 expt´px ´ yq{2u 1

2n{2Γpn{2qy
n{2´1 expt´y{2u

“ 1?
2π2n{2Γpn{2q

xn{2´1{2 expt´x{2u
ż 1

0

p1 ´ tq´1{2tn{2´1 dt

“ 1?
2π2n{2Γpn{2q

xn{2´1{2 expt´x{2uBp1{2, n{2q

“ 1?
2π2n{2Γpn{2q

xn{2´1{2 expt´x{2uΓp1{2qΓpn{2q{Γpn{2 ` 1{2q

“ 1

2pn`1q{2Γppn ` 1q{2qx
pn`1q{2´1 expt´x{2u.

(3.36)

We can also verify that

Erχ2pnqs “ n, Varrχ2pnqs “ 2n. (3.37)

First, in view of ErX2
i s “ 1, it is easy to see that

Erχ2pnqs “ ErX2
1 s ` ¨ ¨ ¨ErX2

ns “ n.

Now, in view of independence of the Xi, hence independence of X2
i , we have

Varrχ2pnqs “ nVarrX2s “ npErX4s ´ pErX2sq2q “ npErX4s ´ 1q “ 2n,

where we have used the fact ErX4s “ 3. This fact can be verified using characteristic function

EreitXs “ e´t2{2 for a standard normal distribution X. Hence ErX4s “ d4

dt4

ˇ

ˇ

ˇ

t“0
e´t2{2 “ 3.

3.11. Periodic random variables: the von Mises distribution. Consider the random
variable Θ which is periodic with period 2π. Assume Θ has pdf ppθq and so ppθq satisfies

ppθq ě 0,

ż 2π

0

ppθq dθ “ 1, ppθ ` 2πq “ ppθq.

To derive the von Mises distribution, we consider the two dimensional Gaussian with mean
µ “ pµ1, µ2qT and covariance Σ “ σ2I2. Then the pdf is

ppx1, x2q “ 1

2πσ2
exp

!

´ px1 ´ µ1q2 ` px2 ´ µ2q2
2σ2

)

. (3.38)

The contours of ppx1, x2q “ constant are circles

´px1 ´ µ1q2 ` px2 ´ µ2q2
2σ2

“ constant.

Next, we shall condition on the unit circle x2
1 ` x2

2 “ 1. Use polar coordinates

x1 “ r cos θ, x2 “ r sin θ; µ1 “ r0 cos θ0, µ2 “ r0 sin θ0,
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and consider the exponent with r “ 1:

´ px1 ´ µ1q2 ` px2 ´ µ2q2
2σ2

“ ´1

2σ2

 

pr cos θ ´ r0 cos θ0q2 ` pr sin θ ´ r0 sin θ0q2
(

“ ´1

2σ2

 

1 ` r20 ´ 2r0 cos θ cos θ0 ´ 2r0 sin θ sin θ0
(

“ r0

σ2
cospθ ´ θ0q ` constant independent of θ

“ m cospθ ´ θ0q ` constant independent of θ pm :“ r0

σ2
ą 0q.

(3.39)

Definition 3.15. (von Mises, or circular normal) Θ obeys von Mises distribution if it has
pdf

ppθ|θ0,mq “ 1

2πI0pmq exptm cospθ ´ θ0qu, (3.40)

where ErΘs “ m ą 0 and m is the concentration parameter playing the role precision 1{σ2

and

I0pmq :“ 1

2π

ż 2π

0

exptm cos θu dθ.

When m “ 0, the von Mises distribution reduces to uniform distribution on r0, 2πs:

ppθ|θ0, 0q “ 1

2π
Ir0,2πspθq. (3.41)

When m Ñ `8, the von Mises distribution turns to be Npθ|θ0, 1{mq.

3.12. The exponential family of pdfs.

Definition 3.16. We say that the random variable X belongs to the exponential family if
it has the pdf of the form

ppx|ηq “ hpxqgpηq exptηTupxqu, (3.42)

where x can be continuous or discrete, η is called the natural parameters of the distribution,
and upxq is some function of x. The function gpηq satisfies the normalization requirement:

gpηq
ż

hpxq exptηTupxqu dx “ 1. (3.43)

The distributions we have seen above are all members of the exponential family. Let us look
at several examples.

Bernoulli distribution. Let X P t0, 1u and µ P r0, 1s and X has the pdf

ppx|µq “ µxp1 ´ µq1´x.
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We can write the above pdf as follows

µxp1 ´ µq1´x “ exp
!

x lnµ ` p1 ´ xq lnp1 ´ µq
)

“ p1 ´ µq exp
!

x ln
µ

1 ´ µ

)

rIf ln
µ

1 ´ µ
:“ η, then µ “ 1

1 ` expt´ηu :“ σpηqs

“ p1 ´ σpηqq exptηxu
“ σp´ηq exptηxu.

(3.44)

Therefore, the Bernoulli distribution takes the form

ppx|ηq “ σp´ηq exptηxu,

which belongs to the exponential family with

upxq “ x, hpxq ” 1, gpηq “ σp´ηq.

Multinomial distribution1. The multinomial distribution pdf

ppx|µq “
M
ź

k“1

µxk

k “ exp
!

M
ÿ

k“1

xk lnµk

)

(3.45)

where µk P r0, 1s and ř

k µk “ 1, x is binary vectors with
ř

k xk “ 1. Due to the constraint
ř

k µk “ 1, we assume lnµk “ ηk ´ S, i.e.,

µk “ exptηku{ exptSu, k “ 1, ¨ ¨ ¨ , K (softmax functions), (3.46)

and we have exptSu “ řK

k“1 exptηku. Now, the multinomial pdf can be written as

ppx|~ηq “ exp
!

K
ÿ

k“1

xkpηk ´ Sq
)

“ exp
!

x ¨ ~η ´ S
)

“ exptx ¨ ~ηu
exptSu , (3.47)

which belongs to the exponential family with

x ÐÑ x, upxq “ x, gp~ηq “ 1
řK

k“1 exptηku
.

Normal distribution. Consider the pdf Npx|µ, σ2q:

Npx|µ, σ2q “ 1

p2πσ2q1{2 exp
!

´ 1

2σ2
px ´ µq2

)

“ 1

p2πσ2q1{2 exp
!

´ 1

2σ2
x2 ` µ

σ2
x ´ 1

2σ2
µ2
)

“ hpxqgp~ηq exptηTupxqu

(3.48)

where hpxq ” 1

p2πq1{2 , upxq “ px, x2qT , ~η “ pµ{σ2,´1{2σ2qT and gp~ηq “ p´2η2q1{2 exptη21{4η2u.
Therefore, the normal distribution belongs to the exponential family.

1See also Section 6.
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3.13. Poisson Distribution. Let X be a discrete random variable taking nonnegative in-
teger values. X is the Possion distribution with parameter λ ą 0 iff

P rX “ ks “ e´λλk{k!, k “ 0, 1, 2, ¨ ¨ ¨
It is easy to verify

ř

k P rX “ ks “ 1, and

ErXs “ λ, VarrX2s “ λ.

Actually, we can compute the characteristic function ϕptq :“ EreitXs of X:

EreitXs “
ÿ

k

eitkP rX “ ks “
ÿ

k

eitke´λλk{k!

“ e´λ
ÿ

k

pλeitqk
k!

“ exp
 

λpeit ´ 1q
(

.

Proposition 3.17. (Sum of independent Possion random variables) Let X „ Poissonpλq
and Y „ Possionpµq for some λ ą 0 and µ ą 0 be two independent Poisson random variables.
Then X ` Y is still Poisson: X ` Y „ Poissonpλ ` µq.

Proof. As X and Y are independent, the pmf of X ` Y is the convolution of those of X
and Y . Notice also that X and Y both take nonnegative integer values. We have for any
nonnegative integer s that

P rX ` Y “ ss “
s
ÿ

k“0

P rX “ s ´ ksP rY “ ks

“
s
ÿ

k“0

e´λ λs´k

ps ´ kq!e
´µµ

k

k!

“ e´pλ`µq

s!

s
ÿ

k“0

s!

ps ´ kq!k!λ
s´kµk

“ e´pλ`µq pλ ` µqs
s!

pBinomial Theoremq.

(3.49)

�

Proposition 3.18. (Stirling’s formula, Problem 27.18, Page 370 in Billingsley) Let Sn :“
X1 ` X2 ` ¨ ¨ ¨ ` Xn, where Xn are independent and each has Poisson distribution with
parameter 1. Define X´ :“ maxt´X, 0u ě 0 for a random variable. Then, with respect to
n,

(a) E
”´

Sn´n?
n

¯´ı
“ e´n

řn

k“0

´

n´k?
n

¯

nk

k!
“ nn`1{2e´n

n!
.

(b)
´

Sn´n?
n

¯´
ùñ N´.

Consequently, the following hold

E
”´Sn ´ n?

n

¯´ı
Ñ ErN´s “ 1?

2π
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and

n! „
?
2πn

´n

e

¯n

.

Let us give some digestion about N´. N´ “ maxt´N, 0u. When N ě 0, we have N´ “ 0;
when N ă 0, we have N´ “ ´N ą 0. Therefore,

P rN´ “ 0s “ P rN ě 0s “ 1{2,

and

P rN´ ą xs “ P r´N ą xs “ P rN ă ´xs “
ż ´x

´8

1?
2π

e´t2{2 dt.

Therefore, the distribution of N´ is a mixture of pmf and pdf
#

P rN´ “ 0s “ 1{2,
P rN´ ď xs “ 1{2 `

şx

0
1?
2π
e´t2{2 dt.

(3.50)

For a nonnegative random variable X, its expectation ErXs can be computed using

ErXs “
ż `8

0

P rX ą ts dt.

Therefore, for N´, we have

ErN´s “
ż `8

0

P rN´ ą xs dx “
ż `8

0

ż ´x

´8

1?
2π

e´t2{2 dt dx

“
ż 0

´8

!

ż ´t

0

1?
2π

e´t2{2 dx
)

dt

“
ż 0

´8

1?
2π

e´t2{2p´tq dt

“ 1?
2π

.

(3.51)

We can use exactly the same idea to compute ErN`s which is defined as N` “ maxtN, 0u.
When N ď 0, when have N` “ 0; when N ą 0, we have N` ą 0. Therefore,

P rN` “ 0s “ P rN ď 0s “ 1{2,

and

P rN` ą xs “ P rN ą xs “
ż `8

x

1?
2π

e´t2{2 dt.

Therefore, the distribution of N` is a mixture of pmf and pdf
#

P rN` “ 0s “ 1{2,
P rN` ď xs “ 1{2 `

şx

0
1?
2π
e´t2{2 dt.

(3.52)
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Therefore, for N`, we have

ErN`s “
ż `8

0

P rN` ą xs dx “
ż `8

0

ż `8

x

1?
2π

e´t2{2 dt dx

“
ż `8

0

!

ż t

0

1?
2π

e´t2{2 dx
)

dt

“
ż `8

0

1?
2π

e´t2{2t dt

“ 1?
2π

.

(3.53)

In fact, comparing (3.51) and (3.52), we notice that they have the same distribution. This
fact is due to the symmetry of the normal distribution N .

We can also see Er|N |s “ ErN` ` N´s “ 2ErN`s “ 2ErN´s “ 2{
?
2π “

a

2{π.

We first prove paq. The first equality in paq is nothing but the definition of E
”´

Sn´n?
n

¯´ı
.

We only need to show
n
ÿ

k“0

´n ´ k?
n

¯nk

k!
“ nn`1{2

n!
.

This is very easy by splitting the left hand side:
´n ´ k?

n

¯nk

k!
“ nk`1{2

k!
´ nk´1{2

pk ´ 1q! .

Due to cancellation, we have
n
ÿ

k“0

´n ´ k?
n

¯nk

k!
“ nk`1{2

k!

ˇ

ˇ

ˇ

k“n
“ nn`1{2

n!
.

Now, we prove pbq. Notice that ErXis “ 1 and VarpXiq “ 1. By Central Limit Theorem, we
know

Sn ´ n?
n

ùñ Np0, 1q.

