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STUDENT PROBLEM COMPANION 
 

To Accompany 
 

BASIC ENGINEERING CIRCUIT ANALYSIS, NINTH EDITION 
By 

J. David Irwin and R. Mark Nelms 
 
PREFACE 
 
 This Student Problem Companion is designed to be used in conjunction with Basic 

Engineering Circuit Analysis, 8e, authored by J. David Irwin and R. Mark Nelms and 
published by John Wiley & Sons, Inc..  The material tracts directly the chapters in the 
book and is organized in the following manner.  For each chapter there is a set of 
problems that are representative of the end-of-chapter problems in the book.  Each of the 
problem sets could be thought of as a mini-quiz on the particular chapter.  The student is 
encouraged to try to work the problems first without any aid.  If they are unable to work 
the problems for any reason, the solutions to each of the problem sets are also included.  
An analysis of the solution will hopefully clarify any issues that are not well understood.  
Thus this companion document is prepared as a helpful adjunct to the book. 
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CHAPTER 1 PROBLEMS 
 
1.1 Determine whether the element in Fig. 1.1 is absorbing or supplying power and how 

much. 
-2A

+

-

12V

 
Fig. 1.1 

 
1.2 In Fig. 1.2, element 2 absorbs 24W of power.  Is element 1 absorbing or supplying power 

and how much. 

+

-

12V

-

+

6V

 
Fig. 1.2 

 
1.3. Given the network in Fig.1.3 find the value of the unknown voltage VX. 

1 2

3+
-

+
-

+

-

+ - + -4V 10V
2A

2A
4A

8V12V

6A

VX

 
Fig. 1.3 
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CHAPTER 1 SOLUTIONS 
 
1.1 One of the easiest ways to examine this problem is to compare it with the diagram that 

illustrates the sign convention for power as shown below in Fig. S1.1(b). 
-2A

+

-

12V

i(t)

+

-

v(t)

 
 Fig. S1.1(a) Fig. S1.1(b) 
 
 We know that if we simply arrange our variables in the problem to match those in the 

diagram on the right, then p(t) = i(t) v(t) and the resultant sign will indicate if the element 
is absorbing (+ sign) or supplying (- sign) power. 

 
 If we reverse the direction of the current, we must change the sign and if we reverse the 

direction of the voltage we must change the sign also.  Therefore, if we make the diagram 
in Fig. S1.1(a) to look like that in Fig. S1.1(b), the resulting diagram is shown in Fig. 
S1.1(c). 

 
2A

+

-

(-12V)

 
Fig. S1.1(c) 

 
 Now the power is calculated as 
 

P = (2) (-12) = -24W 
 
 And the negative sign indicates that the element is supplying power. 
 
1.2 Recall that the diagram for the passive sign convention for power is shown in Fig. S1.2(a) 

and if p = vi is positive the element is absorbing power and if p is negative, power is 
being supplied by the element. 
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i

+

-

v

 
Fig. S1.2(a) 

 
 If we now isolate the element 2 and examine it, since it is absorbing power, the current 

must enter the positive terminal of this element.  Then 
P = VI 

24 = 6(I) 
I = 4A 

 
 The current entering the positive terminal of element 2 is the same as that leaving the 

positive terminal of element 1.  If we now isolate our discussion on element 1, we find 
that the voltage across the element is 6V and the current of 4A emanates from the 
positive terminal.  If we reverse the current, and change its sign, so that the isolated 
element looks like the one in Fig. S1.2(a), then 

 
P = (6) (-4) = -24W 

 
 And element 1 is supplying 24W of power. 
 
1.3 By employing the sign convention for power, we can determine whether each element in 

the diagram is absorbing or supplying power.  Then we can apply the principle of the 
conservation of energy which means that the power supplied must be equal to the power 
absorbed. 

 
 If we now isolate each element and compare it to that shown in Fig. S1.3(a) for the sign 

convention for power, we can determine if the elements are absorbing or supplying 
power. 

i

+

-

V
P = Vi

 
Fig. S1.3(a) 

 
 For the 12V source and the current through it to be arranged as shown in Fig. S1.3(a), the 

current must be reversed and its sign changed.  Therefore 
 

P12V = (12) (-6) = -72W 
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 Treating the remaining elements in a similar manner yields 
 
 P1 = (4) (6) = 24W 
 P2 = (2) (10) = 20W 
 P3 = (8) (4) = 32W 
 PVX = (VX) (2) = 2VX 
 
 Applying the principle of the conservation of energy, we obtain 
 

-72 + 24 + 20 + 32 + 2VX = 0 
 And  

VX = -2V 
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CHAPTER 2 PROBLEMS 
 
2.1 Determine the voltages V1 and V2 in the network in Fig. 2.1 using voltage division. 

2kΩ

3kΩ
2kΩ

4kΩ
12v +-

+

+

- -

V1

V2
 

 
Fig. 2.1 

 
2.2 Find the currents I1 and I0 in the circuit in Fig. 2.2 using current division. 

3kΩ

2kΩ

6kΩ
12kΩ

9mA I0

I1

 
 

Fig. 2.2 
 
2.3 Find the resistance of the network in Fig. 2.3 at the terminals A-B. 

A

B

8kΩ 10kΩ 2kΩ

4kΩ

18kΩ

6kΩ 3kΩ

3kΩ

6kΩ
12kΩ

12kΩ

 
Fig. 2.3 

 
2.4 Find the resistance of the network shown in Fig. 2.4 at the terminals A-B. 

A

B

4kΩ
6kΩ

2kΩ

12kΩ

12kΩ 12kΩ

18kΩ

 
Fig. 2.4 
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2.5 Find all the currents and voltages in the network in Fig. 2.5. 
2kΩ 10kΩ

2kΩ

48V 4kΩ 3kΩ 4kΩ
6kΩ

I1

V1 V2 V3

I2

I4

A B

I3 I5

I6

+

-

+ +

- -
+-

 
Fig. 2.5 

 
2.6 In the network in Fig. 2.6, the current in the 4kΩ resistor is 3mA.  Find the input voltage 

VS. 

2kΩ 1kΩ

VS 4kΩ
3mA

6kΩ 3kΩ2kΩ

9kΩ
+-

 
Fig. 2.6 
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CHAPTER 2 SOLUTIONS 
 
2.1 We recall that if the circuit is of the form 

V1

R1

R2 V0

+
- +

-  
Fig. S2.1(a) 

 
 Then using voltage division 
 

1
21

2
0 V

RR
R

V ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=  

 
 That is the voltage V1 divides between the two resistors in direct proportion to their 

resistances.  With this in mind, we can draw the original network in the form 
 

V1

2kΩ

V2

12V +
- +

-

3kΩ
4kΩ

2kΩ
-
+

 
Fig. S2.1(b) 

 
 The series combination of the 4kΩ and 2kΩ resistors and their parallel combination with 

the 3kΩ resistor yields the network in Fig. S2.1(c). 

12V
2kΩ

V1

+
- +

-
2kΩ

 
Fig. S2.1(c) 

 
 Now voltage division can be sequentially applied.  From Fig. S2.1(c). 
 

V6

12
k2k2

k2V1

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
 

 
 Then from the network in Fig. S2.1(b) 
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V2

V
k4k2

k2V 12

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
 

 
2.2 If we combine the 6k and 12k ohm resistors, the network is reduced to that shown in Fig. 

S2.2(a). 

3kΩ
2kΩ

4kΩ
9mA

I1

 
Fig. S2.2(a) 

 
 The current emanating from the source will split between the two parallel paths, one of 

which is the 3kΩ resistor and the other is the series combination of the 2k and 4kΩ 
resistors.  Applying current division 

 

( )
mA3

k4k2k3
k3

k
9I1

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

=
 

 
 Using KCL or current division we can also show that the current in the 3kΩ resistor is 

6mA.  The original circuit in Fig. S2.2 (b) indicates that I1 will now be split between the 
two parallel paths defined by the 6k and 12k-Ω resistors. 

3kΩ
2kΩ

6kΩ
9mA

I1 = 3mA

6mA
12kΩ
I0  

Fig. S2.2(b) 
 
 Applying current division again 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
k12k6

k6II 10  

 
mA1

k18
k6

k
3I0

=

⎟
⎠
⎞

⎜
⎝
⎛=

 

 
 Likewise the current in the 6kΩ resistor can be found by KCL or current division to be 

2mA.  Note that KCL is satisfied at every node. 
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2.3 To provide some reference points, the circuit is labeled as shown in Fig. S2.3(a). 

A

B

8k 10k 2k

4k
18k

6k 3k

3k
6k

12k
12k

A' A"

B' B"
 

Fig. S2.3(a) 
 
 Starting at the opposite end of the network from the terminals A-B, we begin looking for 

resistors that can be combined, e.g. resistors that are in series or parallel.  Note that none 
of the resistors in the middle of the network can be combined in anyway.  However, at 
the right-hand edge of the network, we see that the 6k and 12k ohm resistors are in 
parallel and their combination is in series with the 2kΩ resistor.  This combination of 
6k⎪⎢12k + 2k is in parallel with the 3kΩ resistor reducing the network to that shown in 
Fig. S2.3(b). 

A

B

8k 10k

2k = 3k   (6k   12k + 2k)
4k

18k
6k

3k

12k

A' A"

B' B"
 

Fig. S2.3(b) 
 
 Repeating this process, we see that the 2kΩ resistor is in series with the 10kΩ resistor 

and that combination is in parallel with the12kΩ resistor.  This equivalent 6kΩ resistor 
(2k + 10k)⎪⎢12k is in series with the 3kΩ resistor and that combination is in parallel with 
the 18kΩ resistor that (6k + 3k)⎪⎢18k = 6kΩ and thus the network is reduced to that 
shown in Fig. S2.3(c). 

A

B

8k

4k
6k

6k

A'

B'
 

Fig. S2.3(c) 
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 At this point we see that the two 6kΩ resistors are in series and their combination in 
parallel with the 4kΩ resistor.  This combination (6k + 6k)⎪⎢4k = 3kΩ which is in series 
with 8kΩ resistors yielding A total resistance RAB = 3k + 8k = 11kΩ. 

 
2.4 An examination of the network indicates that there are no series or parallel combinations 

of resistors in this network. However, if we redraw the network in the form shown in Fig. 
S2.4(a), we find that the networks have two deltas back to back. 

A

B

4k

2k 12k 12k

12k
6k 18k

 
Fig. S2.4(a) 

 
 If we apply the ∆→Y transformation to either delta, the network can be reduced to a 

circuit in which the various resistors are either in series or parallel.  Employing the ∆→Y 
transformation to the upper delta, we find the new elements using the following equations 
as illustrated in Fig. S2.4(b) 

12k

R1

6k 18k

R3
R2

 
Fig. S2.4(b) 

 
( ) ( )

Ω=
++

= k3
k18k12k6

k18k6R1  

( ) ( )
Ω=

++
= k2

k18k12k6
k12k6R 2  

( ) ( )
Ω=

++
= k6

k18k12k6
k18k12R 3  

 
 The network is now reduced to that shown in Fig. S2.4(c). 
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A

B

4k

2k
12k

12k

3k

2k 6k

 
Fig. S2.4(c) 

 
 Now the total resistance, RAB is equal to the parallel combination of (2k + 12k) and (6k + 

12k) in series with the remaining resistors i.e. 
 

RAB = 4k + 3k + (14k⎪⎢18k) + 2k 
 = 16.875kΩ 
 
 If we had applied the ∆→Y transformation to the lower delta, we would obtain the 

network in Fig. S2.4(d). 

A

B

4k

2k

4k
4k

4k

6k 18k

 
Fig. S2.4(d) 

 
 In this case, the total resistance RAB is 
 

RAB = 4k + (6k + 4k)⎪⎢(18k + 4k) + 4k +2k 
 = 16.875kΩ 
 
 which is, of course, the same as our earlier result. 
 
2.5 Our approach to this problem will be to first find the total resistance seen by the source, 

use it to find I1 and then apply Ohm’s law, KCL, KVL, current division and voltage 
division to determine the remaining unknown quantities.  Starting at the opposite end of 
the network from the source, the 2k and 4k ohm resistors are in series and that 
combination is in parallel with the 3kΩ resistor yielding the network in Fig. S2.5(a). 



 14

A B

2k

10k

V1
4k48V

6kI1 I2

I3

I4

2k+-
+

-

+

-
V2

 
Fig. S2.5(a) 

 
 Proceeding, the 2k and 10k ohm resistors are in series and their combination is in parallel 

with both the 4k and 6k ohm resistors.  The combination (10k + 2k)⎪⎢6k⎪⎢4k = 2kΩ.  
Therefore, this further reduction of the network is as shown in Fig. S2.5(b). 

2k

2k48
+

-
V1

I1+-

 
Fig. S2.5(b) 

 
 Now I1 and V1 can be easily obtained. 
 

mA12
k2k2

48I1 =
+

=  

 And by Ohm’s law 
 

V1 = 2kI1 
 = 24V 
 or using voltage division 
 

V24
k2k2

k248V1

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
 

 
 once V1 is known, I2 and I3 can be obtained using Ohm’s law 
 

mA6
k4

24
k4

VI 1
2 ===  

mA4
k6

24
k6

VI 1
3 ===  

 
 I4 can be obtained using KCL at node A.  As shown on the circuit diagram. 
 