Define the function φpxq which is 0 for x ě 0 and ´x for x ă 0 (in fact, φpxq “ ´ReLup´xq).
Obviously, φpxq is a continuous function. Then, we have due to continuity of φpxq and the
definition of convergence in distribution that

φpSn ´ n?
n

q ùñ φpNp0, 1qq.

Then we observe that φpXq “ X´ for a random variable. Therefore, we have
´Sn ´ n?

n

¯´
ùñ N´,

and pbq is proved.

Now, due to pbq, we immediately have

E
”´Sn ´ n?

n

¯´ı
Ñ ErN´s “ 1?

2π
.
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In view of paq, we conclude that

nn`1{2e´n

n!
Ñ 1{

?
2π.

By now, we complete the proof.

4. Density estimation

1.The concept of density estimation.

Given a set of n data samples x1, ...,xn, we can estimate the density function ppxq, so that
we can output ppxq for any new sample x. This is called density estimation.

2. Some nonparametric methods.

In a broad sense, all probabilistic models are some ways of modeling the probabilistic dis-
tributions. Some nonparametric methods are:

‚ Histogram method
‚ Kernel method
‚ K nearest neighborhood method

We briefly discuss the kernel density method here. To estimate a pdf ppxq, we consider a
small domain R in R

D, the probability is P “
ş

R
ppxq dx. When |R| :“ V is small, we may

assume P « ppxqV . Assume we have N data points and each has probability P lying inside
R. So the number K of points inside R among the N data points is BinomialpK|N,P q.
BinomialpK|N,P q is peaked around K « NP . Therefore, we have

ppxq « P {V « K{NV. (4.1)

Below, we shall take R to be a unit cube:

kpuq “
#

1, if |ui| ď 1{2, @ i “ 1, 2, ¨ ¨ ¨D;

0, otherwise.
(4.2)

kp¨q is the so-called Parzen window. The scaled function kppx ´ xnq{hq can be interpreted
as the indicator function of unit cube centered at xn or x with side length h. Then let
K “ řN

i“1 kppx´ xnq{hq be the number of data xn that lie insider a cube centered at x with
side length 1. Therefore, the (4.1) can be written as

ppxq “ 1

N

1

hD

N
ÿ

i“1

kppx ´ xnq{hq “ 1

N

N
ÿ

i“1

1

hD
kpx ´ xn

h
q. (4.3)

For inference, we can regard
řN

i“1 kppx ´ xnq{hq as a count of the number of windows of xn

which contain x due to the symmetry of distance. Here 1
hD kpx´xn

h
q :“ khpx ´ xnq is the L1

scaling of kp¨q.

Some thoughts. The kernel density methods suffer from the problem of discontinuity,
for example, it may be due to the bins’ boundaries in histogram method, or due to the
choice of kernel functions in kernel method. The idea of approximation of identity may
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be used to smooth out the discontinuity. The main consideration is that we shall keep the
normalization property of pdfs. Actually , this is guaranteed during the process. The process
is as follows. Let 0 ď ρpxq P C8

c pRDq be a mollifier with
ş

ρpxq dx “ 1 and support B̄p0, 1q,
and ρεpxq “ ρpx{εq{εD is the L1 scaling for a small positive parameter ε. Then given any
kernel kpxq, we consider the convolution k ˚ ρεpxq :“

ş

kpx´ yqρεpyq dy. Then for any ε ą 0,
k ˚ ρε is a valid kernel function for density estimation and we have k ˚ ρε ě 0,

supportpk ˚ ρεq Ă tx; distpx, supportpkp¨qqq ď εu,
and

|k ˚ ρε|L1 “ |k|L1 .

A reference for the kernel density estimation. https://arxiv.org/abs/1704.03924.

5. The Robbins-Monro algorithm

(a) The problem. Consider two random variables θ and z governed by the joint distribution
ppθ, zq. The conditional expectation of z given θ Erz|θs is a function of θ:

fpθq :“ Erz|θs “
ż

zppz|θq dz. (5.1)

We call Erz|θs a regression function. The problem is to find the root θ˚ of fpθq.

(b) The Robbins-Monro algorithm. We assume that Erpz´fq|θs ă 8 and that f is increasing
near θ˚. The iteration step is given below:

θpNq “ θpN´1q ` aN´1zpθpN´1qq, (5.2)

where the sequence taNu of positive numbers satisfies:

lim
NÑ8

aN “ 0,
8
ÿ

N“1

aN “ 8,

8
ÿ

N“1

a2N ă 8.

See Robbins and Monro (1951), Blum (1965) for mathematical details.

6. The softmax functions and cross entropy

Assume P,Q are two probability distributions on the same σ-field pΩ,Fq. Then the cross
entropy HpP,Qq is defined as

HpP,Qq “ EP r´ logQs. (6.1)

If both P and Q are absolutely continuous with an Borel measure, for example, the m-
dimensional Lebesgue measure dx

dP

dx
“ ppxq, dQ

dx
“ qpxq, (6.2)

then

HpP,Qq “
ż

Rm

´ppxq log qpxq dx (6.3)



24 JINGHUA YAO

It is easy to verify that
HpP,Qq “ HpP q ` DKLpP ||Qq (6.4)

where

HpP q “ EP r´ logP s “ ´
ż

ppxq log ppxq dx

and

DKLpP ||Qq “
ż

ppxq log ppxq
qpxq dx.

The softmax functions for K-class classification are

yi “ exppziq
řK

k“1 exppzkq
, 1 ď i ď K, (6.5)

which form a probability distribution.

Similar to that of a Sigmoid function, a good property of the softmax functions is

Byi
Bzi

“ yip1 ´ yiq. (6.6)

More generally, we have
Byj
Bzi

“ yjpδji ´ yiq. (6.7)

Assume the predicted probabilities for the K classes are t1, t2, ¨ ¨ ¨ , tK , the the cross entropy
cost function is

C “ ´
K
ÿ

j“1

tj log yj. (6.8)

We also have

BziC “
ÿ

j

ByjCBziyj

“
ÿ

j

p´tj{yjqyjpδji ´ yiq

“
ÿ

j

´tjpδji ´ yiq

“ yi ´ ti.

7. Bayesian interpretation of weight constraint (a.k.a weight decay) in
neural network

(1) Assume the interpretation of the network is yc “ fpinputc;W q and

pptc|ycq “ 1?
2πσ2

expp´ptc ´ ycq2{2σ2q.

Then, we see

´ log pptc|ycq “ ptc ´ ycq2
2σ2

` constant. (7.1)



c© JINGHUA YAO 25

Therefore, maximizing the log probability is equivalent to minimizing the squared distance
for Gaussian prior.

(2) (Bayesian Theorem) From P pW |DqP pDq “ P pD,W q “ P pD|W qP pW q, we see

P pW |Dq “ P pD|W qP pW q
P pDq , (7.2)

where P pDq can be regarded as a normalization of the numerator

P pDq “
ż

W

P pD|W qP pW q.

(3) Taking -log in (7.2), we have

cost :“ ´ logP pW |Dq “ ´ logP pD|W q ´ logP pW q ` logP pDq (7.3)

where logP pDq is independent of W and can be regarded as a constant in the optimization
process.

Assume that P pwiq “ 1?
2πσ2

wi

expp´w2
i {2σ2q and again

P ptc|ycq “ 1?
2πσ2

expp´ptc ´ ycq2{2σ2q.

Then, minimization in (7.3) is equivalent to the minimization

cost “ 1

2σ2
D

ÿ

c

pyc ´ tcq2 ` 1

2σ2
w

ÿ

i

w2
i ` constant, (7.4)

and further equivalent to

2σ2
Dcost “

ÿ

c

pyc ´ tcq2 ` σ2
D

σ2
w

ÿ

i

w2
i ` constant. (7.5)

8. Heuristics about “Ensemble average improves learning”

(1) Minimizing squared error function. Assume the N predictors’ predictions for the ground
truth are yi, 1 ď i ď N . Then there average would be

ȳ “ xyiyi “ 1

N

N
ÿ

i“
yi.

We examine the following equality

xpt ´ yiq2yi “ xppt ´ ȳq ` pȳ ´ yiqq2yi
“ xpt ´ ȳq2yi ` 2xpt ´ ȳqpȳ ´ yiqyi ` xpȳ ´ yiq2yi
“ pt ´ ȳq2 ` xpȳ ´ yiq2yi ` 2pt ´ ȳqxpȳ ´ yiqyi
“ pt ´ ȳq2 ` xpȳ ´ yiq2yi.
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From the above expression, we can conclude that

xpȳ ´ yiq2yi ď xpt ´ yiq2yi.

Actually, the above idea is equivalent to the fact that

argmin
c

ErpX ´ cq2s “ ErXs.

(2) Maximizing log probability. Assume N predictors predicts a class label with probability
pi for 1 ď i ď N . Then due to concavity of log and Jensen’s inequality, we have

log p̄ “ logppp1 ` p2 ` ¨ ¨ ¨ ` pNq{Nq ě plog p1 ` log p2 ` ¨ ¨ ¨ ` log pNq{N. (8.1)

9. Concavity of entropy

Proposition 9.1. Let P “ tp1, p2, ¨ ¨ ¨ , pnu be a discrete probability distribution. Then the
function HpPq “ ´řn

i“1 pi log pi is concave. HpPq attains its maximum at the uniform
distribution P “ t1{n, ¨ ¨ ¨ , 1{nu.

To show the above proposition, we first verify that ´D2HpPq is positive definite. An easy
computation shows that

Bpip´Hq “ 1 ` log pi, B2
pipi

p´Hq “ 1

pi
δij.

Therefore, we know

´D2HpPq “ diagt1{p1, ¨ ¨ ¨ , 1{pnu ą 0.

From the above computation, we know that the function fppq “ ´p log p for p P I “ p0, 1q
is concave. Note also f have two zeros 0, 1, and attains maximum at p “ 1{e.

Second, the maximum of HpPq can be computed using Lagrange Multiplier. Consider the
function F pP, λq:

F pP, λq “ HpPq ` λp
n
ÿ

i“1

pi ´ 1q.

It is easy to show that
#

BpiF “ ´p1 ` log piq ` λ, i “ 1, 2, ¨ ¨ ¨ , n,
BλF “ řn

i“1 pi ´ 1.
(9.1)

Letting BpiF “ 0 and BλF “ 0, we have

pi “ exppλ ´ 1q “ 1{n, i “ 1, 2, ¨ ¨ ¨n.
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Definition 9.2. Let X be a random variable on the probability space pΩ,F , P q with prob-
ability density function fpxq with respect to the Borel measure dx. Then the entropy
HpXq :“ Hpfq is defined as

Hpfq “ ´
ż

fpxq log fpxq dx.

H is a functional on pΩ,F , P q. We could compute its first and second variations as follows.
Let φ be a density function such that

ş

φpxq dx “ 0 and f ` tφ is still probability density
function for |t| ă ε. Then

xDHpfq, φy “ d

dt
Hpf ` tφq

ˇ

ˇ

ˇ

t“0
“ ´

ż

p1 ` log fqφ dx,

xD2Hpfqφ, φy “ d2

dt2
Hpf ` tφq

ˇ

ˇ

ˇ

t“0
“ ´

ż

φ2{f dx.

Example 9.3. LetX obey uniform distribution on a interval I “ pa, bq, i.e,X „ Uniformpa, bq.
The probability density function (pdf) for X is ppxq “ 1

b´a
for all x P pa, bq and ppxq “ 0 for

other x. Then the entropy of X is

HpXq “ ´
ż

x

fpxq ln fpxq dx “ ´
ż b

a

1

b ´ a
ln

1

b ´ a
dx “ lnpb ´ aq. (9.2)

From the above result, we see that the large the length |b´a| is, the large the entropy HpXq
is for the uniform distribution. In particular, if |b ´ a| “ 1, then HpXq “ 0.

Example 9.4. The entropy of f „ N pµ, σ2q „ 1?
2πσ2

expp´px ´ µq2{2σ2q.