 I1 = I2 + I3 + I4 
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4I
k
4

k
6

k
12

++=  

 mA2
k
2I4 ==  

 
 The voltage V2 is then 
 
 V2 = V1 - 10kI4 

( ) ⎟
⎠
⎞

⎜
⎝
⎛−=

k
2k1024  

 = 4V 
 
 or using voltage division 
 

V4
6
124

k2k10
k2VV 12

=

⎟
⎠
⎞

⎜
⎝
⎛=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

 

 
 Knowing V2, I5 can be derived using Ohm’s law 
 

mA
3
4

k3
V

I 2
5

=

=
 

 and also 
 

mA
3
2

k4k2
VI 2

6

=

+
=

 

 
 current division can also be used to find I5 and I6. 
 

mA
3
4

k3k4k2
k4k2II 45

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

+
=

 

 and 
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mA
3
2

k4k2k3
k3II 46

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

=
 

 
 Finally V3 can be obtained using KVL or voltage division 
 

V
3
8

k3
2k24

kI2VV 623

=

⎟
⎠
⎞

⎜
⎝
⎛−=

−=

 

 and 
 

V
3
8

k2k4
k4VV 23

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
 

 
2.6 The network is labeled with all currents and voltages in Fig. S2.6. 

A B

4k
6k

3k

9k1k

2k

2k

V1

V2

V3

V4

VS

I1

I2

I3

I4

I5

+-
+

-

+

-

+ - + -

3
k

 
Fig. S2.6 

 
 Given the 3mA current in the 4kΩ resistor, the voltage 
 

( ) V12k4
k
3V1 =⎟

⎠
⎞

⎜
⎝
⎛=  

 
 Now knowing V1, I1 and I2 can be obtained using Ohm’s law as 
 

 mA2
k6

12
k6

VI 1
1 ===  

mA1
k12

12
k3k9

VI 1
2 ==

+
=  

 
 Applying KCL at node B 
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mA6

II
k
3I 213

=

++=
 

 Then using Ohm’s law 
 

V2 = I3 (1k) 
= 6V 

 
 KVL can then be used to obtain V3 i.e. 
 

V3 = V2 + V1 
 = 6 + 12 
 = 18V 
 
 Then 
 

mA9
k2

V
I 3

4

=

=
 

 
 And 
 

mA15
k
9

k
6

III 435

=

+=

+=

 

 
 using Ohm’s law 
 

V4 = (2k) I5 
 = 30V 
 
 and finally 
 

VS = V4 + V3 
 = 48V 
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CHAPTER 3 PROBLEMS 
 
3.1 Use nodal analysis to find V0 in the circuit in Fig. 3.1. 

+-

+

-

1kΩ 1kΩ
1kΩ

2kΩ

2mA

V0
12V

 
Fig. 3.1 

 
3.2 Use loop analysis to solve problem 3.1 
 
 
3.3 Find V0 in the network in Fig. 3.3 using nodal analysis. 

+

-

2kΩ

12V

2kΩ
1kΩ V0

1kIX

- +

+-
IX  

Fig. 3.3 
 
3.4 Use loop analysis to find V0 in the network in Fig. 3.4. 

4mA
+

-

1kΩ 1kΩ

1kΩ 2kΩ V0

2IX

IX  
Fig. 3.4 
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CHAPTER 3 SOLUTIONS 
 
3.1 Note that the network has 4 nodes.  If we select the node on the bottom to be the 

reference node and label the 3 remaining non-reference nodes, we obtain the network in 
Fig. S3.1(a). 

+-
1k 1k

1k 2k

V0

12

V2V1

2
k

 
Fig. S3.1(a) 

 
 Remember the voltages V1, V2 and 0V are measured with respect to the reference node.  

Since the 12V source is connected between node V1 and the reference, V1 = 12V 
regardless of the voltages or currents in the remainder of the circuit.  Therefore, one of 
the 3 linearly independent equations required to solve the network (N – 1, where N is the 
number of nodes) is 

 
V1 = 12 

 
 The 2 remaining linearly independent equations are obtained by applying KCL at the 

nodes labeled V2 and 0V .  Summing all the currents leaving node V2 and setting them 
equal to zero yields 

 

0
k1

VV
k1

V
k1

VV 02212 =
−

++
−  

 
 Similarly, for the node labeled 0V , we obtain 
 

0
k2

V
k1

VV
k
2 020 =+

−
+

−  

 
 The 3 linearly independent equations can be quickly reduced to 
 

k
12

k
1V

k
3V 02 =⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛  

k
2

k2
3V

k
1V 02 =⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛−  
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 or 
 

3V2 – 0V  = 12 

2V
2
3V 02 =+−  

 

 Solving these equations using any convenient method yields V2 = 
7
40 V and 0V  = 

7
36 V.  

We can quickly check the accuracy of our calculations.  Fig. S3.1(b) illustrates the circuit 
and the quantities that are currently known. 

+-
1k 1k

1k 2k

I2

14
7k

A

84
7 V

I4

I3

I1

40
7

V
36
7

V

 
Fig. S3.1(b) 

 
 All unknown branch currents can be easily calculated as follows. 
 

A
k7

44
k1

7
40

7
84

I1 =
−

=  

 A
k7

40
k1
7
40

I2 ==  

A
k7
4

k1
7
36

7
40

I3 =
−

=  

 A
k7

18
k2
7
36

I4 ==  

 
 KCL is satisfied at every node and thus we are confident that our calculations are correct. 
 
3.2 The network contains 3 “window panes” and therefore 3 linearly independent loop 

equations will be required to determine the unknown currents and voltages.  To begin we 
arbitrarily assign the loop currents as shown in Fig. S3.2. 
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+-
1kΩ 1kΩ

1kΩ 2kΩ
V0

12V

I3

I1 I2

+

-

3
k

A

 
Fig. S3.2 

 
 The equations for the loop currents are obtained by employing KVL to the identified 

loops.  For the loops labeled I1 and I2, the KVL equations are 
 

-12 + 1k(I1 – I3) + 1k (I1 – I2) = 0 
 
 and 
 

1k(I2 –I1) + 1k(I2 – I3) + 2kI3 = 0 
 
 In the case of the 3rd loop, the current I3 goes directly through the current source and 

therefore 
 

k
2I3 =  

 
 Combining these equations yields 
 

2kI1 – 1kI2 = 14 
-1kI1 + 4kI2 = 2 

 

 Solving these equations using any convenient method yields I1 = 
k7

58 A and I2 = 
k7

18 A.  

Then V0 is simply 
 

V0 = 2kI3 

 V
7
36

=  

 
 Once again, a quick check indicates that KCL is satisfied at every node.  Furthermore, 

KVL is satisfied around every closed path.  For example, consider the path around the 
two “window panes” in the bottom half of the circuit.  KVL for this path is 

 
 -12 + 1k(I1 – I3) + 1k(I2 – I3) + 2kI3 = 0 
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0
k7

18k2
k7

14
k7

18k1
k7

14
k7

58k112 =⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −+−  

 0 = 0 
 
3.3 The presence of the two voltage sources indicates that nodal analysis is indeed a viable 

approach for solving this problem.  If we select the bottom node as the reference node, 
the remaining nodes are labeled as shown in Fig. S3.3(a). 

+
-

1kIX

2k

V0-12
+-

1k2k

IX

V0

12

 
Fig. S3.3(a) 

 
 The node at the upper right of the circuit is clearly V0, the output voltage, and because the 

12V source is tied directly between this node and the one in the center of the network, 
KVL dictates that the center node must be 0V  –12 e.g. if 0V  = 14V, then the voltage at 
the center node would be 2V.  Finally, the node at the upper left is defined by the 
dependent source as 1kIX. 

 
 If we now treat the 12V source and its two connecting nodes as a supernode, the current 

leaving the supernode to the left is 
k2

kI112V X0 −−
, the current down through the center 

leg of the network is 
k2

12V0 −
 and the current leaving the supernode on the right edge is 

k1
V0 .  Therefore, KCL applied to the supernode yields 

 

0
k1

V
k2

12V
k2

kI112V 00X0 =+
−

+
−−

 

 
 Furthermore, the control variable IX is defined as 
 

k2
12V

I 0
X

−
=  

 
 combining these two equations yields 
 

V
7
36V0 =  
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 The voltages at the remaining non-reference nodes are 
 

V
7
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7
84

7
3612
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3612V0

−
=−=−=−  

 
 And 
 

V
7
24

k2
7
48

k1
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12V
k1kI1 0
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−
=
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⎟
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⎞

⎜
⎜
⎜
⎜

⎝

⎛ −

=⎟
⎠
⎞

⎜
⎝
⎛ −

=  

 
 The network, labeled with the node voltages, is shown in Fig. S3.3(b) 

+
-

2k
+-

1k2k

I1 12I2
I3

-48
7 V-24

7 V 36
7 V

 
Fig. S3.3(b) 

 
 Then 
 

A
k7

12
k2

7
48

7
24

I1 =
⎟
⎠
⎞

⎜
⎝
⎛ −

−
−

=  

 A
k7

24
k2

7
48

I2 −=

−

=  

 
k7

36
k1

7
36

I3 ==  

 
 Note carefully that KCL is satisfied at every node. 
 
3.4 Because of the presence of the two current sources, loop analysis is a viable solution 

method.  We will select our loop currents (we need 3 since there are 3 “window panes” in 
the network) so that 2 of them go directly through the current sources as shown in Fig. 
S3.4(a). 
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1k 1k
1k 2k V0

I1

I2 I3

+

-

4
k

IX

2IX

 
Fig. S3.4(a) 

 
 Therefore, two of the three linearly independent equations needed are 
 

I1 = 2IX = 2(I2 – I3) 

 
k
4I2 =  

 
 Applying KVL to the third loop yields 
 

1k(I3 –I2) + 1k(I3 – I1) + 2kI3 = 0 
 
 combining equations yields 
 

I3 = 2mA 
 
 And then 
 

0V  = 4V 
 
 And 
 

I1 = 4mA 
 
 Using these values, the branch currents are shown in Fig. S3.4(b) 

2

4
k

k

k
2

2
k

k
4

 
Fig. S3.4(b) 

 
 Although one branch of the network are no current, KCL is satisfied at every node. 
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CHAPTER 4 PROBLEMS 
 
4.1 Derive the gain equation for the nonideal noninverting op-amp configuration and show 

that it reduces to the ideal gain equation if Ri and A are very large, i.e. greater than 106. 
 
4.2 Determine the voltage gain of the op-amp circuit shown in Fig. 4.2. 
 

+

-

25kΩ

50kΩ

6kΩ3kΩ
50kΩ

25kΩ

vo
vs

+
-

+
-

 
 

Fig. 4.2 
 
4.3 Using the ideal op-amp model show that for the circuit shown in Fig. 4.3, the output 

voltage is directly related to any small change ∆R. 
 

+

-

R

∆RR

R

R vovs

+

-

+
-

 
 

Fig. 4.3 
 
4.4 Given an op-amp and seven standard 12kΩ resistors, design an op-amp circuit that will 

produce an output of  
 

210 v
2
1 - 2v-  v =  



 26

CHAPTER 4 SOLUTIONS 
 
4.1 The noninverting op-amp circuit is shown in Fig. S4.1(a). 
 

vo

v1N

RF

RI

+

-

 
 

Fig. S4.1(a) 
 
 The nonideal model is 
 

+

-
RI

v-
v1N

v+ ve Ri

Ave

Ro

RF

+

- +
-

 
 

Fig. S4.1(b) 
 
 or 
 

+          -

RI vov1N

+

-

ve v1

Ri

Ave

Ro

RF

+
- +

-

 
 

Fig. S4.1(c) 
 
 The node equations for this circuit are 
 

0  
R

 v- v
  

R
v  

R
v- v

F

o1

I

1

i

1N1 =++  
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 Following the development on page 141 of the text yields 
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 assuming Ri → ∞, the equation reduces to  
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 Now dividing both numerator and denominator by A and using A → ∞ yields 
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 which is the ideal gain equation. 
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4.2 The network in Fig. 4.2 can be reduced to that shown in Fig. S4.2(a) by combining 
resistors. 

 

vo
vs

+

-

25kΩ
50kΩ

2kΩ
75kΩ

+-

+

-

 
 

Fig. S4.2(a) 
 
 v+ is determined by the voltage divider at the input, i.e. 
 

ss  v
4
3  

75k 25k 
75k  v v =⎥⎦

⎤
⎢⎣
⎡

+
=+  

 
 The op-amp is in a standard noninverting configuration and the gain is 26  2k

50k  1 =+ . 

 
 Therefore 
 

( ) ( )so  v4
3 26  v =  

 
 and  
 

19.5  
v
v

s

o =  

 
4.3 The node equations for the circuit in Fig. 4.3 are 
 

0  
RR

 v- v
  

R
 v- v -o-s =

∆+
+  

 

R
v  

R
 v- vs ++ =  

 
+− = v v  

 
 Then 
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4.4 A weighted-summer circuit shown in Fig. S4.4(a) can be used to produce an output of the 

form 2
2

1
1

o  v
R
R -  v

R
R-  v = . 

 

vo

v1

R
R1

R2

v2

+- +

-

+
-

+

-
 

 
Fig. S4.4(a) 

 
 Note that 
 

2
1  

R
R   and   2  

R
R

21

==  

 
 Therefore if 
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  R = 24kΩ (two 12kΩ resistors in series) 
 
  R1 = 12kΩ 
 
  R2 = 48kΩ (four 12kΩ resistors in series) 
 
 then the design conditions are satisfied. 
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CHAPTER 5 PROBLEMS 
 
5.1 Find 0V  in the circuit in Fig. 5.1 using the Principle of Superposition. 

+
-

12V

6kΩ 8kΩ

6mA

4kΩ

+

-
0V

 
Fig. 5.1 

 
5.2 Solve problem 5.1 using source transformation. 
 
5.3. Find 0V  in the network in Fig. 5.3 using Thevenin’s Theorem. 

6kΩ

2kΩ

4mA

4kΩ
+

-

0V3kΩ
+
-

 
Fig. 5.3 

 
5.4 Find 0I  in the circuit in Fig. 5.4 using Norton’s Theorem. 

+
- 6kΩ2kΩ 2mA

3kΩ
12V

0I
 

Fig. 5.4 
 
5.5 For the network in Fig. 5.5, find RL for maximum power transfer and the maximum 

power that can be transferred to this load. 
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+ -

+
-XV2

XV

LR

 
Fig. 5.5 
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CHAPTER 5 SOLUTIONS 
 
5.1 To apply superposition, we consider the contribution that each source independently 

makes to the output voltage 0V .  In so doing, we consider each source operating alone 
and we zero the other source(s).  Recall, that in order to zero a voltage source, we replace 
it with a short circuit since the voltage across a short circuit is zero.  In addition, in order 
to zero a current source, we replace the current source with an open circuit since there is 
no current in an open circuit. 

 
 Consider now the voltage source acting alone.  The network used to obtain this 

contribution to the output 0V  is shown in Fig. S5.1(a). 

+
-12V

6kΩ 8kΩ

6mA
4kΩ

+

-

0V

 
Fig. S5.1(a) 

 
 Then 0V ′ (only a part of 0V ) is the contribution due to the 12V source.  Using voltage 

division 

V
3
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k8k6k4
k412V0

−
=

⎟⎟
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⎞
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⎝

⎛
++

−=
 

 
 The current source’s contribution to 0V  is obtained from the network in Fig. S5.1(b). 

6k 8k

4k

+

-

0V ′′
k
6
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Fig. S5.1(b) 

 
 Using current division, we find that 
 

mA2
k4k8k6

k6
k
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=
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 Then 
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V8
kI4V 00

=
=″

 

 Then superposition states that 
 

V
3

168
3
8

VVV 000

=+
−

=

″+′=
 

 
5.2 Recall that when employing source transformation, at a pair of terminals we can 

exchange a voltage source VS in series with a resistor RS for a current source Ip in parallel 
with a resistor Rp and vice versa, provided that the following relationships among the 
parameters exist. 

 

S

S
p R

V
I =  

 Rp = RS 
 
 Now the original circuit is shown in Fig. S5.2(a). 

+
-12V

6kΩ 8kΩ

6mA
4kΩ

+

-

0V

 
Fig. S5.2(a) 

 
 Note that we have a 12V source in series with a 6kΩ resistor that can be exchanged for a 

current source in parallel with the resistor.  This appears to be a viable exchange since we 
will then have two current sources in parallel which we can add algebraically.  
Performing the exchange yields the network in Fig. S5.2(b). 

6k

8k

4k

+

-
0Vk

6
k
2

 
Fig. S5.2(b) 

 
 Note that the voltage source was positive at the bottom terminal and therefore the current 

source points in that direction.  Adding the two parallel current sources reduces the 
network to that shown in Fig. S5.2(c). 
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Fig. S5.2(c) 

 
 At this point we can apply current division to obtain a solution.  For example, the current 

in the 4kΩ resistor is 
 

mA
3
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k
4I k4

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

=
 

 
 Then 
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V
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16
k4IV k40

=
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 However, we could also transform the current source and the parallel 6kΩ resistor into a 

voltage source in series with the 6kΩ resistor before completing the solution.  If we make 
this exchange, then the network becomes that shown in Fig. S5.2(d). 

+
-24V

6k 8k
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-
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Fig. S5.2(d) 

 
 Then using voltage division 
 

V
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5.3 Since the network contains no dependent source, we will simply determine the open 

circuit voltage, c0V , and with the sources in the network made zero, we will look into the 
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open circuit terminals and compute the resistance at these terminals, RTH.  The open 
circuit voltage is determined from the network in Fig. S5.3(a). 

12V +
-

6k

4k

+

-

C0V
3k

+

-
2V

+-
1V

1I

2I

k
4

 
Fig. S5.3(a) 

 
 Note the currents and voltages labeled in the network.  First of all, note that 
 

21C0 VVV +=  
 
 Therefore, we need only to determine these voltages.  Clearly, the voltage V1 is 
 

V1 = I1 (4k) = 16V 
 
 However, to find V2 we need I2.  KVL around the loop I2 yields 
 

-12 + 6k (I2 – I1) + 3kI2 = 0 
 
 or 
 

mA4
k
4I

0kI3)
k
4I(k612

2

22

==

=+−+−
 

 
 Now 
 

V28
kI3kI4

VVV

21

21C0

=
+=

+=
 

 
 The Thevenin equivalent resistance is found by zeroing all sources and looking into the 

open circuit terminals to determine the resistance.  The network used for this purpose is 
shown in Fig. S5.3(b). 
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6k 4k

THR3k

 
Fig. S5.3(b) 

 
 From the network we see that the 6k and 3k Ohm resistors are in parallel and that 

combination is in series with the 4kΩ resistor.  Thus 
 

RTH = 4k + 3k⎟ ⎜6k 
 = 6kΩ 
 
 Therefore, the Thevenin equivalent circuit consists of the 28V source in series with the 

6kΩ resistor.  If we connect the 2kΩ resistor to this equivalent network we obtain the 
circuit in Fig. S5.3(c). 

6kΩ
2kΩ

+

-
0V28V

+
-

 
Fig. S5.3(c) 

 
 Then using voltage division 
 

V7
k6k2

k228V0
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⎟⎟
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⎞
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⎛
+

=
 

 
5.4 In this network, the 2kΩ resistor represents the load.  In applying Norton’s Theorem we 

will replace the network without the load by a current source, the value of which is equal 
to the short-circuit current computed from the network in Fig. S5.4(a), in parallel with the 
Thevenin equivalent resistance determined from Fig. S5.4(b). 

3k
6k

SCI12V +
- k

2

 
Fig. S5.4(a) 
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3k
6k

THR

 
Fig. S5.4(b) 

 
 with reference to Fig. S5.4(a), all current emanating from the 12V source will go through 

the short-circuit.  Likewise, all the current in the 2mA current source will also go through 
the short-circuit so that 

 

mA2
k
2

k3
12ISC =−=  

 
 If this statement is not obvious to the reader, then consider the circuit shown in Fig. 

S5.4(c). 
I

R SCI

 
Fig. S5.4(c) 

 
 Knowing that the resistance of the short-circuit is zero, we can apply current division to 

find ISC 
 

I
0R

RIISC

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
 

 
 indicating that all the current in this situation will go through the short-circuit and none of 

it will go through the resistor.  From Fig. S5.4(b) we find that the 3k and 6k Ohm 
resistors are in parallel and thus 

 
RTH = 3k⎟ ⎜6k = 2kΩ 

 
 Now the Norton equivalent circuit consists of the short-circuit current in parallel with the 

Thevenin equivalent resistance as shown in Fig. S5.4(d). 

2mA 2kΩ

 
Fig. S5.4(d) 
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 Remember, at the terminals of the 2kΩ load, this network is equivalent to the original 

network with the load removed.  Therefore, if we now connect the load to the Norton 
equivalent circuit as shown in Fig. S5.4(e), the load current 0I  can be calculated via 
current division as 

 

mA1
k2k2

k2
k
2I0

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
 

 

2k2kk
2

0I  
Fig. S5.4(e) 

 
5.5 The solution of this problem involves finding the Thevenin equivalent circuit at the 

terminals of the load resistor RL and setting RL equal to the Thevenin equivalent 
resistance RTH. 

 
 To determine the Thevenin equivalent circuit, we first find the open circuit voltage as 

shown in Fig. S5.5(a). 

+
-12

3k 6k

+ -

+
- XV2 ′

XV′

C0V

+

-
 

Fig. S5.5(a) 
 
 We employ the prime notation on the control variable Vx since the circuit in Fig. S5.5(a) 

is different than the original network.  Applying KVL to the left side of the network 
yields 

 
-12 +Vx′ + 2Vx′ = 0 

 Vx′ = 4V 
 
 Then the open circuit voltage is 
 

V8
V2V XC0

=

′=  

 
 since there is no current in the 6kΩ resistor and therefore no voltage drop across it. 
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 Because of the presence of the dependent source we cannot simply look back into the 

open circuit terminals, with all independent sources made zero, and determine the 
Thevenin equivalent resistance.  We must determine the short-circuit current, ISC and 
determine RTH from the expression 

 

SC

C0
TH I

V
R =  

 
 ISC is found from the circuit in Fig. S5.5(b). 

+
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3k 6k

+ -

+
- XV2 ′′
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SCI

 
Fig. S5.5(b) 

 
 Once again, using KVL 
 

-12 +Vx″ + 2Vx″ = 0 
 Vx″ = 4 
 
 Then, since the dependent source 2Vx″ = 8V is connected directly across the 6kΩ resistor 
 

mA
3
2

k6
V2I X

SC =
″

=  

 
 and 
 

Ω=== k12

k3
2
8

I
V

R
SC

C0
TH  

 
 Hence, for maximum power transfer 
 

RL = RTH = 12kΩ 
 
 And the remainder of the problem involves finding the power absorbed by the 12kΩ load, 

PL.  From the network in Fig. S5.5(c) we find that 
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Fig. S5.5(c) 
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CHAPTER 6 PROBLEMS 
 
6.1 If the voltage across a 10µF capacitor is shown in Fig. 6.1, derive the waveform for the 

capacitor current. 

4

2

4 6 80 2
t (ms)

 
Fig. 6.1 

 
6.2 If the voltage across a 100mH inductor is shown in Fig. 6.2, find the waveform for the 

inductor current. 

4

-2

0.2
t(s)

0
0.1

v(t) (mV)

 
Fig. 6.2 

 
6.3 Find the equivalent capacitance of the network in Fig. 6.3 at the terminals A-B.  All 

capacitors are 6µF. 
A

B

eqC

 
Fig. 6.3 

 
6.4 Find the equivalent inductance of the network in Fig. 6.4 at the terminals A-B.  All 

inductors are 12mH. 
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A

B  
Fig. 6.4 
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CHAPTER 6 SOLUTIONS 
 
6.1 The equations for the waveforms in the 4 two millisecond time intervals are listed below. 
 

( )

ms8t,0t0

ms8t6t
102
416

ms6t4t
102
22

ms4t22

ms2t0t
102
2

bmttv

3

3

3

><=

≤≤
×

−+=

≤≤
×

+−=

≤≤=

≤≤
×

=

+=

−

−

−

 

 
 Note that within each interval we have simply written the equation of a straight line using 

the expression y = mx + b or equivalently v(t) = mt + b where m is the slope of the line 
and b is the point at which the line intersects the v(t) axis. 

 
 The equation for the current in a capacitor is 
 

( )
dt
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 Using this expression we can compute the current in each interval.  For example, in the 

interval from 0 ≤ t ≤ 2ms 
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 The waveform for the capacitor current is shown in Fig. S6.1. 
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Fig. S6.1 

 
6.2 The general expression for the current in an inductor is 
 

( ) ( ) ( )∫+= t
t0 0

dxxvtiti  
 
 In order to evaluate this function we need the equation of the voltage waveform in the 

two time intervals 0 ≤ t ≤ 0.1s and 0.1 ≤ t ≤ 0.2s.  In the first case, the voltage function is 
a straight line and the function passes through the origin of the graph.  The equation of a 
straight line on this graph is 

 
v(t) = mt + b 

 
 where m is the slope of the line and b is the point at which the line intersects the v(t) axis.  

Since the slope is 
1.0

104 3−× , the equation of the line is 

 

( ) t
1.0

104tv
3−×

=  

 
 where v(t) is measured in volts and time is measured in seconds i.e., the slope has units of 

volts/sec.  Therefore, 
 

( ) ( ) ∫ ×
×

+=
−

t
0

3

dx
1.0

104
L
10iti  

 

 since there is no initial current in the inductor i(t) = 0 and 10
L
1

=  

 
( ) ∫ ××= −t

0
2 dx10410ti  

 
 or 
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( )

mAt200At2.0
2

x4.0dx4.0ti

22

t
0

t
0

2

==

∫ =×=
 

 
 Since the initial current for the second time interval is determined by the value of the 

current at the end of the first time interval we calculate 
 

( )
mA2

mAt200ti 1.0t
2

1.0t

=

= ==  

 
 Therefore, in the time interval 0.1 ≤ t ≤ 0.2s 
 

( ) ( ) ( )∫+= t
1.0 dxxv

L
11.0iti  

 
 Note that in this interval v(x) is a constant –2mV or –2 × 10-3V.  Hence, 
 

( ) ( )

( )mAt204

1020102

dx10210102ti
t

1.0
33

t
1.0

33

−=

××−×=

∫ ×−+×=
−−

−−

 

 
 If we now plot the two functions for the current within their respective time intervals we 

obtain the plot in Fig. S6.2. 

2

0.2
t(s)

0 0.1
 

Fig. S6.2 
 
6.3 To begin our analysis we first label all the capacitors and nodes in the network as shown 

in Fig. S6.3(a). 
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A

B

1C 2C 3C

4C
5C

6C

C D

 
Fig. S6.3(a) 

 
 First of all, the reader should note that all the nodes have been labeled, i.e., there are no 

other nodes.  As we examine the topology of the network we find that since C3 and C5 are 
both connected to node D the network can be redrawn as shown in Fig. S6.3(b). 

A

B

1C 2C

3C

4C

5C6C

C D

 
Fig. S6.3(b) 

 
 Clearly, C5 and C6 are in parallel and their combination we will call C56 = C5⎟ ⎜C6.  

Combining these two capacitors reduces the network to that shown in Fig. S6.3(c). 