´Hpfq “
ż

1?
2πσ2

expp´px ´ µq2{2σ2qplog 1?
2πσ2

´ px ´ µq2{2σ2q

“ log
1?
2πσ2

´ 1

2σ2
V arpN pµ, σ2qq

“ log
1?
2πσ2

´ 1{2

“ ´1

2
logp2πeσ2q.

Therefore, Hpfq “ 1
2
logp2πeσ2q

Proposition 9.5. Let X „ f, Y „ g be two independent random variables with joint proba-
bility density function ppx, yq “ fpxqgpyq. Then Hppq “ Hpfq ` Hpgq.



28 JINGHUA YAO

Proof.

´Hppq “
ż

ppx, yq log ppx, yq dxdy

“
ż

fpxqgpyqplog fpxq ` log gpyqq dxdy

“
ż

fpxqgpyq log fpxq dxdy `
ż

fpxqgpyq log gpyq dxdy

“
ż

fpxq log fpxq dx
ż

gpyq dy `
ż

gpyq log gpyq du
ż

fpxq dx

“ ´Hpfq ´ Hpgq.
�

Example 9.6. Let X „ N pµ1, σ
2
1q ¨ ¨ ¨N pµn, σ

2
nq. Then from the above example about the

entropy for one dimensional Gaussian, we know

HpXq “
n
ÿ

i“1

1

2
logp2πeσ2

i q “ 1

2
log

`

p2πeqnσ2
1 ¨ ¨ ¨ σ2

n

˘

.

Proposition 9.7. Consider probability density functions f belonging to the set

A “ tf ;´8 ă Erf s “ µ ă 8,´8 ă Erf 2s “ σ2 ă 8u.
Then

argmaxtf P A;Hpfqu “ Npµ, σ2q.

Proof. Directly use of variational methods with constraints. �

Definition 9.8. (Conditional entropy of Y given X, continuous version) Let pX, Y q „
ppx, yq and ppY |Xq „ ppy|xq. Then the conditional entropy of Y given X is defined as

HpY |Xq “ ´
ż

ppx, yq ln ppy|xq dydx

“
ż ż

r´ppy|xq ln ppy|xqs dyppxq dx

“
ż

HpY |X “ xqppxq dx

“ Ex„ppxqrHpY |X “ xqs,

(9.3)

where HpY |X “ xq :“
ş

r´ppy|xq ln ppy|xqs dy.
Remark 9.9. It is easy to see that

HpY |Xq “ HpX, Y q ´ HpXq.
Similarly, we see

HpX|Y q “ HpX, Y q ´ HpY q.
Here HpX, Y q “ ´

ş

ppx, yq ln ppx, yq dxdy.
Definition 9.10. (Conditional entropy of Y given X, discrete version) Assume pX, Y q obey
the joint distribution

ppX “ xi, Y “ yjq “ pij, i “ 1, 2, ¨ ¨ ¨ , n; j “ 1, 2, ¨ ¨ ¨ ,m,
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and the marginal distribution

ppX “ xiq “ pi, i “ 1, 2, ¨ ¨ ¨ , n.
Then the conditional entropy HpY |Xq is defined as

HpY |Xq :“ ´
ÿ

i,j

pij ln ppY “ yj|X “ xiq

“
ÿ

j

pi
`

ÿ

j

r´ppY “ yj|X “ xiq ln ppY “ yj|X “ xiqs
˘

“
ÿ

i

piHpY |X “ xiq,

(9.4)

where HpY |X “ xiq “ ´ř

jrppY “ yj|X “ xiq ln ppY “ yj|X “ xiqs.
Example 9.11. (Empirical entropy and empirical relative entropy) Let D be the training
dataset and |D| be the number of instances in D. Assume there are K classes with class
labels C1, ¨ ¨ ¨ , CK , and |Ck| is the number of instances inD with class label Ck for 1 ď k ď K.
Therefore, |D| “ ř

k |Ck|. Assume that a specific feature A for instances of D has n levels,
denoted by ta1, ¨ ¨ ¨ , cnu. According to feature A, the dataset is divided into n subsets
D1, ¨ ¨ ¨ , Dn, in other words, Di “ tx P D;Apxq “ aiu for 1 ď i ď n, and |D| “ ř

i |Di|.
Assume among the subset Di, the set of instances of D belonging to class Ck is Dik, i.e.,
Dik “ Di X Ck, and |Dik| is the number of instances. Then the entropy HpDq of D with
respect to the classification C1, ¨ ¨ ¨ , CK is

HpDq “ ´
ÿ

k

|Ck|
|D| ln

|Ck|
|D| .

The conditional entropy of HpD|Aq given A with respect to the classification is

HpD|Aq “
ÿ

i

|Di|
|D| HpDiq “ ´

ÿ

i

|Di|
|D|

ÿ

k

|Dik|
|Di|

ln
|Dik|
|Di|

.

From here we can define the information gain of D due to A by

gpD,Aq “ HpDq ´ HpD|Aq
and the relative information gain by

grelativepD,Aq “ gpD,Aq{HpDq “ HpDq ´ HpD|Aq
HpDq “ 1 ´ HpD|Aq{HpDq.

Definition 9.12. (Kullback-Leibner divergence) Assume ppxq and qpxq are two pdfs. The
Kullback-Leibner divergence DKLpp||qq is defined as

DKLpp||qq “ ´
ż

ppxq ln qpxq
ppxq dx.

Definition 9.13. (Cross-entropy) As above, the cross entropy Hcrosspp, qq is defined as

Hcrosspp, qq “ ´
ż

ppxq ln qpxq dx.

Remark 9.14. It is easy to see from the above two definitions that

DKLpp||qq “ Hcrosspp, qq ´ Hppq.
Meanwhile, by Jensen’s inequality, we see that DKLpp||qq is always nonnegative, and is zero
if and only if ppxq “ qpxq in law.
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Definition 9.15. (Mutual information) Assume pX, Y q „ ppx, yq and X „ ppxq and Y „
ppyq. Then the mutual information of X, Y is defined as

IpX, Y q “ DKLpppx, yq||ppxqppyqq “ ´
ż

ppx, yq ln ppxqppyq
ppx, yq dxdy.

Remark 9.16. When X, Y are independent, we have ppx, yq “ ppxqppyq, which implies
IpX, Y q “ 0, as desired. We can easily see

IpX, Y q “ HpXq ` HpY q ´ HpX, Y q “ HpXq ´ HpX|Y q “ HpY q ´ HpY |Xq.

10. Principle Component Analysis (PCA)

Let xi P R
m (1 ď i ď n) be n points and X “

»

—

—

–

xT
1

xT
2
...
xT
n

fi

ffi

ffi

fl

P R
nˆm be the dataset. We assume for

convenience ErXpjqs “ ~0 P R
n for each column of X for 1 ď j ď m.

Definition 10.1. The PCA of X is the eigenvalue decomposition of the covariance matrix
XTX P R

mˆm.

Assume the eigenvalues in descending order are given by σ2
1 ě σ2

2 ě ¨ ¨ ¨ ě σ2
m, and the

corresponding unit eigenvectors are w1, w2, ¨ ¨ ¨ , wm.

Definition 10.2. The wis are called principle components ; the matrixW “ rw1, w2, ¨ ¨ ¨ , wms P
R

mˆm is called loadings ; T “ XW P R
nˆ is called scores.

We have

XTX “ Wdiagtσ2
1, ¨ ¨ ¨ , σ2

muW´1 (10.1)

Definition 10.3. (Dimension reduction) Wr :“ rw1, ¨ ¨ ¨ , wrs P R
mˆr and Tr :“ XWr P R

nˆr

is called the projected data.

Reconstruction and reconstruction error. The reconstruction from projected data
towards the original data is Xrecovered “ TrW

T
d , which equals XWdW

T
d . The construction

error Error “ }Xrecovered ´ X} is thus }XpWdW
T
d ´ Inq} in a suitable norm.

Explained variance. Denote by σ2 “ řm

i“1 σ
2
i the total variance of X. The ratio of

explained variance, denoted by η2prq, is defined by η2prq “
řr

i“1
σ2

i

σ2 .

Definition 10.4. The singular value decomposition (SVD) of X is defined as X “ UΣV ˚

where U P C
nˆn, V P C

mˆm are unitary matrices, and Σ P C
nˆm comprise the singular

values tσ1, σ2, ¨ ¨ ¨ , σmu of X is the main diagonal.

By SVD, we know that

X˚X “ pUΣV ˚q˚pUΣV ˚q “ V pΣ˚ΣqV ˚ “ V diagtσ2
1, ¨ ¨ ¨ , σ2

muV ˚. (10.2)
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Comparing (10.1) and (10.2), we can identify, up to a sign, that

W “ V.

Meanwhile,

T “ XW “ UΣV ˚W “ UΣV ˚V “ UΣ,

and

Tr “ UrΣr

with Ur being the pn ˆ rq-block of U and Σr the principle pr ˆ rq-block of Σ.

11. EM Algorithm

EM Algorithm, the expectation maximization algorithm, is a general method for finding
maximum likelihood solutions for probabilistic model having latent variables (Dempster et
al. 1977; McLachlan and Krishnan, 1997; Neal and Hinton, 1999).

Here we aim to demonstrate the EM algorithm (the L-function maximization-maximization,
the F -function maximization-maximization) in integral form.

Consider a probabilist model. Assume the observablesXi P R
D and hidden variables Zi P R

K

for i “ 1, 2, ¨ ¨ ¨ , N . We shall denote X “ pX1, ¨ ¨ ¨ , XNqT P R
NˆD the observable dataset

and Z “ pZ1, ¨ ¨ ¨ , ZNqT P R
NˆK the latent dataset. We assume that the complete data is

tX,Zu obey the joint distribution ppX,Z|θq where θ is the model parameter. Our goal is to
maximize to maximum likelihood function

ppX|θq “
ż

Z

ppX,Z|θq. (11.1)

Proposition 11.1. (The decomposition of log maximum likelihood function) Assume the
latent variable Z obeys the distribution qpZq. Then for any choice of qpZq, the following
decomposition holds

ln ppX|θq “ Lpq, θq ` KLpq||ppZ|X, θqq (11.2)

where

Lpq, θq “
ż

Z

qpZq ln ppX,Z|θq
qpZq

“
ż

Z

qpZq ln ppX,Z|θq ` Hpqq.
(11.3)

and

KLpq||ppZ|X, θqq “ ´
ż

Z

qpZq ln ppZ|X, θq
qpZq . (11.4)
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Proof.

Lpq, θq ` KLpq||ppZ|X, θqq “
ż

Z

qpZq
´

ln
ppX,Z|θq

qpZq ´ ln
ppZ|X, θq

qpZq
¯

“
ż

Z

qpZq ln ppX,Z|θq
ppZ|X, θq

“
ż

Z

qpZq ln ppX|θq

“ ln ppX|θq.

(11.5)

�

Remark 11.2. As KLpq||ppZ|X, θqq ě 0, we know that the function Lpq, θq is a lower bound
of the ln ppX|θq. In some books (e.g., Li Hang’s), Lpq, θq is called the F -function. Note also
that Theorem 9.1 in Li Hang’s book is a direct consequence of the above decomposition.

As we know, Lpq, θq as a functional of qpZq is a linear perturbation of the entropy Hpqq,
hence, Lpq, θq is a concave functional of qpZq. We have the following proposition.

Proposition 11.3. The maximum of Lpq, θq over all admissible probability distributions
qpZq is attained at the posterior distribution q̃pZq “ ppZ|X, θq, and

Lpq̃, θq “
ż

Z

ppZ|X, θq ln ppX,Z|θq ` HpppZ|X, θqq.

When qpZq “ q̃pZq, we have Lpq̃, θq “ ln ppX|θq.

Proof. (Lagrangian Multiplier method) Consider the first variation of Lpq, θq with respect
to qpZq under the constraint

ş

Z
qpZq dZ “ 1, i.e., consider the functional fpq, λq:

fpq, λq :“ Lpq, θq ` λp
ż

Z

qpZq dZ ´ 1q.