A

B

1C 2C

3C

4C

56C

C

D

 
Fig. S6.3(c) 

 
 At this point we find that C2 and C4 are in parallel and their combination, which we call 

C24 = C2⎟ ⎜C4, reduces the network to that shown in Fig. S6.3(d). 

A

B

1C 24C

3C56C

C D

 
Fig. S6.3(d) 
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 If we now use the given capacitor values, the network becomes that shown in Fig. 
S6.3(e). 

A

B

6µF

6µF

12µF

12µF

 
Fig. S6.3(e) 

 
 Starting at the opposite end of the network from the terminals A-B and combining 

elements we find that 6µF in series with 12µF is 4µF and this equivalent capacitance is in 
parallel with 12µF yielding 16µF, which in turn is in series with 6µF producing a total 
capacitance of 

 

F36.4
F16F6Ceq

µ=

µµ=
 

 
6.4 To aid our analysis, we will first label all inductors and nodes as shown in Fig. S6.4(a). 

A

B

1L 2L

3L

4L

5L

6L

C

 
Fig. S6.4(a) 

 
 Note carefully that all the nodes have been labeled.  Once readers recognize that there are 

no other nodes, they are well on their way to reducing the network since this node 
recognition provides data indicating which elements are in series or parallel.  For 
example, since one end of L4 is connected to node B, the network can be redrawn as 
shown in Fig. S6.4(b). 

A

B

1L 2L

3L

4L

5L

6L

C

 
Fig. S6.4(b) 
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 This diagram clearly indicates that L2 and L5 are in parallel.  In addition, L4 and L6 are in 

parallel.  Therefore, if we combine elements so that L25 = L2⎟ ⎜L5 and L46 = L4⎟ ⎜L6, then 
the circuit can be reduced to that in Fig. S6.4(c). 

A

B

1L 25L

3L 46L

C

 
Fig. S6.4(c) 

 
 However, we note now if we did not see it earlier that L25 is in parallel with L46 so that 

the network can be reduced to that shown in Fig. S6.4(d). 

A

B

1L

2456L3L

C

 
Fig. S6.4(d) 

 
 Where L2456 = L25⎟ ⎜L46.  Since all inductors are 12mH, L2456 = 3mH which is in series 

with 12mH and that combination is in parallel with 12mH yielding 
 

LAB = 12mH⎟ ⎜15mH = 6.66mH 
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CHAPTER 7 PROBLEMS 
 
7.1 Use the differential equation approach to find ( )ti 0  for t > 0 in the circuit in Fig. 7.1 and 

plot the response including the time interval just prior to opening the switch. 

+-

12V
3kΩ

12kΩ

2kΩ

3kΩ 6kΩ
0t =

( )ti0
150µF

 
Fig. 7.1 

 
7.2 Use the differential equation approach to find i(t) for t > 0 in the circuit in Fig. 7.2 and 

plot the response including the time interval just prior to opening the switch. 

5mA 1kΩ

2kΩ

1kΩ

1mH

0t =

( )ti

5kΩ

 
Fig. 7.2 

 
7.3 Use the step-by-step technique to find ( )tv0  for t > 0 in the circuit in Fig. 7.3. 

50µF
6kΩ

6kΩ

12V

0t =

( )tv06kΩ

6kΩ

+

-

+-
 

Fig. 7.3 
 
7.4 Use the step-by-step method to find ( )tv0  for t > 0 in the network in Fig. 7.4. 
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4Ω

12V

0t =

( )tv0

2Ω

12V

+

-
+
-

+- 2Ω

H
3
1

 
Fig. 7.4 

 
7.5 Given the network in Fig. 7.5, find 
 (a) the differential equation that describes the current i(t) 
 (b) the characteristic equation for the network 
 (c) the network’s natural frequencies 
 (d) the type of damping exhibited by the circuit 
 (e) the general expression for i(t) 

( )ti

( )tvS 14Ω

2H

0.05F

+-

 
Fig. 7.5 

 
7.6 Find ( )ti 0  for t > 0 in the circuit in Fig. 7.6 and plot the response including the time 

interval just prior to closing the switch. 

12V

0t = 24Ω

F
120

1

24Ω 24Ω2.4H

( )ti0

+-

 
Fig. 7.6 
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CHAPTER 7 SOLUTIONS 
 
7.1 We begin our solution by redrawing the network and labeling all the components as 

shown in Fig. S7.1(a) 

+-

12V
C

0t =

( )ti0

( )tiX

5R1R
2R 4R

3R

 
Fig. S7.1(a) 

 
 In order to determine the initial condition of the network prior to switch action, we must 

determine the initial voltage across the capacitor.  A circuit, which can be used for this 
purpose, is shown in Fig. S7.1(b). 

+-
12V

Xi

Cv
150µF

=1R
3kΩ

=2R
12kΩ

=6R
4kΩ

+

-
 

Fig. S7.1(b) 
 
 Where we have combined the resistors at the right end of the network so that 
 

R6 = R3 + R4⎥⎜R5 
 = 2k + 3k⎥⎜6k 
 = 4kΩ 
 
 In the steady-state condition before the switch is thrown, the capacitor looks like an open-

circuit and therefore vC(0-) is the voltage across the parallel combination of R2 and R6.  
Using voltage division, the 12V source will produce the voltage 

 

( )

V6
k3k3

k312

RRR
RR

120v
621

62
C

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=−

 

 
 Now that the initial voltage across the capacitor is known, we can find the initial value of 

the current ( )ti 0 .  From Fig. S7.1(b) we see that 
 

( ) ( )
mA5.1

k4
6

R
0v

0i
6

C
x ==

−
=−  
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 Then, using current division as shown in Fig. S7.1(a), 
 

( ) ( ) ( )

( )
mA1

k6k3

k6
k2
3

RR
R0i

0i
54

5x
0

=
+

⎟
⎠
⎞

⎜
⎝
⎛

=

+
−

=−

 

 
 The parameters for t < 0 are now known.  For the time interval t > 0, the network is 

reduced to that shown in Fig. S7.1(c). 
Xi

Ω= k4R 6( )tCvΩ= k12R 2

+

- 150µF
 

Fig. S7.1(c) 
 
 Applying KCL to this network yields 
 

( ) ( ) ( )
0

R
tv

R
tv

dt
tdv

C
6

C

2

CC =++  

 
 or using the parameter values 
 

( ) ( ) 0tv
9
20

dt
tdv

C
C =+  

 
 The solution of this differential equations of the form 
 

( ) τ
−

+=
t

21C ekktv  
 
 Since the differential equation has no constant forcing function, we know that k1 = 0.  

Therefore, substituting ( ) τ
−

=
t

2C ektv  into the equation yields 
 

0ek
9
20ekt t

2

t

2 =+
τ

− τ
−

τ
−

 

 
 and 
 

.sec
20
9

=τ  
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 In addition, since 
 

vC(0) = 6 = k2e° 
 k2 = 6 
 
 Thus 
 

( ) Ve6tv
t

9
20

C

−
=  

 Recall that 
 

( ) ( )
54

5
x0 RR

R
titi

+
=  

 
 and 
 

( ) ( )
6

C
x R

tv
ti =  

 
 Then 
 

( ) ( )

0tmA1
0tmAe1

RR
R

R
tv

ti

t
9
20

54

5

6

C
0

<=
>=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

−
 

 
7.2 The network can be redrawn as shown in Fig. S7.2(a). 

1mA

0t =

( )ti5kΩ
k1R1 = k3R 2 =A

k
5IS =

 
Fig. S7.2(a) 

 
 In the steady-state time interval prior to switch action, the inductor looks like a short-

circuit.  Therefore, in this time period t < 0, the initial inductor current is 
 

iL(0-) = IS = 5mA 
 
 At t = 0 the switch changes positions and hence for t > 0 the network reduces to that 

shown in Fig. S7.2(b). 
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i = 1mH

( )ti
k3R 2 =k1R1 =

 
Fig. S7.2(b) 

 
 If we let R = R1⎟ ⎜R2 then the differential equation for the inductor current is 
 

( ) ( ) 0tiR
dt

tdiL =+  

 
 The solution of this equation is of the form 
 

( ) τ
−

+=
t

21 ekkti  
 
 The differential equation has no constant forcing function and hence k1 = 0.  Substituting 

( ) τ
−

=
t

2ekti  into the equation for the current yields 
 

0ek
4
k3ekt

k
1 t

2

t

2 =⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

τ
−

⎟
⎠
⎞

⎜
⎝
⎛ τ

−
τ

−

 

 

 where we have used the circuit parameter values in the equation, i.e., H
k
1L =  and 

Ω=
k4
3R .  This equation produces a τ value of  

 

.sec
3
4

µ=τ  

 
 Furthermore, since  
 

( )−0i  = 1mA 
 
 and 
 

( ) 0
2ek0i −=  

 
 we find that 
 

k2 = 5mA 
 
 Therefore, 
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( )

0t,mAe5

0t,mA5ti
t105.7 5

>=

<=
×−

 

 
7.3 The circuit is redrawn for convenience in Fig. S7.3(a). 

50µF

6k

6k

12V

0t =

( )tv0

+

-

6k

6k
2R

1R

3R

4R

C

+-
 

Fig. S7.3(a) 
 
 Before we begin our analysis, we note that resistors R3 and R4 are in parallel and so we 

first reduce the network to that shown in Fig. S7.3(b). 

50µF

R = 3k

6k

12

0t =

( )tv0

+

-

+-

2R
1R C

1v
+

-
Cv

+

-6k

 
Fig. S7.3(b) 

 
 Now that the network has been simplified, we begin our analysis 

R = 3k

12V +-

k6R 2 =k6R1 =
1v

+

-
Cv+

-

 
Fig. S7.3(c) 
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R = 3k

12V

( )+0v0

+

-
k6R 2 =k6R1 = 6V+

-

+-
 

Fig. S7.3(d) 
 

THR6k 6k

3k  
Fig. S7.3(e) 

 

 Step-1 ( ) τ
−

+=
t

210 ekktv  
 
 Step-2 In steady-state prior to switch action, the capacitor looks like an open-circuit 

and the 12-V source is directly across the resistor R = 3kΩ.  As shown in Fig. S7.3(c) the 
voltage v1 across R1 is equal and opposite to vC.  Since the voltage of the 12-V source is 
divided between R1 and R2 we can use voltage division to find v1 as 

 

V6
RR

R
12v

21

1
1 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=  

 
 hence 
 

( ) ( )+=−=−=− 0vV6v0v C1C  
 
 Step-3 The new circuit, valid only for += 0t  is shown in Fig. S7.3(d).  Once again, 

using voltage division, 
 

( ) ( )

V4
RR

R
0v0v

2

2
C0

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+−=+
 

 
 Step-4 For the period t > 5τ, the capacitor looks like an open-circuit and the source is 

disconnected.  With no source of energy present in the network 
 

( ) 0v0 =∞  
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 Step-5 The Thevenin equivalent resistance obtained by looking into the network from 

the terminals of the capacitor with all sources made zero is derived from the circuit in 
Fig. S7.3(e) 

 
RTH = (6k)⎟ ⎜(6k + 3k) 

 = 3.6kΩ 
 
 Then the time constant of the network is 
 

τ = RTHC 
 = 0.18 sec. 
 
 Step-6 Evaluating the constants in the solution, we find that 
 
 ( ) 0vk 01 =∞=  

( ) ( ) 4v0vk 002 −=∞−+=  
 
 Therefore, 
 

( ) Ve4tv 18.0
t

0

−

−=  
 
7.4 We begin our analysis of the network with 
 
 Step-1 The output voltage will be of the form 
 

( ) τ
−

+=
t

210 ekktv  
 
 Step-2 In the steady-state prior to the time the switch is thrown, the inductor acts like a 

short-circuit and shorts out the 4Ω resistor.  The network for this situation is as shown in 
Fig. S7.4(a). 

0v12V
2Ω

12V

2Ω
4Ω

+

+
- -

+

-

( )−0iL

 
Fig. S7.4(a) 

 
 Under these conditions, ( )−0iL  is the current from the 12-V source at the left side of the 

network, through the short-circuit, with a return path through the 2Ω resistor at the 
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output.  What is the contribution of the 12V source in the center of the network?  No 
contribution!  Why?  If we applied superposition and treated each source independently, 
we would quickly find that when the left-most source was replaced with a short-circuit, 
all the current from the other 12-V source would be diverted through this short-circuit.  
Therefore, 

 

( ) ( )+===− 0iA6
2

120i LL  

 
 Step-3 The new network, valid only for += 0t , is shown in Fig. S7.4(b). 

( )+0v0

6A

2Ω
12V

2Ω
4Ω

+
-

+

-
 

Fig. S7.4(b) 
 
 If we employ superposition, we find that 
 

( ) ( )

V3

2
224

46
242

2120v0

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

−=+
 

 
 where in this equation we have used first voltage division in conjunction with current 

division to obtain the voltage.  The two networks employed are shown in Figs. S7.4(c) 
and (d). 

( )+′ 0v0
2Ω

12V

2Ω
4Ω

+
-

+

-
                                

( )+′′ 0v0

6A

2Ω2Ω
4Ω +

-
 

 
 Fig. S7.4(c) Fig. S7.4(d) 
 
 Step-4 For t > 5τ, the inductor again looks like a short-circuit and the network is of the 

form shown in Fig. S7.4(e). 
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( )∞0v2Ω
12V

2Ω
4Ω

+
-

+

-
 

Fig. S7.4(e) 
 
 A simple voltage divider indicates that the output voltage is 
 

( ) V6
22

212v0 −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=∞  

 
 Step-5 The Thevenin equivalent resistance obtained by looking into the circuit from the 

terminals of the inductor with all sources made zero is derived from the network in Fig. 
S7.4(f). 