It is easy to obtain that

xDqf, φy “
ż

Z

pln ppX,Z|θq ´ ln qpZq ´ 1 ` λqφ dZ (11.6)

and Dλf “
ş

Z
qpZq ´ 1 where φpZq is such that

ş

Z
φpZq dZ “ 0.

LettingxDqf, φy “ 0, we have

ln ppX,Z|θq ´ ln qpZq ´ 1 ` λ “ C

for some constant C. Therefore, we see

ppX,Z|θq “ exppC ` 1 ´ λqqpZq. (11.7)

Integrating over Z in (11.7) and using Dλf “ 0, we obtain
ż

Z

ppX,Z|θq dZ “ exppC ` 1 ´ λq.



c© JINGHUA YAO 33

Then from (11.7), we obtain

qpZq “ ppX,Z|θq{ exppC ` 1 ´ λq “ ppX,Z|θq{
ż

Z

ppX,Z|θq dZ

“ ppX,Z|θq{ppX|θq
“ ppZ|X, θq.

(11.8)

�

Definition 11.4. (Q-function) Qpθ, θpiqq :“
ş

Z
ppZ|X, θpiqq ln ppX,Z|θq is known as the Q-

function for the EM algorithm.

Now, we are ready to state the EM algorithm based on Propositions 11.1 and 11.3. The
algorithm can be understood as the maximization-maximization of the L-function.

(Maximization-maximization of the L-function.) Suppose the current parameter is
θpiq. (1) E-step. We maximize maxq Lpq, θpiqq to find argmaxq Lpq, θpiqq “ ppZ|X, θpiqq :“ q̃.
Then we compute Lpq, θpiqq “ EppZ|X,θpiqqrln ppX,Z|θqs`HpppZ|X, θpiqqq in order to maximize

maxθ Lpq̃, θpiqq. (2) M-step. We consider the problem maxθ Lpq̃, θpiqq. As HpppZ|X, θpiqqq is
constant for the problem, we see

argmax
θ

Lpq̃, θpiqq “ argmax
θ

EppZ|X,θpiqqrln ppX,Z|θqs.

Note that EppZ|X,θpiqqrln ppX,Z|θqs is exactly the Q-function. We iterate through the above
two-stage procedure to approach the optimal parameter θ.

Using Q-function, we state the EM algorithm as follows

(EM algorithm.) Given observable data X, assume Z is the latent data and tX,Zu obeys
the joint distribution ppX,Z|θq and conditional distribution ppZ|X, θq. We aim to find
the model parameter θ. (1) Initialize θp0q and begin to iterate; (2) E-step: let θpiq be the
parameter value for iteration i. In iteration i ` 1, compute the Q-function:

Qpθ, θpiqq “
ż

Z

ppZ|X, θpiqq ln ppX,Z|θq.

(3) M-step: compute θpi`1q “ argmaxtθ;Qpθ, θpiqqu. (4) Repeat (2) and (3) until convergence
or break at a threshold value.

(Derivation of Q-function, another formulation of Proposition 11.1.)

We aim to maximize ln ppX|θq :“ Lpθq, i.e., the log maximum likelihood of the observable
data with respect to θ via iteration. Assume the current parameter value is θpiq. Consider
the difference Lpθq ´ Lpθpiqq. We hope to find θpi`1q such that the difference is greater than
zero.

First, we have

Lpθq “ ln ppX|θq “ ln

ż

Z

ppY,Z|θq dZ “ ln
´

ż

Z

ppX|Z, θqppZ|θq dZ
¯

. (11.9)
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Therefore,

Lpθq ´ Lpθpiqq “ ln
´

ż

Z

ppX|Z, θqppZ|θq dZ
¯

´ ln ppX|θpiqq

“ ln
´

ż

Z

ppX|Z, θqppZ|θq
ppZ|X, θpiqq ppZ|X, θpiqq dZ

¯

´ ln ppX|θpiqq

ě
ż

Z

ln
´ppX|Z, θqppZ|θq

ppZ|X, θpiqq
¯

ppZ|X, θpiqq dZ
¯

´ ln ppX|θpiqq

“
ż

Z

ln
´ ppX|Z, θqppZ|θq
ppZ|X, θpiqqppX|θpiqq

¯

ppZ|X, θpiqq dZ.

(11.10)

Denote by

Bpθ, θpiqq “ Lpθpiqq `
ż

Z

ln
´ ppX|Z, θqppZ|θq
ppZ|X, θpiqqppX|θpiqq

¯

ppZ|X, θpiqq dZ.

We see that Lpθq ě Bpθ, θpiqq and Lpθpiqq “ Bpθpiq, θpiqq. Therefore, in order to make Lpθq
increase, it is sufficient to make Bpθ, θpiqq increase.

Now, we consider the problem argmaxtθ;Bpθ, θpiqqu. Ignoring the irrelevant terms for the
maximization, we have

argmaxtθ;Bpθ, θpiqqu “ argmaxtθ;
ż

Z

ln
`

ppX|Z, θqppZ|θq
˘

ppZ|X, θpiqq dZu.

The expression in the right hand side is nothing but the Q-function:
ż

Z

ln
`

ppX|Z, θqppZ|θq
˘

ppZ|X, θpiqq dZ “ Qpθ, θpiqq.

(Monotonicity of the maximum likelihood function sequence ppX|θpiqq.).

We aim to show that ppX|θpi`1qq ě ppX|θpiqq for the EM iteration sequence. It is sufficient
to show ln ppX|θpi`1qq ě ln ppX|θpiqq. By Bayes’ Theorem, we know

ln ppX|θq “ ppX,Z|θq
ppZ|X, θq .

Recall that

Qpθ, θpiqq “
ż

Z

ln
`

ppX,Z|θq
˘

ppZ|X, θpiqq dZu

and define

Hpθ, θpiqq :“
ż

Z

ln
`

ppZ|X, θq
˘

ppZ|X, θpiqq dZu.

It is easy to see

ln ppX|θq “ Qpθ, θpiqq ´ Hpθ, θpiqq.
Therefore, we have

ln ppX|θpi`1qq ´ ln ppX|θpiqq “ rQpθpi`1q, θpiqq ´ Qpθpi`1q, θpiqqs ´ rQpθpi`1q, θpiqq ´ Qpθpi`1q, θpiqqs
“ rQpθpi`1q, θpiqq ´ Qpθ, θpiqqs ` KLpppZ|X, θpiqq||ppZ|X, θpi`1qqq

(11.11)

Both of the two terms in (11.11) are nonnegative, we conclude that ln ppX|θpi`1qq ě ln ppX|θpiqq.
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Remark 11.5. For an example of application of EM on Gaussian mixture model, see [Li];
for more applications, see [Bishop].

12. Hidden Markov Model

1. The HMM concept.

Definition 12.1. (Hidden Markov Model, a.k.a HMM) An HMM is a probabilistic model
for time sequence. A state sequence is generated randomly by a hidden Markov chain, then
the state sequence generates an observable random sequence, called observation sequence.
The indices of the sequences are called time sequence.

An HMM is determined by initial probability distribution π, probability transition matrix
A and observation matrix B. Assume the state set is given by Q “ tq1, q2, ¨ ¨ ¨ , qNu, the
observation set is V “ tv1, v2, ¨ ¨ ¨ , vMu. Then π P R

N , A P R
NˆN and B P R

NˆM .

Assume I “ pi1, i2, ¨ ¨ ¨ , iT q (where it P Q) is a state sequence of length |I| “ T and O is the
corresponding observation sequence O “ po1, o2, ¨ ¨ ¨ , oT q with oi P V for i “ 1, 2, ¨ ¨ ¨ , T . We
shall define A, B and π as follows:

A “ raijsNˆN , aij :“ P rit`1 “ qj|it “ qis,

B “ rbjksNˆK , bjpkq :“ P rot “ vk|it “ qjs,
and

π “ pπ1, π2, ¨ ¨ ¨ , πNq, πi :“ P ri1 “ qis.

Denote the HMM by λ :“ pA,B, πq and make the following Markovian assumptions:

(1) Homogeneous Markov property.

P rit|it´1, ot´1, ¨ ¨ ¨ , i1, o1s “ P rit|it´1s, 1 ď t ď T ;

(2) Observation Independence.

P rot|iT , oT , iT´1, oT´1, ¨ ¨ ¨ , it`1, ot`1, it, it´1, ot´1, ¨ ¨ ¨ , i1, o1s “ P rot|its, 1 ď t ď T.

The above assumptions can be summarized in terms of the joint distribution P ro1, i1, ¨ ¨ ¨ , oT , iT s
as follows for any T ě 1:

P ro1, i1, ¨ ¨ ¨ , oT , iT s “ P ri1sP ro1|i1s
T
ź

i“2

P rit|it´1sP rot|its.

The three questions we are interested in are:

‚ Compute probabilities. For example, given λ :“ pA,B, πq and O “ po1, o2, ¨ ¨ ¨ , oT q,
compute P rO|λs. We may use forward- or backward-algorithm.
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‚ Learning. Given O “ po1, o2, ¨ ¨ ¨ , oT q, estimate the parameters A,B, π such that the
posterior probability P rO|λs is maximal. We can use the Baum-Welch algorithm,
which is the application of EM algorithm in HMM.

‚ Inference/prediction/Decoding. Given λ :“ pA,B, πq and O “ po1, o2, ¨ ¨ ¨ , oT q, find
the corresponding state sequence I “ pi1, i2, ¨ ¨ ¨ , iT q such that P rI|Os is maximal.
We can use the Viterbi algorithm, which is a dynamic programming method for
finding the optimal path.

2. Some probabilities.

Given λ :“ pA,B, πq, O “ po1, o2, ¨ ¨ ¨ , oT q and I “ pi1, i2, ¨ ¨ ¨ , iT q. The probability for the
state sequence I is

P rI|λs “ πi1ai1i2ai2i3 ¨ ¨ ¨ aiT´1iT . (12.1)

For a given I “ pi1, i2, ¨ ¨ ¨ , iT q, the probability of observing O “ po1, o2, ¨ ¨ ¨ , oT q is

P rO|I, λs “ bi1po1qbi2po2q ¨ ¨ ¨ biT poT q. (12.2)

Therefore, O and I happen simultaneously is

P rO, I|λs “ P rO|I, λsP rI|λs “ rbi1po1qbi2po2q ¨ ¨ ¨ biT poT qsrπi1ai1i2ai2i3 ¨ ¨ ¨ aiT´1iT s
“ rπi1bi1po1qsrai1i2bi2po2qs ¨ ¨ ¨ raiT´1iT biT poT qs. (12.3)

Marginalizing with respect to I, we get

P rO|λs “
ÿ

I

P rO, I|λs “
ÿ

i1,i2,¨¨¨ ,ıT
rπi1bi1po1qsrai1i2bi2po2qs ¨ ¨ ¨ raiT´1iT biT poT qs, (12.4)

where
ÿ

i1,i2,¨¨¨ ,ıT
“

ÿ

i1PQ

ÿ

i2PQ
¨ ¨ ¨

ÿ

iT PQ
.

Define the forward probability αtpiq :“ αtpqiq as

αtpqiq :“ P ro1, o2, ¨ ¨ ¨ , ot, it “ qi|λs,

i.e., the probability that the observation is o1, ¨ ¨ ¨ , ot up to time t and the state at time t is
qi.