2Ω

THR

2Ω
4Ω

 
Fig. S7.4(f) 

 
 Clearly 
 

RTH = 4⎥⎜(2 + 2) = 2Ω 
 
 Then the time constant is 
 

.sec
6
1

2
3
1

R
L

===τ  

 
 Step-6 The solution constants are then 
 
 ( ) 6vk 01 −=∞=  

( ) ( )
( ) V963

v0vk 002

=−−=
∞−+=

 

 
 Hence, 
 

( ) Ve96tv t6
0

−+−=  
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7.5 (a) Applying KVL to the closed path yields 
 

( ) ( ) ( ) ( )
dt

tdiLdxxi
C
1tRitv t

tS 0
+∫+=  

 
 differentiating both sides of the equation we obtain 
 

( ) ( ) ( ) ( )
2

2
S

dt
tidL

C
ti

dt
tdiR

dt
tdv

++=  

 
 By rearranging the terms, the equation can be expressed in the form 
 

( ) ( ) ( ) ( )
dt

tdv
C
ti

dt
tdiR

dt
tidL S

2

2

=++  

 
 or 

( ) ( ) ( ) ( )
dt

tdv
L
1ti

RC
1

dt
tdi

L
R

dt
tid S

2

2

=++  

 
 Using the circuit component values yields 
 

( ) ( ) ( ) ( )
dt

tdv
2
1ti10

dt
tdi7

dt
tid S

2

2

=++  

 
 (b) The characteristic equation for the network is 
 

010s7s2 =++  
 
 (c) The network’s natural frequencies are the roots of the characteristic equation.  The 

quadratic formula could be used to obtain those roots or we can simply recognize that the 
equation can be expressed in the form 

 
( ) ( ) 05s2s10s7s2 =++=++  

 
 Therefore, the networks natural frequencies are 
 

s = 2 
s = 5 

 
 (d) Since the roots of the characteristic equation are real and unequal, the network 

response is overdamped. 
 
 (e) Based upon the above analysis, the general expression for the current is 
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( ) Aekekkti t5

2
t2

10
−− ++=  

 
 where 0k  is the steady-state value and the constants k1 and k2 are determined from initial 

conditions. 
 
7.6 The network is re-labeled as shown in Fig. S7.6(a). 

12V
0t =

C

( )tvC

+
( )ti0

+-

+ -

1R
2R

3R
-

( )tiL

( )tv0

 
Fig. S7.6(a) 

 

 where all R = 24Ω, L = 2.4H and F
120

1C = .  Consider now the conditions of the 

network at three critical points in time. 
 
 At −= 0t , i.e., the steady-state condition prior to switch action, the capacitor acts like an 

open-circuit, the inductor acts like a short-circuit and hence ( ) 00vC =− , ( ) 00iL =− , 
( ) 00i0 =−  and ( ) 00v0 =− . 

 
 At += 0t , i.e., the instant the switch is thrown, the conditions on the storage elements (L 

and C) cannot change instantaneously and therefore ( ) 00vC =+ , ( ) 00iL =+ , 

( ) A
2
1

R
120i

3
0 ==+  and ( ) V120v0 =+ . 

 
 At t = ∞, i.e., the steady-state condition after the switch is thrown, the capacitor acts like 

an open-circuit, the inductor acts like a short-circuit and hence ( ) V12vC =∞ , 

( ) A
2
1

R
12i

2
L ==∞ , ( ) 0i0 =∞  and ( ) 0v0 =∞ . 

 
 Now applying KCL to the network in the time interval 0t > , we obtain 
 

( ) ( )( ) ( ) ( )
3

0t
0 0

0

2

0

R
tv

dxxv
L
1

dt
tv12d

C
R

tv12
+∫=

−
+

−
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 where ( ) ( )
3

0
0 R

tv
ti =  expressing ( )tv0  in terms of ( )ti 0  and using the component values 

reduces the equation to 
 

( ) ( ) ( ) ( ) 0tidxxi10
dt

tdi
5
1ti

2
1

0
t
0 0

0
0 =−∫−−−  

 
 Combining terms and differentiating this expression yields 
 

( ) ( ) ( ) 0ti50
dt

tdi
10

dt
tid

0
0

2
0

2

=++  

 
 Therefore, the characteristic equation for the network is 
 

s2 + 10s + 50 = 0 
 
 Factoring this equation using the quadratic formula or any other convenient means yields 
 

s1, s2 = -5 ± j5 = σ ± jω 
 
 Since the roots of the characteristic equation are complex conjugates, the network is 

underdamped and the general form of the current ( )ti 0  is 
 

( ) ( )
( )t5sinBt5cosAek

tsinBtcosAekti
t5

t
0

++=

ω+ω+=
−

σ−

 

 
 where k is the steady-state term resulting from the presence of the voltage source in the 

time interval t → ∞. 
 
 We can now evaluate the constants k, A and B using the known conditions for the 

network.  For example, 
 

( ) Ak
2
10i0 +==+  

 
 and 
 

( ) k0i0 ==∞  
 

 Therefore, 0k =  and 
2
1A = . 
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 We need another equation in order to evaluate the constant B.  If we return to our original 
equation and evaluate it at time += 0t , we have 

 
( )

3
0t

0

2 R
120

dt
tdv

120
1

R
1212

+=⎟
⎠
⎞

⎜
⎝
⎛ −

+
−

+=  

 
 where ( ) V120v0 =+ , the integration interval is zero and the derivative function is our 

unknown.  Therefore, 
 

( )
60

dt
tdv

0t
0 −=+=  

 
 or 
 

( )
5.2

dt
tdi

0t
0 −=+=  

 
 The general form of the solution is 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ += − t5sinBt5cos

2
1eti t5

0  

 
 Then 
 

( )
t5cosB5et5sinBe5t5sin

2
5et5cos

2
1e5

dt
tdi t5t5t5t50 −−−− +−⎟

⎠
⎞

⎜
⎝
⎛ −

+⎟
⎠
⎞

⎜
⎝
⎛−=  

 
 and 
 

( )
B5

2
5

dt
tdi

0t
0 +

−
=+=  

 
 Therefore, 
 

B5
2
55.2 +

−
=−  

 
 or 
 

0B =  
 The general solution is then 
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( )

0tt5cose
2
1

0t0ti

t5

0

>=

<=

−
 

 
 A plot of this function is shown in Fig. S7.6(b). 

0.6
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Fig. S7.6(b) 
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CHAPTER 8 PROBLEMS 
 
8.1 Find the frequency domain impedance Z, shown in Fig. 8.1. 

1Ω

j1Ω
Z

1Ω

1Ω

-j1Ω

 
Fig. 8.1 

 
8.2 If the impedance of the network in Fig. 8.2 is real at f = 60Hz, what is the value of the 

inductor L? 

2Ω
L

Z

1Ω

10mF

 
Fig. 8.2 

8.3 Use nodal analysis to find 0V  in the network in Fig. 8.3. 

2Ω
1Ω

-j4Ω

- +

1Ω
j2Ω

+

-

V012 °∠

0V

 
Fig. 8.3 

 
8.4 Find 0V  in the network in Fig. 8.4 using (a) loop analysis (b) superposition and (c) 

Thevenin’s Theorem. 

-+

4Ω

j2Ω

+

-

A02 °∠

0V
V012 °∠

2Ω -j1Ω

 
Fig. 8.4 

 



 67

CHAPTER 8 SOLUTIONS 
 
 
8.1. To begin our analysis, we note that the circuit can be labeled as shown in Fig. S8.1. 

1Z

2Z 3ZZ

 
Fig. S8.1 

 
 In this case, Z1 consists of a 1Ω resistor, Z2 is the series combination of a 1Ω resistor and 

a j1Ω inductor and Z2 consists of a –j1Ω capacitor in series with a 1Ω resistor.  
Therefore, 

 
  Z1 = 1Ω 

Z2 = 1 + j1Ω 
Z3 = 1 – j1Ω 

 
 Starting at the opposite end of the network from the terminals at which Z is calculated we 

note that Z2 and Z3 are in parallel and their combination is in series with Z1.  Hence 
 

( ) ( )

Ω=

+=

−++
−+

+=

+=

2
2
21

j1j1
j1j11

ZZZZ 321

 

 
8.2 The general expression for the impedance of this network is 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω

+ω+=
Cj

1Lj21Z  

 

 In order for Z to be purely resistive, the term ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω

+ω
Cj

1Lj  must be real, i.e. 

 
ZLC = RLC + j0 

 
 However, since ZLC can be written as 
 

⎟
⎠
⎞

⎜
⎝
⎛

ω
−ω=

C
1LjZLC  
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 it is clearly an imaginary term and RLC = 0.  Therefore, in order for Z to be resistive 
 

0
C

1L =
ω

−ω  

 
 or 
 

( ) ( )
H6.703
10377

1
C

1L

22

2

µ=

=

ω
=

−
 

 
8.3 The presence of the voltage source indicates that nodal analysis is a viable approach to 

this problem.  The voltage source and its two connecting nodes form a supernode as 
shown in Fig. S8.3. 

V012 °∠

+

-
0V

- +

-j4Ω

1Ω1Ω
2Ωj2Ω

°∠−= 012VV 01 2V

 
Fig. S8.3 

 Note that there are three non-reference nodes, i.e., V1, V2 and 0V .  Because the voltage 
source is tied directly between nodes V1 and 0V , °∠−= 012VV 01 .  This constraint 
condition is one of our three equations required to solve the network.  The two remaining 
equations are obtained by applying KCL at the supernode and the node labeled V2.  For 
the supernode, KCL yields 

 

0
4j

V
1

VV
1

VV
2j

V 020211 =
−

+
−

+
−

+  

 
 At the node labeled V2, KCL yields 
 

0
1

VV
2

V
1

VV 02212 =
−

++
−  

 
 Therefore, the three equations that will provide the node voltages are 
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0VVV
2
1VV

0V
4
1jVVVVV

2
1j

12VV

02212

020211

01

=−++−

=+−+−+−

−=

 

 
 Substituting the first equation in for the two remaining equations and combining terms 

yields 
 

12V
2
5V2

6j12V2
4
1j2V

20

20

−=+−

−=−⎟
⎠
⎞

⎜
⎝
⎛ −

 

 
 Solving for V2 in this last equation and substituting it into the one above it, we obtain 
 

( ) 6j4.225.0j4.0V0 −=−  
 
 and hence 
 

V2.3657.13V0 °−∠=  
 
8.4  (a) Since the network has two loops, or in this case two meshes, we will need two 

equations to determine all the currents.  Consider the network as labeled in Fig. S8.4(a). 

-+

4Ω

j2Ω

+

-

A02 °∠

0V
V012 °∠

2Ω -j1Ω

1I
2I

 
Fig. S8.4(a) 

 
 Note that since I2 goes directly through the current source, I2 must be 2∠0°A.  Hence, 

one of our two equations is 
 

I2 = 2∠0° 
 
 If we now apply KVL to the loop on the left of the network, we obtain 
 

( ) ( ) ( ) 02j4II1j2I12 211 =+−+−+−  
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 These two equations will yield the currents.  Substituting the first equation into the 
second yields 

 
( ) ( ) 02j422j41j2I12 1 =+−++−+−  

 
 and then 
 

A85.135.3
1j6
4j20I1 °∠=

+
+

=  

 
 Finally, 
 

( )

V57.442.5

2
1j6
4j204

II4V 210

°∠=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
+

=

−=

 

 
 (b) In applying superposition to this problem, we consider each source acting alone.  If 

we zero the current source, i.e., replace it with an open circuit, the circuit we obtain is 
shown in Fig. S8.4(b). 

-+

4Ω

j2Ω

+

-0V′
V012 °∠

2Ω -j1Ω

 
Fig. S8.4(b) 

 
 Using voltage division 
 

V
1j6

48
1j22j4

412V0

+
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++

=′
 

 
 Now, if we zero the voltage source, i.e., replace it with a short circuit, we obtain the 

circuit in Fig. S8.4(c). 
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4Ω

j2Ω

+

-
0V ′′

A02 °∠

2Ω

-j1Ω

XI

 
Fig. S8.4(c) 

 
 Employing current division, the current IX is 
 

A
1j6
2j4

2j4j2
j202IX

+
+−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−

−
°∠−=

 

 
 Then, 
 

1j6
8j16I4V X0 +

+−
==′′  

 
 And finally, 
 

V57.442.5
1j6
8j32

1j6
8j16

1j6
48

VVV 000

°∠=
+
+

=

+
+−

+
+

=

′′+′=

 

 
 (c) In applying Thevenin’s Theorem, we first break the network at the load and determine 

the open-circuit voltage as shown in Fig. S8.4(d). 

j2Ω

+

- C0V

A02 °∠

2Ω -j1Ω

V012 °∠ +-

 
Fig. S8.4(d) 
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 Note that there exists only one closed path and the current in it must be 2∠0° A.  Note 
also that there is no current in the inductor and therefore no voltage across it.  Hence OCV  
is also the voltage across the current source.  Hence, 

 
( )
V2j8

j2212V C0

+=
−−=

 

 
 The Thevenin equivalent impedance found by zeroing the independent sources and 

looking into the network at the terminals of the load can be determined from the circuit in 
Fig. S8.4(e). 

j2Ω

THZ

2Ω -j1Ω

 
Fig. S8.4(e) 

 
 This network indicates that 
 

ZTH = 2 – j1 + j2 
 = 2 + j1Ω 
 
 If we now form the Thevenin equivalent circuit and re-connect the load, we obtain the 

network in Fig. S8.4(f). 

4Ω

THZ
2Ω j1Ω

+
-

-

+

0V
C0V

8+j2V

 
Fig. S8.4(f) 

 
 Applying voltage division yields 
 

( )

V57.442.5
1j6
8j32

1j24
42j8V0

°∠=
+
+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

+=
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CHAPTER 9 PROBLEMS 
 
9.1 Determine the average power supplied by each source in the circuit in Fig. 9.1. 

1Ω+-

j1Ω-j1Ω
V010 °∠ A302 °∠

 
Fig. 9.1 

 
9.2 Given the circuit in Fig. 9.2, determine the impedance ZL for maximum average power 

transfer and the value of the maximum average power transferred to this load. 

V06 °∠

1Ω 1Ω

-j1Ω

V012 °∠ LZ+ +-
-

 
Fig. 9.2 

 
9.3 Calculate the rms value of the waveform shown in Fig. 9.3. 

1 t(s)765432

6
v(t) (V)

 
Fig. 9.3 

 
9.4 Determine the source voltage in the network shown in Fig. 9.4. 

SV rmsV0240 °∠
40 kW
0.78 pf
lagging

60 kW
0.85 pf
lagging

+-

+

-

0.1Ω j0.5Ω

 
Fig. 9.4 

 
9.5 A plant consumes 75 kW at a power factor of 0.70 lagging from a 240-V rms 60 Hz line.  

Determine the value of the capacitor that when placed in parallel with the load will 
change the load power factor to 0.9 lagging. 
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CHAPTER 9 SOLUTIONS 
 
9.1 Because the series impedance of the inductor and capacitor are equal in magnitude and 

opposite in sign, from the standpoint of calculating average power the network can be 
reduced to that shown in Fig. S9.1. 

CSI

A302 °∠
+

V010 °∠

-

+- 1Ω

VSI

1V

 
Fig. S9.1 

 
 The general expression for average power is 
 

( )IVcosVI
2
1P θ−θ=  

 
 In the case of the current source V1 = 10V, ICS = 2A, θV = 0° and θI = 30°.  Therefore, the 

average power delivered by the current source is 
 

( ) ( ) ( )

W66.8

30cos210
2
1PCS

=

°−⎟
⎠
⎞

⎜
⎝
⎛=

 

 
 In order to calculate the average power delivered by the voltage source, we need the 

current IVS.  Using KCL 
 

°∠==°∠+ 010
1
V302IVS  

 
 or 
 

IVS = 8.33∠-6.9° A 
 
 Now 
 

( ) ( ) ( )( )

W34.41

9.60cos33.810
2
1PVS

=

°−−°=
 

 
 Therefore, the total power generated in the network is 
 

PT = PCS + PVS 
= 50 W 
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 Let us now calculate the average power absorbed by the resistor.  We know that the 

average power absorbed by the resistor must be 
 

W50
1

10
2
1

R
V

2
1P

2

2
m

R

=

⎟
⎠

⎞
⎜
⎝

⎛
=

=

 

 
 In addition, the average power absorbed by the resistor can also be determined by 
 

RI
2
1P 2

mR =  

 
 However, we do not know the current in the resistor.  Using KCL. 
 
 IR = IVS + ICS 

= 8.66∠-6.9° + 2∠30° 
 = 10∠0° A 
 
 Now 
 

( ) ( )

W50

110
2
1P 2

R

=

=
 

 
 Thus, we find that the total average power generated is equal to the average power 

absorbed. 
 
9.2 We will first determine the Thevenin equivalent circuit for the network without the load 

attached.  The open-circuit voltage, V0C, can be determined from the network in Fig. 
S9.2(a). 

C0V
V012 °∠ +-

1Ω

RV

1Ω

-
+

-j1Ω

++

-

-
I

V06 °∠
 

Fig. S9.2(a) 
 
 This open-circuit voltage can be calculated in a number of ways.  For example, we can 

compute the current I as 
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( )( ) A

j1
18

j1
06012I

−
=

−
°∠−−°

=  

 
 Then using KVL, 
 

V
j1

j612
06I1V C0

−
+

=

°∠−=
 

 or, we could use voltage division to determine the voltage across the 1-Ohm resistor on 
the right, i.e., 

 

( )[ ]

V
j1

18
j1

106012VR

−
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

°∠−−°∠=
 

 
 Then, once again 
 

V56.7149.9

V
j1

j612
06VV RC0

°∠=
−
+

=

°∠−=

 

 
 The Thevenin equivalent impedance is obtained by looking into the open-circuit 

terminals with all sources made zero.  In this case, we replace the voltage sources with 
short circuits.  This network is shown in Fig. S9.2(b). 

THZ

1Ω 1Ω

-j1Ω

 
Fig. S9.2(b) 

 
 Note that the 1-Ohm resistor on the left is shorted and thus the ZTH is 
 

( ) ( )

Ω−=

Ω
−
−

=
−
−

=

2
1j

2
1

j1
j

j1
j1ZTH
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 Hence, for maximum average power transfer 
 

*
THL ZZ =  

 
 or 
 

Ω+=
2
1j

2
1ZL  

 
 Therefore, the network is reduced to that shown in Fig. S9.2(c). 

Ι

+-V56.7149.9 °∠ 2
1

2
1

2
1j+

2
1j−

 
Fig. S9.2(c) 

 
 Then 
 

A56.7149.9
2
1j

2
1

2
1j

2
1

56.7149.9I

°∠=

++−

°∠
=

 

 
 and the maximum average power transferred to the load is 
 

( )

W90
2
149.9

2
1P 2

L

=

⎟
⎠
⎞

⎜
⎝
⎛=

 

 
9.3 In order to calculate the rms value of the waveform, we need the equations for the 

waveform within each of the distinctive intervals. 
 
 In the interval 0 ≤ t ≤ 2s, the waveform is a straight line that passes through the origin of 

the graph.  The equation for a straight line in this graph is 
 

v(t) = mt + b 
 
 Where m is the slope of the line and b is the v(t) intercept.  Since the line goes through 

the origin, b = 0.  The slope m is 
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3
s2
V6m ==  

 Therefore, in the interval 0 ≤ t ≤ 2s, 
 

v(t) = 3t 
 
 The waveform has constant values in the intervals 2 ≤ t ≤ 3s and 3 ≤ t ≤ 4s, i.e., 
 

v(t) = 6 2 ≤ t ≤ 3s 
v(t) = 0 3 ≤ t ≤ 4s 

 
 Since the waveform repeats after 4s, the period of the waveform is 
 

T = 4s 
 
 Now that the data for the waveform is known, 
 

( ) 2
14

0

2
rms dttv

T
1V ⎥⎦

⎤
⎢⎣
⎡

∫=  

 
 Therefore, in this case 
 

( ) ( ) ( )

[ ]

( )

( )
rmsV87.3

15

3624
4
1

t36t3
4
1

dt0dt6dtt3
4
1V

2
1

2
1

2
1

3
2

2
0

3

2
14

3

2
3

2

2
2

0

2
rms

=
=

⎥⎦
⎤

⎢⎣
⎡ +=

⎥⎦
⎤

⎢⎣
⎡ +=

⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡ ∫+∫+∫=

 

 
9.4 We begin our analysis by labeling the various currents and voltages in the circuit as 

shown in Fig. S9.4. 

SV 40 kW
0.78 pf

lag

60 kW
0.85 pf

lag

+-

+

-

0.1Ω j0.5Ω

SI

1I 2I

rmsV0240VL °∠=

 
Fig. S9.4 
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 Our approach to determining VS is straight forward:  We will compute the currents I1 and 
I2; add them using KCL to find IS; determine the voltage across the line impedance and 
finally use KVL to add the line voltage and load voltage to determine the source voltage. 

 
 The magnitude of the current I1 is 
 

( )

( ) ( )
.rmsA12.294

85.0240
000,60
pfV

PI
1L

1
1

=

=

=

 

 
 And the phase angle is 
 

( )
°−=

−=θ −

79.31

85.0cos 1
I1  

 
 The negative sign is a result of the fact that the power factor is lagging. 
 
 Thus 
 

I1 = 294.12∠-31.79° A rms. 
 
 The magnitude of the current I2 is 
 

( )

( ) ( )
.rmsA68.213

78.0240
000,40
pfV

PI
2L

2
2

=

=

=

 

 
 And the phase angle is 
 

( )
°−=

−=θ −

74.38

78.0cos 1
I2  

 
 Thus 
 

I2 = 213.68∠-38.74° A rms. 
 
 Using KCL 
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.rmsA25.341.504
74.3868.21379.3112.294

III 21S

°−∠=
°−∠+°−∠=

+=
 

 
 Then 
 

( )
( ) ( )

.rmsV02.2317.460
024044.4404.257

02407.7851.025.341.504
02405.0j1.0IV S2

°∠=
°∠+°∠=

°∠+°∠°−∠=
°∠++=

 

 
9.5 Since the original power factor is 0.7 lagging the power factor angle is 
 

θOLD = cos-1 (0.7) 
 = 45.57° 
 
 Then 
 

QOLD = POLD tan θOLD 
 = 75,000 tan 45.57° 
 = 76.52 kvar 
 
 Hence 
 

SOLD = 75,000 + j76,515 
 = 107.14∠45.57° kVA 
 
 The new power factor angle we wish to achieve is 
 

θNEW = cos-1 (new power factor) 
 = cos-1 (0.9) 
 = 25.84° 
 
 Then 
 

QNEW = POLD tan θNEW 
 = 75,000 tan 25.84° 
 = 36,324 kvar 
 
 Now the difference between QNEW and QOLD is achieved by the capacitor, i.e., 
 

QCAP = QNEW - QOLD 
 = 36,324 – 76,515 
 = -40,191 kvar 
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 And since 
 

QCAP = -ω CV2 
 
 Then 
 

( ) ( )
F8.1850

240377
191,40C 2

µ=

=
 



 82

CHAPTER 10 PROBLEMS 
 
10.1 Find 0V  in the network in Fig. 10.1. 

j1Ω

1Ωj2Ω

j1Ω

-

+

0VA010 °∠

2Ω

j2Ω1Ω

 
Fig. 10.1 

 
10.2 Determine the impedance seen by the source in the circuit in Fig. 10.2. 

j1Ω

1Ω

j2Ω
j2Ω

V0120 °∠

1Ω

j4Ω

3Ω

-j1Ω

+-

2Ω

-j2Ω

 
Fig. 10.2 

 
10.3 Determine I1, I2, V1 and V2 in the circuit in Fig. 10.3. 

1:2

Ideal

V01 °∠

1Ω

+-

3Ω

+

-
1V

1I 2I

+

-
2V V02 °∠+-

 
Fig. 10.3 

 
10.4 Given the circuit in Fig. 10.3, determine the two networks obtained by replacing (a) the 

primary and the ideal transformer with an equivalent circuit and (b) the ideal transformer 
and the secondary with an equivalent circuit. 
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CHAPTER 10 SOLUTIONS 
 
10.1 Our first step in the solution of this problem is to apply source transformation to the left-

end of the network and transform the 10∠0° A source in parallel with the 1Ω resistor into 
a 10∠0° V source in series with the 1Ω resistor as shown in Fig. S10.1(a). 

j1Ω

1Ωj2Ω

j1Ω

-

+

0VV010 °∠

2Ω

j2Ω

1Ω

-+

 
Fig. S10.1(a) 

 
 Let us redraw the network as shown in Fig. S10.1(b). 

j1Ω

1Ω

j1Ω

-

+

0VV010 °∠

3Ω

-+

-

+

1V
1I -

+

2V
2I

 
Fig. S10.1(b) 

 
 The equations for this network are 
 
 -10 + 3I1 + V1 = 0 

-V2 + I2(1 + j1) = 0 
 
 We now write the equations for the mutually coupled coils.  In order to force the 

variables in this circuit into our standard form for mutually coupled inductors, we must 
reverse the signs on V1, I1 and I2.  Therefore, the equations that relate V1 and V2 to I1 and 
I2, in this case, are 

 
-V1 = j2(-I1) + j1(-I2) 
V2 = j2(-I2) + j1(-I1) 

 
 Combining the equations yields 
 
 (3 + j2) I1 + j1 I2 = 10 

j1 I1 + (1 + j3) I2 = 0 
 
 Solving for I1 in the second equation and substituting it into the first equation yields 
 

[(3 + j2) (-3 + j1) + j1] I2 = 10 
 
 or 
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A3.10894.0
2j11

10I2

°∠−=
−−

=
 

 
 And finally 
 

V3.10894.0
I1V 20

°∠−=
=

 

 
10.2 Let us first determine the total impedance on the right side of the circuit as shown in Fig. 

S10.2(a). 

j2Ω

LZ

2Ω

-j2Ω

1Ω
 

Fig. S10.2(a) 
 
 As the figure indicates 
 

( ) ( )
( ) ( )

Ω−=
−+
−+

+=

−++=

2j6
2j2j1
2j2j12

2j2j12ZL

 

 
 The original network can now be redrawn in the following form shown in Fig. S10.2(b). 

j1Ω

6Ω

-j2Ω
V0120 °∠

1Ω

-+
-

+

1V
1I -

+

2V
2I

-j1Ω

j4Ω

3Ω

j2Ω

 
Fig. S10.2(b) 

 
 The two KVL equations for the network in Fig. S10.2(b) are 
 

120 = (4 – j1) I1 + V1 
 V2 = (6 – j2) I2 
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 In order to force the variables in this circuit into our standard form for mutually coupled 
inductors, we must reverse the sign on V2.  Therefore, the equations that relate V1 and V2 
to I1 and I2, in this particular case, are 

 
 V1 = j4 I1 + j1 I2 

-V2 = j2 I2 + j1 I1 
 
 Combining all of these equations results in the following two equations. 
 