Proposition 12.2. (Forward algorithm)

αt`1piq “
N
ÿ

j“1

αtpjqajibipot`1q, P rO|λs “
N
ÿ

i“1

αT piq. (12.5)

Here in αt`1piq, the subindex corresponds to time sequence and i in the parentheses corre-
sponds to state qi.
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Proof. The second equality follows from definition. For the first equality, we have

αt`1piq :“ P ro1, ¨ ¨ ¨ , ot, ot`1, it`1 “ qis
“ P rot`1|o1, o2, ¨ ¨ ¨ , ot, it`1 “ qis ˆ P ro1, o2, ¨ ¨ ¨ , ot, it`1 “ qis
“ P rot`1|it`1 “ qis ˆ

ÿ

j

P ro1, o2, ¨ ¨ ¨ , ot, it “ qj, it`1 “ qis pObservation independenceq

“ bipot`1q
ÿ

j

P rit`1 “ qi|o1, o2, ¨ ¨ ¨ , ot, it “ qjsP ro1, ¨ ¨ ¨ , ot, it “ qjs

“ bipot`1q
ÿ

j

P rit`1 “ qi|it “ qjsP ro1, ¨ ¨ ¨ , ot, it “ qjs pHomogeneous Markov propertyq

“ bipot`1q
ÿ

j

aqjqiP ro1, ¨ ¨ ¨ , ot, it “ qjs

“ bipot`1q
ÿ

j

ajiαtpjq.

(12.6)

�

Define the backward probability βtpiq :“ βtpqiq as

βtpqiq :“ P rot`1, ot`2, ¨ ¨ ¨ , oT |it “ qi, λs.

Proposition 12.3. (Backward algorithm) Set βT piq “ 1, @ i P t1, 2, ¨ ¨ ¨ , Nu. For any t P
tT ´ 1, T ´ 2, ¨ ¨ ¨ , 2, 1u, there hold

βtpiq “
N
ÿ

j“1

aijbjpot`1qβt`1pjq; P rO|λs “
N
ÿ

i“1

πibipo1qβ1piq. (12.7)

Using both the forward and the backward probabilities, we have

P rO|λs “
N
ÿ

i“1

N
ÿ

j“1

αtpiqaijbjpot`1qβt`1pjq, @ t P t1, 2, ¨ ¨ ¨ , T ´ 1u. (12.8)

When t “ 0, 1, the above equation can be modified to be Proposition 12.3; when t “ T ´1, T ,
it can be modified to be Proposition 12.2.

Given λ and O, define the probability that at time t, the state is qi is γtpiq :“ P rit “ qi|O, λs.
Using conditional probability, we know

γtpiq “ P rit “ qi, O|λs{P rO|λs.
In view of the definition of forward and backward probability, we see

αtpiqβtpiq “ P rit “ qi, O|λs. (12.9)

Therefore, we have

γtpiq “ αtpiqβtpiq
P rO|λs “ αtpiqβtpiq

řN

j“1 αtpjqβtpjq
. (12.10)
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Given λ and O, define the probability that at time t, the state is qi and at time t ` 1, the
state is qj, is ξtpi, jq :“ P rit “ qi, it`1 “ qj|O, λs. Similarly, we have

ξtpi, jq :“ P rit “ qi, it`1 “ qj|O, λs “ P rit “ qi, it`1 “ qj, O|λs
P rO|λs

“ P rit “ qi, it`1 “ qj, O|λs
ř

1ďiďN

ř

1ďjďN P rit “ qi, it`1 “ qj, O|λs

“ αtpiqaijbjpot`1qβt`1pjq
ř

i,j αtpiqaijbjpot`1qβt`1pjq .

(12.11)

From the definitions of γtpiq and ξtpi, jq, we have

Erqi occurs|O, λs “
T
ÿ

t“1

γtpiq, (12.12)

Erqi transmites|O, λs “
T´1
ÿ

t“1

γtpiq, (12.13)

and

Erqi transmites to qj|O, λs “
T´1
ÿ

t“1

ξtpi, jq. (12.14)

3. Viterbi algorithm.

Viterbi method is a way of finding optimal path I˚ “ pi˚
1 , i

˚
2 , ¨ ¨ ¨ , i˚

T q by dynamic program-
ming. A useful property about the optimal path is used.

Proposition 12.4. (A property of optimal path) If I˚ is an optimal path in predicting I for
given λ and O, then with i˚

1 , ¨ ¨ ¨ , i˚
t fixed, the path i˚

t , ¨ ¨ ¨ , i˚
T is also optimal among the paths

starting at i˚
t and ending at i˚

T .

Proof. An easy contradiction argument. �

Define the largest probability among the paths pi1, i2, ¨ ¨ ¨ , itq with it “ qi by

δtpiq :“ max
i1,i2,¨¨¨ ,it´1

P rit “ i, it´1, ¨ ¨ ¨ , i1, ot, ¨ ¨ ¨ , o1|λs, i P t1, 2, ¨ ¨ ¨ , Nu.

We have the recursion relation

δt`1piq “ max
i1,i2,¨¨¨ ,it´1,it

P rit`1 “ i, it, it´1, ¨ ¨ ¨ , i1, ot, ¨ ¨ ¨ , o1|λs

“ max
1ďjďN

tδtpjqajiubipot`1q.
(12.15)

Define the pt´ 1qth index of the path pi1, ¨ ¨ ¨ , it´1, iq which has maximal probability among
paths with it “ qi as Ψtpiq :“ argmax1ďjďNtδt´1pjqajiu.

The Viterbi algorithm is as follows:

Given input λ “ pA,B, πq and observation sequence O “ po1, o2, ¨ ¨ ¨ , oT q, find the optimal
path I˚ “ pi˚

1 , i
˚
2 , ¨ ¨ ¨ , i˚

T q that maximize P pI|Oq.
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(1) Initialization. δ1piq “ πibipo1q for i “ 1, 2, ¨ ¨ ¨ , N ; Ψ1piq “ 0 for all i.

(2) Recursion. For t “ 2, 3, ¨ ¨ ¨ , T , recursively compute

δtpiq “ max
j

tδt´1pjqajiubipotq, i “ 1, 2, ¨ ¨ ¨ , N,

Ψtpiq “ argmax
j

tδt´1pjqajiu, i “ 1, 2, ¨ ¨ ¨ , N.

(3) Stop. P ˚ “ maxi δT piq, i˚
T “ argmaxitδT piqu.

(4) Find the optimal path. For t “ T ´ 1, T ´ 2, 2, 1, i˚
t “ Ψt`1pi˚

p t ` 1qq.

4. An example of HMM.

Let λ “ pA,B, πq with π “ p0.2, 0.4, 0.4qT and

A “

»

–

0.5 0.2 0.3
0.3 0.5 0.2
0.2 0.3 0.5

fi

fl , B “

»

–

0.5 0.5
0.4 0.6
0.7 0.3

fi

fl

corresponding to the states q1, q2, q3 and observations v1, v2. In other words, |Q| “ N “ 3 and
|V | “ M “ 2. (a) Assume O “ pv1, v2, v1q, compute P rO|λs. (b) Assume O “ pv1, v2, v1q,
find the optimal state sequence I˚ “ pi˚

1 , i
˚
2 , i

˚
3q.

(a) Here we use forward algorithm to compute P rO|λs.

(a1) Initialization α1piq :“ πibipo1q “ πibipv1q.
α1p1q “ π1b1pv1q “ 0.2 ˆ 0.5 “ 0.1,

α1p2q “ π2b2pv1q “ 0.4 ˆ 0.4 “ 0.16,

α1p3q “ π3b3pv1q “ 0.4 ˆ 0.7 “ 0.28.

(a2) Recursion αtpiq “ ř

j αt´1pjqajibipotq.

α2p1q “ r
ÿ

j

α1pjqaj1sb1pv2q “ p0.1 ˆ 0.5 ` 0.16 ˆ 0.3 ` 0.28 ˆ 0.2q ˆ 0.5 “ 0.077,

α2p2q “ r
ÿ

j

α1pjqaj2sb2pv2q “ p0.1 ˆ 0.2 ` 0.16 ˆ 0.5 ` 0.28 ˆ 0.3q ˆ 0.6 “ 0.1104,

α2p3q “ r
ÿ

j

α1pjqaj3sb3pv2q “ p0.1 ˆ 0.3 ` 0.16 ˆ 0.2 ` 0.28 ˆ 0.5q ˆ 0.3 “ 0.0606.

α3p1q “
ÿ

j

α2pjqaj1b1pv1q “ p0.077 ˆ 0.5 ` 0.1104 ˆ 0.3 ` 0.0606 ˆ 0.2q ˆ 0.5 “ 0.04187,

α3p2q “
ÿ

j

α2pjqaj2b2pv1q “ p0.077 ˆ 0.2 ` 0.1104 ˆ 0.5 ` 0.0606 ˆ 0.3q ˆ 0.4 “ 0.03551,

α3p3q “
ÿ

j

α2pjqaj3b3pv1q “ p0.077 ˆ 0.3 ` 0.1104 ˆ 0.2 ` 0.0606 ˆ 0.5q ˆ 0.7 “ 0.05284.

(a3) Stop. P rO|λs “ α3p1q ` α3p2q ` α3p3q “ 0.04187 ` 0.03551 ` 0.05284 “ 0.13022.
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(b) We use Viterbi algorithm to find the optimal path.

(b1) Initialization δ1piq “ πibipv1q.
δ1p1q “ π1b1pv1q “ 0.2 ˆ 0.5 “ 0.1,

δ1p2q “ π2b2pv1q “ 0.4 ˆ 0.4 “ 0.16,

δ1p3q “ π3b3pv1q “ 0.4 ˆ 0.7 “ 0.28.

We have Ψ1piq “ 0 for i “ 1, 2, 3.

(b2) Recursion δ2piq “ maxjrδ1pjqajisbipv2q.

First, compute δ2p1q “ maxjrδ1pjqaj1sb1pv2q. We have

δ1p1qa11 “ 0.1 ˆ 0.5 “ 0.05,

δ1p2qa21 “ 0.16 ˆ 0.3 “ 0.048,

δ1p3qa31 “ 0.28 ˆ 0.2 “ 0.056,

Therefore, δ2p1q “ 0.056 ˆ 0.5 “ 0.028. Also, Ψ2p1q “ 3.

Second, δ2p2q “ maxjrδ1pjqaj2sb2pv2q. We have

δ1p1qa12 “ 0.1 ˆ 0.2 “ 0.02,

δ1p2qa22 “ 0.16 ˆ 0.5 “ 0.08,

δ1p3qa32 “ 0.28 ˆ 0.3 “ 0.084,

Therefore, δ2p2q “ 0.084 ˆ 0.6 “ 0.0504. Also, Ψ2p2q “ 3.

Third, δ2p3q “ maxjrδ1pjqaj3sb3pv2q. We have

δ1p1qa13 “ 0.1 ˆ 0.3 “ 0.03,

δ1p2qa23 “ 0.16 ˆ 0.2 “ 0.032,

δ1p3qa33 “ 0.28 ˆ 0.5 “ 0.14,

Therefore, δ2p2q “ 0.14 ˆ 0.3 “ 0.042. Also, Ψ2p3q “ 3.

Now, we do another recursion δ3piq “ maxjrδ1pjqajisbipv1q.

First, compute δ3p1q “ maxjrδ2pjqaj1sb1pv1q. We have

δ2p1qa11 “ 0.028 ˆ 0.5 “ 0.014,

δ2p2qa21 “ 0.0504 ˆ 0.3 “ 0.01512,

δ2p3qa31 “ 0.042 ˆ 0.2 “ 0.0082,

Therefore, δ2p1q “ 0.01512 ˆ 0.5 “ 0.00756. Also, Ψ3p1q “ 2.

Second, compute δ3p2q “ maxjrδ2pjqaj2sb2pv1q. We have

δ2p1qa12 “ 0.028 ˆ 0.2 “ 0.0056,

δ2p2qa22 “ 0.0504 ˆ 0.5 “ 0.0252,

δ2p3qa32 “ 0.042 ˆ 0.3 “ 0.0126,

Therefore, δ2p1q “ 0.0252 ˆ 0.4 “ 0.01008. Also, Ψ3p2q “ 2.
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Third, compute δ3p3q “ maxjrδ2pjqaj3sb3pv1q. We have

δ2p1qa13 “ 0.028 ˆ 0.3 “ 0.0084,

δ2p2qa23 “ 0.0504 ˆ 0.2 “ 0.01008,

δ2p3qa33 “ 0.042 ˆ 0.5 “ 0.021,

Therefore, δ2p1q “ 0.021 ˆ 0.7 “ 0.0147. Also, Ψ3p3q “ 3.

(b3) Stop. P ˚ “ maxi δ3piq “ maxt0.00756, 0.01008, 0.0147u “ 0.0147. And also, we have
i˚
3 “ argmaxi δ3piq “ 3, i˚

2 “ Ψ3pi˚
3q “ Ψ3p3q “ 3, and i˚

1 “ Ψ2pi˚
2q “ Ψ2p3q “ 3.

(b4) Find the optimal path. I “ p3, 3, 3q.

13. Appendix I: Linear algebra

1. Basic Matrix Identities

Proposition 13.1. pABqT “ BTAT .

Proof. rpABqT sij “ rABsji “ AjkBki “ rBT sikrAT skj “ rBTAT sij. �

Proposition 13.2.

pP´1 ` BTR´1Bq´1BTR´1 “ PBT pBPBT ` Rq´1. (13.1)

Proof. Multiplying the equality by pBPBT ` Rq on the right, and pP´1 ` BTR´1Bq on the
left, we obtain

BTR´1pBPBT ` Rq “ pP´1 ` BTR´1BqPBT .

It is easy to see that both sides equal to BT ` BTR´1BPBT . �

In (13.1), let P “ Id and BTR “ A, we have

Proposition 13.3.

pI ` ABq´1A “ ApI ` BAq´1. (13.2)

Proposition 13.4. (Woodbury identity)

pA ` UCV q´1 “ A´1 ´ A´1UpC´1 ` V A´1Uq´1V A´1. (13.3)

Proof.

pA ` UCV qrA´1 ´ A´1UpC´1 ` V A´1Uq´1V A´1

“ I ´ UpC´1 ` V A´1Uq´1V A´1 ` UCV A´1 ´ UCV A´1UpC´1 ` V A´1Uq´1V A´1

“ rI ` UCV A´1s ´ rUpC´1 ` V A´1Uq´1V A´1 ` UCV A´1UpC´1 ` V A´1Uq´1V A´1s
“ rI ` UCV A´1s ´ rU ` UCV A´1U spC´1 ` V A´1Uq´1V A´1

“ rI ` UCV A´1s ´ UCpC´1 ` V A´1UqpC´1 ` V A´1Uq´1V A´1

“ I ` UCV A´1 ´ UCV A´1

“ I.

(13.4)
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�

Proposition 13.5. (Inverse of partitioned matrix)
„

A, B

C, D

´1

“
„

M, ´MBD´1

´D´1CM, D´1 ´ D´1CMBD´1



, (13.5)

where M :“ pA ´ BD´1Cq´1 is the Schur complement.

2. Trace and determinant

Proposition 13.6. TrpABq “ TrpBAq, i.e., Tr is cyclic.

Proof.

TrpABq “ AijBji “ BjiAij “ TrpBAq. (13.6)

�

The determinant |A| of a square matrix A is defined by

|A| “
ÿ

σPSn

signpσqA1σp1qA2σp2q ¨ ¨ ¨Anσpnq.

We have |AB| “ |A||B| and |A´1| “ 1{|A|. Assume A,B are matrices of size N ˆ M , then

|IN ` ABT | “ |IM “ ATB|.
In particular, if a,b are both N dimensional column vectors, then we have

|IN ` abT | “ |I1 ` aTb| “ 1 ` aTb.

3. Spectrum decomposition

Let A be a M ˆ M matrix, and with right eigenvalues and eigenvectors given by

λ1, λ2, ¨ ¨ ¨ , λM P C
1; u1, u2, ¨ ¨ ¨ , uM P C

M ,

i.e.,

Auj “ λjuj, j “ 1, 2, ¨ ¨ ¨ ,M. (13.7)

We can assume that }uj}2 “ 1 for all j.

We also assume v1, v2, ¨ ¨ ¨ , vM P C
1ˆM are the left eigenvectors of A associating with

µ1, µ2, ¨ ¨ ¨ , µK P C
1, i.e.,

vjA “ µjvj.

Taking transpose of the above equation, we get

ATvTj “ µjv
T
j ,

which shows that µ1, µ2, ¨ ¨ ¨ , µM P C
1 are eigenvalues of AT . Since detpλ´Aq “ detpλ´AT q,

we easily see

tµ1, µ2, ¨ ¨ ¨ , µMu “ tλ1, λ2, ¨ ¨ ¨ , λMu.
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Assume the M eigenvectors form a basis of CM and U “ ru1, ¨ ¨ ¨ , uM s, we can write (13.7)
in matrix form as

AU “ UDiagtλ1, ¨ ¨ ¨ , λMu :“ UΛ,

which gives A “ UΛU´1.

Let A˚ be the conjugate transpose of A. A is Hermitian iff A˚ “ A. If A is real matrix, then
that A is Hermitian means A is symmetric.

Proposition 13.7. For a Hermitian matrix, its eigenvalues are real, and eigenvectors as-
sociated to different eigenvectors are orthogonal.

Proof. Let λ, u be an eigenpair for A, i.e., Au “ λu. Then we have

λ˚}u}2 “ xu, λuy “ xu,Auy “ xu,A˚uy “ xAu, uy “ λ}u}2, (13.8)

which gives pλ˚ ´ λq}u}2 “ 0, implying λ˚ “ λ, i.e., λ is real. Consider xAui, ujy:
λixui, ujy “ xAui, ujy “ xui, Aujy “ λjxui, ujy, (13.9)

which gives pλi ´ λjqxui, ujy “ 0, and hence xui, ujy “ 0 when λi ´ λj ­“ 0. �

From the above proposition and Grad-Schmidt orthogonalization, we know that

Proposition 13.8. For a Hemitian matrix A, the eigenvectors u1, ¨ ¨ ¨ , uM can be made
mutually orthogonal: xui, ujy “ u˚

i uj “ δij, or U˚U “ I

From U˚U “ I, we see UU˚ “ I by definition of matrix inverse, therefore, for a Hermition
matrix A, the corresponding U has the property that both and row vectors and the column
vectors of U form a orthogonal basis of CM .

Definition 13.9. (Unitary matrix, normal matrix) If U˚U “ UU˚ “ I, we say U is a
unitary matrix. If U˚U “ UU˚, we say U is a normal matrix.

From definition, it is easy to see that detpUq “ detpU˚q “ 1. Meanwhile, unitary matrix
induces unitary transformation which preserves distance and angle. Indeed,

xUv, Uwy “ xU˚Uv, wy “ xv, wy.
Proposition 13.10. (Spectral decomposition) Let A be Hermitian and U “ ru1, ¨ ¨ ¨ , uM s be
the unitary matrix consisting of the eigenvectors of A. Then A “ UΛU˚ and A´1 “ UΛ´1U˚.
These two relations can be written as

A “
ÿ

i

λiuiu
T
i , A´1 “

ÿ

i

λ´1
i uiu

T
i .

The diagonal matrix Λ is a representation of the linear transform A under transformed basis.
We can give a direct proof of the spectral decomposition. Let us take A “ ř

i λiuiu
T
i as an

example. We regard both the left hand side and right hand side as linear transformations.
To show they are actually the same, we just need to verify that their action on a or any
basis is the same. We can use the basis tuiuMi“1. For any uj, we have

Auj “ λjuj,
ÿ

i

λiuiu
T
i uj “

ÿ

i

λiuiδij “ λjuj.
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Comparing the above two equalities, we verified the conclusion.

4. Matrix derivatives

Matrix is a representation of linear transformations between finite dimensional spaces. More
precisely, a linear operator from R

m into Rn can be represented by a nˆmmatrix. Because in
order to map a vector u P R

m to result in a vector v P R
n, we must have A be a nˆm matrix,

which is easily see by considering the expression Au “ v. In general, a linear transformation
between two Banach spaces X, Y can be represented by a linear operator L : X Ñ Y .

The above viewpoint is the key to understand derivatives. The idea of derivative is local
linearization. Any derivative is a linear operator. More precisely, f : X Ñ Y for any Banach
space X, Y (in other words, both can be infinitely dimensional), Dfpxq is a linear operator
from X to Y . In particular, if X “ R

m and Y “ R
n, then Dfpxq is a linear operator from

R
m into R

n, hence a n ˆ m matrix.

About the gradient. Let f : Rn Ñ R
1 with y “ fpxq. The derivative of By

Bx P R
1ˆn, in other

words, a n-dimensional row vector. This is different from gradient ∇xfpxq which is typically

defined as a column vector. Therefore, ∇xfpxq “
“ By

Bx
‰T
.

Now, we can define the derivative rules. Let x be a scaler, f ,x P R
n be a vector. Then

pDxfqi “ Dxfi,

pDxfqij “ Dxj
fi.

The above rule extends naturally to any tensors.

Next, we collect some computation propositions. Let a,x be two vectors, then

Dxpa ¨ xq “ aT .

Let A,B be two matrices which can be multiplied, then

DxpABq “ pDxAqB ` ADxB.

Let A be an invertible matrix, we have A´1A “ In. Taking x-derivative in the equation
gives us

BxpA´1qA ` A´1BxA “ 0n.

From the above equation, we get

BxpA´1q “ ´A´1pBxAqA´1.

The derivative of trace. Now we compute DATrpABq for two matrices A,B. First, consider
BAij

TrpABq, and we have

BAij
TrpABq “ BAij

pAijBjiq “ Bji “ pBT qij,
therefore, we have

BATrpABq “ BT .

Similarly, we have
BATrpATBq “ B,
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BATrpAq “ BATrpAT q “ I,

BATrpABAT q “ ApB ` BT q.

Let F be a square matrix and |F | be the determinant, then we have

d|F | “ TrpF 7qdF “ |F |TrpF´1qdF,
which F 7 is the cofactor matrix of F whose pi, jq-element is given by the Fji’s signed cofactor,
i.e, F 7{|F | “ F´1. In particular, we have d ln |F | “ TrpF´1dF .

The derivative of inverse matrix F´1 is given by

dpF´1q “ ´F´1pdF qF´1.

5. Cholesky decompoistion and normal distribution

Theorem 13.11. A is Hermitian positive-definite matrix iff A “ LL˚ uniquely for some
lower diagonal matrix L with real and positive diagonal matrix. The decomposition is called
Cholesky decomposition.

If the matrix A is Hermitian and positive semi-definite, then it still has a decomposition
of the form A “ LL˚ if the diagonal entries of L are allowed to be zero. When A has
real entries, L has real entries as well, and the factorization may be written A “ LLT .
The Cholesky decomposition is unique when A is positive definite; there is only one lower
triangular matrix L with strictly positive diagonal entries such that A “ LL˚. However,
the decomposition need not be unique when A is positive semidefinite. The converse holds
trivially: if A can be written as LL˚ for some invertible L, lower triangular, then A is
Hermitian and positive definite.

It is well known that linear transformation of a Gaussian random vector is Gaussian. The
mean and covariance matrix determine a Gaussian vector. Therefore, we can construct
Gaussian vectors with specified mean µ and real covariance matrix Σ which we assume
is positive semi-definite. Assume X1, X2, ¨ ¨ ¨ , Xn are n independent standard univariate
Gaussian.Then X “ pX1, ¨ ¨ ¨ , XnqT is a Gaussian with mean ~0 and covariance matrix In.
Now assume Σ “ LLT for some lower diagonal matrix L with nonnegative diagonal entries.
Then Y :“ LX ` µ is Gaussian with mean µ and covariance matrix Σ. Indeed, we have

ErY s “ ErLX ` µs “ LErXs ` µ “ µ,

and

covpY q “ ErLXpLXqT s “ LErXXT sLT “ LLT “ Σ.