(4 + j3) I1 + j1 I2 = 120 
 j1 I1 + 6 I2 = 0 
 
 Solving the second equation for I2 and substituting this value into the first equation yields 
 

120I
6
13j4 1 =⎟

⎠
⎞

⎜
⎝
⎛ ++  

 
 Then, the impedance seen by the source is 
 

Ω+== 3j167.4
I

120Z
1

S  

 
10.3 The KVL equations for this network are 
 

( )
°∠+=

+−=°∠
02I3V
V1I01

22

11  

 
 If we now force the variables in this circuit into our standard form for the ideal 

transformer, we must reverse the signs on V1 and I2.  Therefore, the equations that relate 
V1 to V2 and I1 to I2, in this particular case, are 

 

( ) 0I2I1
2
1

V
V

21

2

1

=−+

=
−

 

 
 Solving the later equations for V2 and I2 and substituting these values into the first 

equations yields 
 

2I
2
3V2

VI1

11

11

+=−

+−=
 

 
 Solving these equations produces 
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I1 = 1.142∠180° A 
V1 = 0.142∠180° V 

 
 Then, the transformer relationships yield 
 

12

12

V2V

I
2
1I

−=

=
 

 
 Therefore, 
 

I2 = 0.571∠180° A 
 V2 = 0.284∠0° V 
 
10.4 As shown in the previous problem, the ideal transformer equations are 
 

( ) 0I2I1
2
1

V
V

21

2

1

=+

=
−

 

 
 These two equations and the equation for reflecting impedance from the primary of the 

transformer to the secondary i.e., 
 

S

S

2

2

1
p

Z
4
1

Z
N
NZ

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

 

 
 are the necessary equations for developing the equivalent circuits. 
 
 (a) If we reflect the primary to the secondary, we note that 
 

V2 = -2V1 
 
 And 
 

ZS = 4Zp 
 
 Therefore, the voltage source in the primary becomes 
 

V2 = -2(1∠0°) 
 = 2∠180° V 
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 And 
 

ZS = 4(1) 
 = 4Ω 
 
 Therefore, the equivalent circuit in this case is shown in Fig. S10.4(a). 

2I

V02 °∠V02 °∠
2V

4Ω 3Ω+

-
+
- +

-
 

Fig. S10.4(a) 
 
 (b) Once again, using the ideal transformer equation to reflect the secondary to the 

primary we obtain the network in Fig. S10.4(b). 

Ω
4
3

V01 °∠V01 °∠
1V

1Ω

+

-
+- +

-

 
Fig. S10.4(b) 
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CHAPTER 11 PROBLEMS 
 
11.1 In a three-phase balanced wye-wye system, the source is an abc-sequence set of voltages 

with Van = 120∠40° V rms.  The per phase impedance of the load is 10 + j8Ω.  If the line 
impedance per phase is 0.6 + j0.4Ω, find the line currents and load voltages. 

 
11.2 An abc-sequence set of voltages feeds a balanced three-phase wye-wye system.  If Van = 

440∠40° V rms, VAN = 410∠39° V rms and the line impedance is 1.5 + j1.0Ω, find the 
load impedance. 

 
11.3 In a balanced three-phase wye-delta system, the source has an abc-phase sequence and 

Van = 120∠30° V rms.  The line and load impedance are 0.6 + j0.4Ω and 24 + j12Ω, 
respectively.  Find the delta currents in the load. 

 
11.4 A balanced three-phase source serves two loads: 
 Load 1: 32 kVA at 0.85 pf lagging. 
 Load 2: 20 kVA at 0.6 pf lagging. 
 The line voltage at the load is 208 V rms at 60Hz.  Determine the line current and the 

combined power factor at the load. 
 
11.5 In a three-phase balanced system an abc-sequence wye-connected source with Van = 

220∠0° V rms supplies power to a wye-connected load that consumes 36 kW of power in 
each phase at a pf of 0.75 lagging.  Three capacitors, each with an impedance of –j2.0Ω, 
are connected in parallel with the original load in a wye configuration.  Determine the 
power factor of the combined load as seen by the source. 
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CHAPTER 11 SOLUTIONS 
 
11.1 First of all, we note that since this is a balanced system, we need only consider one phase 

of the system.  All currents in the two remaining phases have the same magnitude but are 
shifted in phase by 120° and 240°. 

 
 Consider now the circuit for the a-phase shown in Fig. S11.1. 

10Ω

0.6Ω j0.4Ω

+-

n

a

rmsV40120Van °∠=
j8Ω

A

N

Load

LineaAI

 
Fig. S11.1 

 
 In this circuit, lower case letters represent the source end of the network and capital 

letters represent the load end of the network.  The line current for this a-phase is 
 

.rmsA6.187.8
4.8j6.10

40120
ZZ

V
I

LoadLine

an
aA

°∠=
+

°∠
=

+
=

 

 
 Then the load voltage for this phase is 
 

( ) ( )
.rmsV26.4059.113

8j106.187.8
ZIV LoadaAAN

°∠=
+°∠=

=
 

 
 The results for the two remaining phases are 
 
 IbB = 8.87∠-118.4° A rms VBN = 113.59∠-79.74° V rms 
 IcC = 8.87∠-238.4° A rms VCN = 113.59∠-199.74° V rms. 
 
11.2 The a-phase equivalent circuit for this system is shown in Fig. S10.2. 
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+1.5Ω j1Ω

+-

n

a

anV

-

A

N

ANVLOADZ

aAI

 
Fig. S11.2 

 
 We can approach this problem in a couple of ways.  For example, note that by employing 

voltage division, we can write 
 

⎥
⎦

⎤
⎢
⎣

⎡
+

=
LineLoad

Load
anAN ZZ

Z
VV  

 
 If we solve this equation for ZLoad, we obtain 
 

1
V
V
Z

Z

AN

an

Line
Load

−
=  

 
 where the quantities on the right side of the equation are all given. 
 
 We can also calculate the line current IaA and use it with VAN to determine ZLoad.  In this 

later case 
 

rmsA6.1915.17
1j5.1

VV
I ANan

aA

°∠=
+

−
=

 

 
 Then 
 

Ω°∠=
°∠

°∠
=

=

4.1991.23
6.1915.17

39410
I
V

Z
aA

AN
Load

 

 
11.3 To begin we convert the delta load to an equivalent wye.  In this balanced case 
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Ω+=

= ∆

4j8
3

Z
ZY  

 
 Now the a-phase wye-wye circuit is shown in Fig. S11.3. 
 

8Ω

0.6Ω j0.4Ω

+-

n

a

rmsV30120Van °∠=
j4Ω

A

N

aAI

 
Fig. S11.3 

 
 Now the line current for this network is 
 

rmsA9.242.12
4.4j6.8

30120IaA

°∠=
+

°∠
=

 

 
 This is the current in the a-phase of an equivalent wye load.  We can now convert this 

current to the AB phase of the delta. 
 

°+θ∠= 30
3

I
I

aAI
aA

AB  

 
 Therefore 
 

IAB = 7.17∠32.9° A rms 
 
 The currents in the remaining phases of the delta are 
 

IBC = 7.17∠-87.1° A rms and ICA = 7.17∠-207.1° A rms. 
 
11.4 The total complex power at the load is 
 

( ) ( )

kVA97.3915.51
kVA13.532079.3132

kVA6.0cos2085.0cos32S 11
3L

°∠=
°∠+°∠=

∠+∠= −−
φ

 

 
 Now, we know that 
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LL3L IV3S =φ  
 
 And hence 
 

( )
rmsA98.141

2083
k15.51IL

=

=
 

 
 And the power factor at the load is 
 

pfLoad = cos(39.97°) 
 = 0.766 lagging 
 
11.5 The original situation, prior to adding the capacitors is 
 

POLD = 36 kW 
 

QOLD = POLD tAN θOLD 
 = 36,000 tan 41.41° 
 = 31,749 var 
 
 where 41.41° = θOLD = cos-1 (0.75).  Therefore, 
 

SOLD = 36 + j31.749  kVA 
 
 is the complex power for each phase. 
 
 If we now add the capacitor, the real power is unaffected by this and thus 
 

PNEW = POLD = 36 kW 
 
 However, 
 

QNEW = QOLD + QC 
 
 Where QC is the reactive power supplied by the capacitor. 
 

C

2

2
C

Z
rmsV

rmsCVjQ
−

=

ω−=
 

 
 or 
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( )

vark2.24
2

220Q
2

C

−=

−
=  

 
 Therefore, 
 

QNEW = 31.79 – 24.2 
 = 7.59 kvar 
 
 And hence 
 

kVA9.1179.36
59.7j36
jQPS NEWNEWNEW

°∠=
+=

+=
 

 
 And 
 

PfNEW = cos θNEW 
 = cos 11.9° 
 = 0.98 lagging 
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CHAPTER 12 PROBLEMS 
 
12.1 Sketch the bode plot for the following network function 
 

( ) ( )
( ) ( )1j02.0j

1j5.036jH 2 +ωω
+ω

=ω  

 
12.2 Sketch the bode plot for the following network function 
 

( ) ( )
( ) ( ) ( )100j50j1j

10jj250jH
+ω+ω+ω

+ωω
=ω  

 
12.3 Given the magnitude characteristic for the network function shown in Fig. 12.3, find the 

expression for H(jω) 
H
dB
20dB

-20dB/decade

Log ω
1 20 100

-20dB/decade

-40dB/decade

(rad/s)
 

Fig. 12.3 
 
12.4 Given the series circuit shown in Fig. 12.4, determine the following parameters: 0ω , Q 

and the BW.  If the resistance is changed to 0.1Ω, what is the impact on these parameters. 

1Ω

+-
50µF

200µH

SV

 
Fig. 12.4 

 
 Sketch the frequency characteristic for the two values of R.  What conclusion can be 

drawn from these two characteristics. 
 
12.5 The network in Fig. 12.5 operates as a band pass filter.  (a) Determine the transfer 

function for the network, (b) find the upper and lower cut off frequencies and the band 
width and (c) sketch the magnitude characteristic for this transfer function. 
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C = 5µF

+- L = 2H

R = 4kΩ

( )tvS

-

+
( )tv0

 
Fig. 12.5 
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CHAPTER 12 SOLUTIONS 
 
12.1 First of all, we note that all the poles and zeros are in the standard form, e.g, the simple 

pole and zero are each in the form (jωτ + 1).  At low frequencies the controlling term is 
the double pole at the origin.  This term provides an initial slope for the magnitude 
characteristic of –40dB/decade.  Furthermore, this initial slope will intersect the 0dB line 
at s/rad636 ==ω .  However, before this initial slope intersects the 0dB line, we 

encounter the break frequency of the zero at s/rad2
5.0

11
==

τ
=ω .  This term adds a 

slope of +20dB/decade to the magnitude characteristic and thus the composite 
characteristic changes from –40dB/decade to –20dB/decade.  This characteristic 
maintains this slope until another break frequency is encountered.  The remaining pole 

has a break frequency at s/rad50
02.0
11

==
τ

=ω .  This term adds a slope of –

20dB/decade to the magnitude characteristic, and since there are no more poles or zeros 
in the network function, the final slope of the magnitude characteristic is –40dB/decade.  
The composite magnitude characteristic is shown in Fig. S12.1(a). 

H
dB

0dB

-40dB/decade

Log ω
2 6 50

-20dB/decade

-40dB/decade

(rad/s)
 

Fig. S12.1(a) 
 
 The composite phase characteristic for this network function is shown in Fig. S12.1(b). 

Phase
in

degrees
°0

°−180
°− 90

2 50
Log ω (rad/s)

 
Fig. S12.1(b) 

 
 Once again, the initial phase, at low frequencies, is controlled by the double pole at the 

origin that has a constant phase of -180°.  The phase for the zero is an arc tangent curve 
that provides 45° of phase at the break frequency, ω = 2 rad/s.  As the frequency 
increases beyond the break frequency this term provides 90° of phase so the composite 
curve approaches -90° of phase.  As the frequency increases further, we encounter the 
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simple pole which provides -45° of phase at its break frequency and finally -90° of phase 
at higher frequencies.  Thus the composite phase starts at -180°, moves toward -90° 
because of the presence of the zero and finally ends up back at -180° because of the last 
pole. 

 
12.2 We begin the analysis by putting all the terms of the network function in standard form.  

The function then becomes 
 

( ) ( )
( ) ( ) ( )1j01.01j02.01j

1j1.0j5.0jH
+ω+ω+ω

+ωω
=ω  

 
 At low frequencies the magnitude characteristic is controlled by the zero at the origin.  

This term provides an initial slope of +20dB/decade and it will intersect the 0dB line at 

s/rad2
5.0

1
==ω .  Prior to reaching this frequency we encounter the break frequency of 

the pole (jω + 1) which occurs at s/rad1
1
11

==
τ

=ω .  This term adds a slope of –

20dB/decade to the magnitude characteristic and therefore the composite characteristic 
has a net slope of –20 + 20 = 0dB/decade, i.e., the composite characteristic is flat until it 
encounters another break frequency.  The next break frequency is due to the simple zero 

with break frequency at s/rad10
1.0

1
==ω .  At this point, the composite curve changes 

slope to +20dB/decade.  The remaining two terms in the network function are poles with 

break frequencies at s/rad50
02.0
1

==ω  and s/rad100
01.0
1

==ω .  Since each adds a 

slope of –20dB/decade, the composite characteristic shifts from +20db/decade to 
0dB/decade and then to –20dB/decade.  The total composite characteristic is shown in 
Fig. S12.2(a). 