14. Appendix II: Inequalities

Lemma 14.1. (Hoeffding) Let X be any real-valued random variable with ErXs “ 0 and
P ra ď X ď bs “ 1. Then for any λ P R, there holds

ErexptλXus ď exptλ2pb ´ aq2{8u. (14.1)
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Proof. By assumption, if one of a and b is zero, so is the other. Then X “ 0 almost
surely, and (14.1) becomes Ere0s ď e0 “ 1, which is obviously true. Now consider the case
a ă 0 ă b. As the function x Ñ esx is convex, we consider the convex combination

x “ b ´ x

b ´ a
a ` x ´ a

b ´ a
b,

and use Jensen’s inequality to get

esx ď b ´ x

b ´ a
ea ` x ´ a

b ´ a
eb, @x P ra, bs.

Taking expectation in the above inequality, we have

EresXs ď b ´ ErXs
b ´ a

ea ` ErXs ´ a

b ´ a
eb pErXs “ 0q

“ b

b ´ a
ea ` ´a

b ´ a
eb

“ ´a

b ´ a
esap´b{a ` espb´aqq

“ ´a

b ´ a
esap´b ´ a ` a

a
` espb´aqq

“ ´a

b ´ a
esap´b ´ a

a
´ 1 ` espb´aqq p´ a

b ´ a
:“ θ ą 0,´sθpb ´ aq “ saq

“ e´sθpb´aqp1 ´ θ ` θespb´aqq pspb ´ aq :“ uq
“ p1 ´ θ ` θeuqe´θu

“ expt´θu ` lnp1 ´ θ ` θeuqu p´θu ` lnp1 ´ θ ` θeuq :“ φpuqq
“ eφpuq.

(14.2)

We shall find a bound of φpuq. First φ : R Ñ R is well-defined. To see this, we need to
verify that 1 ´ θ ` θeu ą 0 is always true. Indeed, we have

1 ´ θ ` θeu “ θp1{θ ´ 1 ` euq “ θp´pb ´ aq{a ´ 1 ` euq “ θp´b{a ` euq ą 0.

Now, by Taylor’s formula, we know there exist v between 0 and u such that

φpuq “ φp0q ` φ1p0qu ` 1

2
φ2pvqu2.

By direct computations, we know

φp0q “ 0, φ1p0q “ ´θ ` θeu

1 ´ θ ` θeu

ˇ

ˇ

ˇ

u“0
“ 0, (14.3)
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and

φ2pvq “ θevp1 ´ θ ` θevq ´ θeuθeu

p1 ´ θ ` θevq2

“ θevp1 ´ θq
p1 ´ θ ` θevq2

“ θev

p1 ´ θ ` θevq2
1 ´ θ

p1 ´ θ ` θevq2

“ θev

1 ´ θ ` θev
p1 ´ θev

1 ´ θ ` θev
q

“ tp1 ´ tq p θev

1 ´ θ ` θev
:“ t ą 0q

ď rpt ` p1 ´ tqq{2s2

“ 1{4.
Then from (14.3), we conclude

φpuq ď u2{8 “ s2pb ´ aq2{8.
Therefore, for the moment generating function EresXs, we have

EresXs ď expts2pb ´ aq2{8u.
�

Proposition 14.2. (Hoeffding’s inequality, 1963) Let X1, ¨ ¨ ¨ , Xn be independent r.v. bounded
by the intervals rai, bis for 1 ď i ď n. Define Sn :“ X1 ` ¨ ¨ ¨ ` Xn. Then, for t ě 0, there
hold

P rSn ´ ErSns ě ts ď expt´2t2{
ÿ

i

pbi ´ aiq2u,

P r|Sn ´ ErSns| ě ts ď 2 expt´2t2{
ÿ

i

pbi ´ aiq2u.

Writing in the form of average X̄ :“ Sn{n, the above inequalities are

P rX̄ ´ ErX̄s ě ts ď expt´2n2t2{
ÿ

i

pbi ´ aiq2u,

P r|X̄ ´ ErX̄s| ě ts ď 2 expt´2n2t2{
ÿ

i

pbi ´ aiq2u.

Proof. When t “ 0, the inequalities hold trivially. In the following, assume t ą 0. Then for
any s ą 0, by Markov’s inequality and independence of Xis, we have

P rSn ´ ErSns ě ts “ P respSn´ErSnsq ě ests
ď e´stErespSn´ErSnsqs
ď e´st

ź

i

ErespXi´ErXisqs pHoeffding’s Lemmaq

ď e´st
ź

i

e
s2pbi´aiq2

8

“ expt´st `
ÿ

i

s2pbi ´ aiq2
8

u.
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The quadratic function fpsq :“ ´st`ř

i
s2pbi´aiq2

8
attains its minimum ´2t2{řipbi ´ aiq2 at

s “ 4t{řipbi ´ aiq2. Therefore, we conclude

P rSn ´ ErSns ě ts ď expt´2t2{
ÿ

i

pbi ´ aiq2u.

The above proof also gives us

P rSn ´ ErSns ď ´ts ď expt´2t2{
ÿ

i

pbi ´ aiq2u,

by replacing Sn by ´Sn and Xis by ´Xis.

Together, we have

P r|Sn ´ ErSns| ě ts ď 2 expt´2t2{
ÿ

i

pbi ´ aiq2u.

�

Proposition 14.3. (Sample size estimate for confidence interval) Let the random vari-
able X P ra, bs. To acquire p1 ´ αq-confidence interval ErX̄s ˘ t, one needs at least rpb ´
aq2 lnp2{αq{2t2s ` 1 samples.

Proof. Let Xi, ¨ ¨ ¨ , Xn be n samples. Then we have by Hoeffding’s inequality

Er|X̄ ´ ErX̄s| ě ts ď 2e´2n2t2{npb´aq2 “ 2e´2nt2{pb´aq2 ,

which implies

Er|X̄ ´ ErX̄s| ă ts ą 1 ´ 2e´2nt2{pb´aq2 .

To acquire a p1 ´ αq-confidence interval ErX̄s ˘ t, we need 1 ´ 2e´2nt2{pb´aq2 ě 1 ´ α, i.e.,

2e´2nt2{pb´aq2 ď α, from which we easily see that n ě ´pb ´ aq2 lnpα{2q{2t2. �

An example. Consider i.i.d Bernoulli random variables X1, X2, ¨ ¨ ¨ , Xn where each Xi a
Bernoulli trial of tossing a coin with P rheads “ P rXi “ 1s “ p and P rtails “ prXi “ 0s “
1 ´ p. Then Sn :“ X1 ` ¨ ¨ ¨Xn is the number of heads for n independent tosses of the same
coin. We know ErSns “ řn

i“1 ErXis “ np. Then for any ε ą 0, we apply the Hoeffding
inequality to get

P r|Sn ´ np| ě nεs ď 2 expt´2pnεq2{
n
ÿ

i“1

p1 ´ 0q2u “ 2 expt´2nε2u.

Therefore, we have

P r|Sn ´ np| ă nεs ě 1 ´ 2 expt´2nε2u.

Letting ε “
b

lnn
n
, we have

P r|Sn ´ np| ă
?
n lnns ě 1 ´ 2{n2,

or in the average form

P
”

|Sn{n ´ p| ă
c

lnn

n

ı

ě 1 ´ 2{n2.
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Lemma 14.4. (Gibbs’ inequality) Let P “ tp1, ¨ ¨ ¨ , pnu and Q “ tq1, ¨ ¨ ¨ , qnu are two
probability distributions. Then there always holds

´
n
ÿ

i“1

pi log2 pi ď ´
n
ÿ

i“1

pi log2 qi, (14.4)

with equality iff pi “ qi for all i. In other words, entropy is always less than or equal to the
cross entropy.

Proof. (A rough proof) We just need to show that

´
n
ÿ

i“1

pi log2 qi ´ p´
n
ÿ

i“1

pi log2 piq “
n
ÿ

i“1

pi log2
pi

qi
ě 0.

The above inequality is a consequence of the Jensen’s inequality in view of the convexity of
´ log2:

n
ÿ

i“1

pi log2
pi

qi
“
ÿ

i

pip´ log2qpqi{piq ě p´ log2qp
ÿ

i

pi
qi

pi
q “ 0.

When qi “ pi for all i, Jensen’s inequality takes equality. �

The above proof also shows that the Kullback-Leibler divergence DKLpp||qq is always non-
negative:

DKLpp||qq “
n
ÿ

i“1

pi log2ppi{qiq ě 0.

Proof. (A more illuminating proof) As log2 a “ ln a{ ln 2, we could use ln to give a proof.
We have the following inequality:

ln x ď x ´ 1, for all x ą 0; with“ “ ” when x “ 1.

Denote I “ ti; pi ‰ 0u. Then,

´
n
ÿ

i“i

pi lnpqi{piq “ ´
ÿ

iPI
pi lnpqi{piq ´

ÿ

iPIc
pi lnpqi{piq.

The second term ´ř

iPIc pi lnpqi{piq “ 0 and for the first term, we have

´
ÿ

iPI
pi lnpqi{piq ě ´

ÿ

iPI
pipqi{pi ´ 1q “ ´

ÿ

iPI
qi `

ÿ

iPI
pi “ 1 ´

ÿ

iPI
qi ě 0.

Therefore, we have proved the inequality. When qi{pi “ 1 for i P I, we have equality. In the
meantime, as P and Q are probability distributions, we must have pi “ qi “ 0 for i P Ic.
Therefore, when qi “ pi for all 1 ď 1i ď n, we have equality in the entropy and cross-entropy
inequality (14.4). �

Lemma 14.5. (Log-sum inequality) Let a1, ¨ ¨ ¨ , an and b1, ¨ ¨ ¨ , bn are two sequences of non-
negative numbers and a :“ řn

i“1 ai and b :“ řn

i“1 bi. Then,

n
ÿ

i“1

ai logpai{biq ě a logpa{bq (14.5)

with equality iff ai{bi are equal for all i, i.e., ai “ cbi for some common positive constant c.
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Proof. We use the convexity of the function fpxq “ x log x defined for x ě 0. Due to change
of base formula for logarithm, we can regard the base as e without loss of generality. In fact,
it is easy to see

f 1pxq “ ln x ` 1; f 2pxq “ 1{x ě 0.

Using f , the left hand side of (14.6) can be written as
n
ÿ

i“1

bipai{biq logpai{biq “
n
ÿ

i“1

bifpai{biq “ b

n
ÿ

i“1

pbi{bqfpai{biq.

Now, we can use Jensen’s inequality to get

b

n
ÿ

i“1

pbi{bqfpai{biq ě b
ÿ

i

fp
ÿ

i

bi

b

ai

bi
q “ bfpa{bq “ a log

a

b
.

In the above step, we have inequality iff ai{bi are equal for all 1 ď i ď n. �

Remark 14.6. The log-sum inequality still holds for n “ 8 as long as
řn

i an ă 8 and
řn

i bn ă 8. The log-sum inequality can also be generalized to arbitrary g such that fpxq :“
xgpxq is convex on x ě 0.

Lemma 14.7. (Generalized log-sum inequality-the g-sum inequality) Let a1, ¨ ¨ ¨ , an, ¨ ¨ ¨ and
b1, ¨ ¨ ¨ , bn, ¨ ¨ ¨ are two sequences of nonnegative numbers and a :“ ř8

i“1 ai ă 8 and b :“
ř8

i“1 bi ă 8. Then, for any function gpxq defined on x ě 0 such that fpxq :“ xgpxq is
well-defined on x ě 0 and is convex, there holds

8
ÿ

i“1

aigpai{biq ě agpa{bq (14.6)

with equality iff ai{bi are equal for all i, i.e., ai “ cbi for some common positive constant c.

Next we discuss the Chernoff bound which relates the tail probability of a random variable
with moment generating functions. Consider the tail probability P r|X| ě as for a random
variable X with a positive number a, then we have the Markov inequality

aP r|X| ě as “
ż

r|X|ěas
a dP ď

ż

r|X|ěas
|X| dP ď

ż

Ω

|X| dP “ Er|X|s ùñ P r|X| ě as ď Er|X|s{a.

Now let X “ X1 ` ¨ ¨ ¨ ` Xn. By Markov’s inequality, we have for any t ą 0, that

P rX ě as “ P retX ě etas ď e´taEretXs “ e´taEr
n
ź

i“1

etXis,

and

P rX ď as “ P r´X ě ´as “ P re´tX ě e´tas ď etaEre´tXs “ etaEr
n
ź

i“1

e´tXis.

Lemma 14.8. (Idea of Chernoff bound) Let X is the sum of n independent random variables
X1, ¨ ¨ ¨ , Xn. Then for any positive numbers a and t, we have the following bounds

P rX ě as ď min
!

inf
tą0

 

e´ta

n
ź

i“1

EretXis
(

, 1
)

,

P rX ď as ď min
!

inf
tą0

 

eta
n
ź

i“1

Ere´tXis
(

, 1
)

.
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Theorem 14.9. (Chernoff bounds) Let X “ X1 ` ¨ ¨ ¨ ` Xn, where Xi “ 1 with probability
pi and Xi “ 0 with probability 1 ´ pi, and all Xi are independent. Let µ “ ErXs “ řn

i“1 pi.
Then

(i) (Upper tail)

P rX ě p1 ` δqµs ď e´ δ2

2`δ
µ, @ δ ą 0;

(ii) (Lower tail)

P rX ď p1 ´ δqµs ď e´µδ2{2 @ 0 ď δ ď 1;

(iii) (Full tail)

P r|X ´ µ| ě δµs ď 2e´µδ2{3 @ 0 ď δ ď 1.

Proof. We first compute the moment generating function for each Xi with t P R
1:

EretXis “ etˆ1pi ` etˆ0p1 ´ piq “ 1 ` pipet ´ 1q.
By the elementary inequality 1 ` x ď ex for all x P R

1, we notice that

EretXis ď exptpipet ´ 1qu.
As X is the sum of independent random variables, we know that

EretXs “
n
ź

i“1

EretXis ď
ź

i

exptpipet ´ 1qu “ expt
ÿ

i

pipet ´ 1qu “ exptpet ´ 1qµu.

(i) By Lemma 14.8, we have for the upper tail

P rX ě p1 ` δqµs ď inf
tą0

te´p1`δqµt exptpet ´ 1qµuu “ inf
tą0

texptµret ´ 1 ´ p1 ` δqtsuu.

Next, we compute the inf. For this, it is sufficient to minimize gptq :“ et ´ 1´ p1` δqt. It is
easy to see that gp0q “ 0 and gp`8q “ `8, and it has a global minimizer at t˚ such that
g1pt˚q “ et

˚ ´ p1 ` δq “ 0, i.e., et
˚ “ 1 ` δ. Putting this information back to g, we have

gpt˚q “ δ ´ p1 ` δq lnp1 ` δq.
Now, we obtain an upper bound for the upper tail:

P rX ě p1 ` δqµs ď exptµgpt˚qu “ exptµrδ ´ p1 ` δq lnp1 ` δqsu.
To obtain the desired upper bound, we try to bound

spδq :“ δ ´ p1 ` δq lnp1 ` δq.
We use another elementary inequality

lnp1 ` xq ě x

1 ` x{2 , @x ą 0. (14.7)

Therefore, for any δ ą 0, we have

spδq ď δ ´ p1 ` δq δ

1 ` δ{2 “ ´ δ2

2 ` δ
.

Therefore, we have

P rX ě p1 ` δqµs ď exptµspδqu ď expt´µδ2{pδ ` 2qu.
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(ii) By Lemma 14.8, we have for the lower tail

P rX ď p1 ´ δqµs ď inf
tą0

tep1´δqµt exptpe´t ´ 1qµuu “ inf
tą0

texptµre´t ´ 1 ` p1 ´ δqtsuu.

To control the lower tail, we consider to control the function

hptq :“ e´t ´ 1 ` p1 ´ δqt.

It is easy to see that hp0q “ 0, hp`8q “ `8 and h1p0q “ r´e´t ` p1 ´ δqs
ˇ

ˇ

ˇ

t“0
“ ´δ ă 0.

Therefore, hptq admits a global minimizer on r0,`8q at t˚ such that h1pt˚q “ ´e´t˚`p1´δq “
0. Putting this information back to h, we have

hpt˚q “ ´δ ´ p1 ´ δq lnp1 ´ δq.
Now, we obtained an upper bound for the lower tail

P rX ď p1 ´ δqµs ď exptµhpt˚qu “ exptµr´δ ´ p1 ´ δq lnp1 ´ δqsu.
To obtain the desired bound, we use the following bound holds

´δ ´ p1 ´ δq lnp1 ´ δq ď ´δ2

2
, @ δ P r0, 1s. (14.8)

Therefore, we have

P rX ě p1 ´ δqµs ď expt´µδ2{2u, @ δ P p0, 1q.
(iii) For the full tail, we have for all δ P p0, 1q,

P r|X ´µ| ě δµs “ P rX ď p1` δqµs `P rX ď p1´ δqµs ď e´ δ2

2`δ
µ ` e´µδ2{2 ď 2 expt´µδ2{3u.

�

To make the above complete, we show the validity of (14.7) and (14.8). To show (14.7), we
define the auxiliary function f1pxq :“ lnp1 ` xq ´ x

1`x{2 . We notice that f1p0q “ 0 and

f 1
1pxq “ 1

1 ` x
´ p1 ` x{2q ´ x ˆ 1{2

p1 ` x{2q2 “ px{2q2
p1 ` xqp1 ` x{2q2 ą 0, @x ą 0.

Therefore, (14.7) holds. To show (14.8), it is sufficient to show for δ P p0, 1q (at the two end
points, the desired inequality holds),

f2pδq :“ lnp1 ´ δq ` δ ´ δ2{2
1 ´ δ

.

It is easy to observe that f2p0q “ 0 and to compute that

f 1
2pδq “ δ2{2

p1 ´ δq2 ě 0.

Therefore, (14.8) is valid.

The generalization of the Chernoff bound can lead to Hoeffding’s inequality. Now, we con-
sider an example of n independent coin tosses. Assume the coin is fair, i.e, for each Xi,
P rheads “ 1{2. Consider Sn :“ X1 ` ¨ ¨ ¨ ` Xn, the number of heads in the n tosses. Then
the weak law of large number says

P r|Sn{n ´ 1{2| ě εs Ñ 0, n Ñ `8.
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The above convergence in (probability) measure does not specify the rate of convergence.
This rate can be specified using either Chebyshev or Chernoff. Let’s first use Chebyshev:

P r|Sn{n ´ 1{2| ě εs “ P r|Sn ´ n{2| ě nεs ď pnεq´2VarpSnq “ pnεq´2
ÿ

i

VarpXiq

“ pnεq´2n{4 “ 1

4ε2n
.

(14.9)

If ε “ 1{4, we have

P r|Sn{n ´ 1{2| ě 1{4s ď 4

n
.

Now, we use Chernoff bound:

P r|Sn{n ´ 1{2| ě δ{2s “ P r|Sn ´ n{2| ě δn{2s ď 2 expt´pn{2qδ2{3u “ 2 expt´nδ2{6u.
(14.10)

If δ “ 1{2, we have

P r|Sn{n ´ 1{2| ě 1{4s ď 2 expt´n{24u. (14.11)

If we consider a smaller δ: let δ “
b

6k lnn
n

for any positive number k, we have

P r|Sn{n ´ 1{2| ě 1

2

c

6k lnn

n
s ď 2{nk. (14.12)

15. Appendix III: Elementary things

Proposition 15.1. 12 ` 22 ` ¨ ¨ ¨ ` n2 “ 1
6
npn ` 1qp2n ` 1q.

Proof. Denote fpnq :“ řn

i“1 i
2 and use induction. For n “ 1, fp1q “ 1 “ 1

6
ˆ 1ˆ 2ˆ 3. Now

assume the desired formula holds for n, and we show it also holds for n ` 1 as follows:

fpn ` 1q “ fpnq ` pn ` 1q2 “ 1

6
npn ` 1qp2n ` 1q ` pn ` 1q2

“ 1

6
pn ` 1qrnp2n ` 1q ` 6pn ` 1qs “ 1

6
pn ` 1qpn ` 1 ` 1qr2pn ` 1q ` 1s.

Therefore, the desired formula holds true for all n. �

Proposition 15.2. 13 ` 23 ` ¨ ¨ ¨ ` n3 “ 1
4
n2pn ` 1q2.

Proof. Denote fpnq :“ řn

i“1 i
3 and use induction. For n “ 1, fp1q “ 1 “ 1

4
ˆ 1 ˆ 22. Now

assume the desired formula holds for n, and we show it also holds for n ` 1 as follows:

fpn ` 1q “ fpnq ` pn ` 1q3 “ 1

4
n2pn ` 1q2 ` pn ` 1q3

“ 1

4
pn ` 1q2pn2 ` 4pn ` 1qq “ 1

4
pn ` 1q2pn ` 1 ` 1q2.

Therefore, the desired formula holds true for all n. �
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Some elementary inequalities. Consider the function fpxq “ ex. It is convex, and the tangent

line passing through (0, 1) is y ´ 1 “ ex
ˇ

ˇ

ˇ

x“0
px ´ 0q “ x, i.e., y “ x ` 1. Therefore, we have

1 ` x ď ex, @x P R
1. (15.1)

Replacing x by ´x, we have

1 ´ x ď e´x, @x P R
1. (15.2)

When 1 ` x ě 0, we can also apply monotone functions to (15.1) to obtain

p1 ` xqα ď exptαxu, @α ą 0, (15.3)

and

p1 ` xq´α ě expt´αxu, @α ą 0, (15.4)

Consider the function fpxq “ lnp1 ` xq for x ą ´1. This function is concave and passes the
point p0, 0q. The corresponding tangent line is y “ x. Therefore, we have

lnp1 ` xq ď x, @x ą ´1. (15.5)

Replacing x ą 1 by ´x ą ´1, we have

lnp1 ´ xq ď ´x, @x ă 1. (15.6)

Using convexity and concavity, and local analysis, Taylor expansion, we could generate more
inequalities. For example, consider the fpxq “ x ln x for x ą 0. This function is globally
convex, and passes through the point p1, 0q. The corresponding tangent line passing through
this point is y “ x ´ 1. Therefore, we have

x ´ 1 ď x ln x, @x ą 0.

Now, we use the definition of convexity or concavity to derive some inequalities. For a convex
function f , we have the Jensen ineqaulity

fpαx1 ` p1 ´ αqx2q ď αfpx1q ` p1 ´ αqfpx2q,
or more generally, assume P is a probability distribution on the domain of f and X is
random variable with values in domain of f , then the Jensen inequality can be written as

fpErXsq ď ErfpXqs.
Now consider the power function fpxq “ xα for x ě 0 if α ą 0 and for x ą 0 if α is
allowed to be negative. We shall consider the case α ą 0, as otherwise, we could consider
the reciprocal. We assume α ­“ 1, 2, as these two cases are either linear or well-known for
us. The power function is convex globally on its domain when α ą 1. Hence, we have by
Jensen’s inequality for positive numbers a, b,

pa ` b

2
qα ď 1

2
aα ` 1

2
bα, @α ą 1.

i.e.,

pa ` bqα ď 2α´1paα ` bαq, @α ą 1.

By concavity, we have

pa ` bqα ě 2α´1paα ` bαq, @ 0 ă α ă 1. (15.7)

We also have for 0 ă α ă 1 that

pa ` bqα ď aα ` bα. (15.8)
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To show (15.8), it sufficient to show that p1` xqα ď 1` xα for x ě 0. This is an elementary
exercise: Let fpxq “ 1 ` xα ´ p1 ` xqα. We check that fp0q “ 0 and

f 1pxq “ α
´ 1

x1´α
´ 1

p1 ` xq1´α

¯

ą 0, @x ą 0.

From (15.7) and (15.8), we have

aα ` bα ě pa ` bqα ě 2α´1paα ` bαq, @ 0 ă α ă 1. (15.9)

The first “ ě ” is convenient to be generalized:

aα1 ` ¨ ¨ ¨ aαn ě pa1 ` ¨ ¨ ¨ ` anqα, @ 0 ă α ă 1. (15.10)
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