H
dB

0dB

+20dB/
decade

Log ω
1 10 100

-20dB/decade+20

2 50
(rad/s)

 
Fig. S12.2(a) 

 
 The composite phase characteristic for the network function is shown in Fig. S12.2(b). 
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Phase
in

degrees

°0
°− 90

1 50
Log ω

°+ 90

10 100
(rad/s)

 
Fig. S12.2(b) 

 
 At low frequencies, the initial phase is +90° due to the zero at the origin.  The first break 

frequency encountered is due to the pole term (jω + 1) with break frequency at ω = 1 
rad/s.  Thus the phase shifts toward 0° on an arc tangent curve that provides -45° of phase 
at ω = 1 rad/s.  The phase proceeds toward 0° until it encounters the zero with a break 

frequency of s/rad10
1.0

1
==ω .  This term shifts the phase toward +90° going through 

+45° at the break frequency.  The two remaining poles shift the composite phase back to 
0° and finally to -90° as the characteristic indicates. 

 
12.3 Examining the magnitude characteristic we note that at low frequencies the 

characteristics has an initial slope of –20dB/decade indicating a single pole at the origin.  
Furthermore, this initial slope passes through the 20dBs at ω = 1 rad/s.  Since the slope is 
–20dB/decade, this initial slope will cross the 0dB line at ω = 10 rad/s.  Therefore, the 
constant term, i.e., gain, in the network function is 10.  Since the slope changes at ω = 1 
rad/s from –20dB/decade to 0dB/decade, there is a simple zero at this break frequency.  
At ω = 20 rad/s, the slope changes again.  This time the slope shifts from 0dB/decade to –
20dB/decade indicating the presence of a simple pole with break frequency ω = 20 rad/s.  
Finally, there is another simple pole with break frequency ω = 100 rad/s.  Therefore, the 
composite network function is 

 

( ) ( )

( ) ⎟
⎠
⎞

⎜
⎝
⎛ +

ω
⎟
⎠
⎞

⎜
⎝
⎛ +

ω
ω

+ω
=ω

1
100
j1

20
jj

1j10jH  

 
12.4 For this network, the resonant frequency is 
 

( ) ( )
s/rad000,10

105010200
1

LC
1

66

0

=

××
=

=ω

−−
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 The quality factor is 
 

( ) ( )

2
1

1020010
R

L
Q

64

0

=

×
=

ω
=

−

 

 
 And the bandwidth is 
 

s/rad5000
2

10
Q

BW

4

0

=

=

ω
=

 

 
 If the resistance, R, is now changed from 1Ω to 0.1Ω the resonant frequency is 

unaffected.  However, the Q changes to 
 

( ) ( )

20
1.0

1020010
R

L
Q

64

0

=

×
=

ω
=

−

 

 
 And the bandwidth is 
 

s/rad500
20

10
Q

BW

4

0

=

=

ω
=

 

 
 A sketch of the two frequency characteristics is shown in Fig. S12.4. 
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Log ω

R = 1Ω

R = 0.1Ω

10,000 rad/s
 

Fig. S12.4 
 
 Note that the higher value of Q, i.e., lower value of R, produces a more selective circuit 

with a much smaller bandwidth. 
 
12.5 (a) Using voltage division, we can express the output as 
 

S0 V

Cj
1LjR

RV

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ω
+ω+

=  

 
 or 
 

⎟
⎠
⎞

⎜
⎝
⎛

ω
−ω+

=

C
1LjR

R
V
V

S

0  

 
 And therefore 
 

( ) ( )[ ] 2
1

222S

0

1LCRC

RC
V
V

−ω+ω

ω
=  

 
 (b) The upper and lower cut off frequencies are the roots of the characteristic equation, 

i.e., the denominator of the transfer function. 
 
 At the lower cut off frequency 
 

ω2LC – 1 = -RCω 
 
 or 
 

0
L
R 2

0
2 =ω−ω+ω  
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 where, of course, 
LC
12

0 =ω .  With the component values, this function becomes 

 
ω2 + 2000ω – 105 = 0 

 
 Solving for ωLO, we obtain 
 

( )

s/rad8.48
2

10420002000 52

0L

=

×++−
=ω  

 
 At the upper cut off frequency 
 

ω2LC – 1 = +RCω 
 
 or 
 

0
L
R 2

0
2 =ω−ω−ω  

 
 and ωHI is 
 

( )

s/rad8.2048
2

10420002000 52

HI

=

×++
=ω  

 
 Therefore, the bandwidth is 
 

s/rad2000
2

40008.488.2048

L
RBW LOHI

=

=−=

=ω−ω=

 

 
 (c) Since the resonant frequency is 
 

s/rad23.316
1052

1
LC
1

6

0

=

××
=

=ω

−
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 The magnitude characteristic for the function is shown in Fig. S12.5. 

dB

Log ω
48.8 2048.8

-20dB/decade+20

33.3160 =ω (rad/s)
 

Fig. S12.5 
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CHAPTER 13 PROBLEMS 
 
13.1 If f(t) = e-at sin bt, find F(s) using (a) the definition of the Laplace Transform and (b) the 

fact that L[e-at f(t)] = F(s + a). 
 
13.2 Find f(t) if F(s) is given by the expression 
 

( ) ( ) ( ) ( )6s4s2s
s24sF

+++
=  

 
13.3 Find f(t) if F(s) is given by the expression 
 

( ) ( )
( )20s8ss

4s4sF
2 ++

+
=  

 
13.4 Find f(t) if F(s) is given by the expression 
 

( ) ( )
( ) ( )3s1s2s

2s12sF
2 +++

+
=  

 
13.5 Given the function 
 

( ) ( )
( ) ( )4s2ss

10s24sF
++

+
=  

 
 Find the initial and final values of the function by evaluating it in both the s-domain and 

time domain. 
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CHAPTER 13 SOLUTIONS 
 
13.1 (a) By definition 
 

( ) ( ) dtetfsF st

0

−
∞

∫=  

 
 And since f(t) = e-at sin bt 
 

( ) dtebtsinesF st

0

at −
∞

−∫=  

 
 Using Euler’s identity 
 

( ) ( )

( ) ( )

∫
−

=

⎥
⎦

⎤
⎢
⎣

⎡ −
∫=

∞ ++−−+−

−∞
+−

0

tjbastjbas

jbtjbt

0

tas

dt
j2
ee

dt
j2
eeesF

 

 
 Evaluating the integral 
 

( ) 22 bas
b

jbas
1

jbas
1

j2
1

++
=

⎥
⎦

⎤
⎢
⎣

⎡
++

−
−+

=
 

 
 (b) In this case f(t) = sin bt.  Then 
 

( ) dtbtsinesF
0

st∫=
∞

−  

 
 Again, using the Euler identity 
 

( )

( ) ( )( )∫ −=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∫=

∞
+−−−

−∞
−

0

tjbstjbs

jbtjbt

0

ts

dtee
j2

1

dt
j2
eeesF

 

 
 Evaluating the integral 
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22 bs
b

jbs
1

jbs
1

j2
1

+
=

⎥
⎦

⎤
⎢
⎣

⎡
+

−
−

=
 

 
 Then using the fact that L[e-at f(t)] = F(s + a) where in this case f(t) = sin bt and 
 

( )
22 bs

bsF
+

=  

 
 we find that 
 

( ) ( )[ ]
[ ]

( ) 22

at

at

bas
b

btsine
tfeasF

++
=

=

=+
−

−

L
L

 

 
13.2 The expression 
 

( ) ( ) ( ) ( )6s4s2s
s24sF

+++
=  

 
 can be written in a partial fraction expansion of the form 
 

( ) ( ) ( ) 6s
k

4s
k

2s
k

6s4s2s
s24 321

+
+

+
+

+
=

+++
 

 
 Multiplying the entire equation by the term s + 2 yields 
 

( ) ( )
( ) ( )

6s
2sk

4s
2skk

6s4s
s24 32

1 +
+

+
+

+
+=

++
 

 
 If we now evaluate each term at s = -2, we find that the last two terms on the right side of 

the equation vanish and we have 
 

( ) ( )

1

1

2s

k6

k
6s4s

s24

=−

=
++

−=
 

 
 Repeating this procedure for the two remaining terms in the denominator, i.e., (s + 4) and 

(s + 6) yields 
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( ) ( )

2

2

4s

k24

k
6s2s

s24

=

=
++

−=  

 
 And 
 

( ) ( )
3

3

6s

k18

k
4s2s

s24

=−

=
++

−=  

 
 Now the function F(s) can be written in the form 
 

( )
6s

18
4s

24
2s

6sF
+

−
+

+
+

−
=  

 
 The reader can check the validity of this expansion by recombining the terms to produce 

the original expression. 
 
 Once F(s) is in this latter form, we can use the transform pair 
 

[ ]
as

1e at

+
=−L  

 
 And hence 
 

( ) [ ] ( )tue18e24e6tf t6t4t2 −−− −+−=  
 
13.3 We begin by writing the function in a partial fraction expansion.  Therefore, we need to 

know the roots of the quadratic term.  We can either employ the quadratic formula or 
recognize that 

 
s2 + 8s + 20 = s2 + 8s + 16 + 4 

 = (s + 4)2 + 4 
 = (s + 4 – j2) (s + 4 + j2) 
 
 Hence, the function F(s) can be written as 
 

( ) ( )
( ) ( ) 2j4s

k
2j4s

k
s

k
2j4s2j4ss

4s4sF
*
110

++
+

−+
+=

++−+
+

=  

 
 Multiplying the entire equation by s and evaluating it at s = 0 yields 
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( )

0

0

0s
2

k
5
4

k
20s8s

4s4

=

=
++

+

=  

 
 Using the same procedure for k1, we obtain 
 

( )
( )

( )

1

1

1

1

1

2j4s

k56.206
5

1

k
5

j2

k
j2

1

k
j2

1

k
2j4ss

4s4

=°∠

=
+−

=
−

−

=
+−

=
++

+

+−=

 

 
 Then, we know that 
 

*
1k56.206

5
1

=°−∠  

 
 Now using the fact that 
 

( )θ+=⎥
⎦

⎤
⎢
⎣

⎡

++

θ−∠
+

−+

θ∠
− btcosek2

jbas
k

jbas
k at

1
11L  

 
 The function f(t) is 
 

( ) ( ) ( )tu56.206t2cose
5

2
5
4tf t4

⎥
⎦

⎤
⎢
⎣

⎡
°++= −  

 
13.4 In order to perform a partial fraction expansion on the function F(s), we need to factor the 

quadratic term.  We can use the quadratic formula or simply note that (s + 1) (s + 1) = s2 
+ 2s + 1.  Therefore, F(s) can be expressed as 

 

( ) ( )
( ) ( )3s1s

2s12sF 2 ++
+

=  
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 or in the form 
 

( ) ( )
( ) ( ) ( ) 3s

k
1s

k
1s

k
3s1s

2s12sF 2
2

1211
2 +

+
+

+
+

=
++

+
=  

 
 If we now multiply the entire equation by (s + 1)2, we obtain 
 

( ) ( ) ( )
3s
1skk1sk

3s
2s12 2

2
1211 +

+
+++=

+
+  

 
 Now evaluating this equation at s = -1 yields 
 

( )

12

12

1s

k6

k
3s

2s12

=

=
+
+

−=  

 
 In order to evaluate k11 we differentiate each term of the equation with respect to s and 

evaluate all terms at s = -1.  Note that the derivative of k12 with respect to s is zero, the 
derivative of the last term in the equation with respect to s will still have an (s + 1) term 
in the numerator that will vanish when evaluated at s = -1, and the derivative of the first 
term on the right side of the equation with respect to s simply yields k11.  Therefore, 

 
( )

( ) ( ) ( ) ( )
( )

11

11

1s

2

11

1s

k3

k
3s

12s12123s

k
3s

2s12
ds
d

=

=
+

+−+

=⎥
⎦

⎤
⎢
⎣

⎡
+
+

−=

−=

 

 
 Finally, 
 

( )
( )

2

2

3s

2

k3

k
1s

2s12

=−

=
+

+

−=  

 
 And therefore, F(s) can be expressed in the form 
 

( )
( ) 2s

3
1s

6
1s

3sF 2 +
−

+
+

+
=  
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 Using the transform pairs, we find that 
 

( ) [ ] ( )tue3te6e3tf t2tt −−− −+=  
 
13.5 First, let us use the Theorems to evaluate the function in the s-domain. 
 
 The initial value can be derived from the Theorem 
 

lim f(t) = lim sF(s) 
 t → 0 s → ∞ 
 
 Therefore, 
 

( ) ( )
( ) ( )

0
s
8

s
61

s
240

s
24

s
lim

8s6s
240s24

s
lim

4s2s
10s24

s
lim

ssFlim

2

2

2

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++

+

∞→
=

⎥
⎦

⎤
⎢
⎣

⎡
++

+
∞→

=

⎥
⎦

⎤
⎢
⎣

⎡
++

+
∞→

=

 

 
 The final value is derived from the expression 
 

lim f(t) = lim sF(s) 
 t → ∞ s → 0 
 
 Hence, 
 

( ) ( )
( ) ( )

30
8

240
4s2s

10s24
0s

lim
0s
ssFlim

=

=

⎥
⎦

⎤
⎢
⎣

⎡
++

+
→

=
→

 

 
 The time function can be derived from a partial fraction expansion as 
 

( ) ( )
( ) ( ) 4s

k
2s

k
s

k
4s2ss

10s24sF 210

+
+

+
+=

++
+

=  

 
 where 
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( )

( ) ( )
( )
( )
( )
( ) 18k

2ss
10s24

48k
4ss
10s24

30k
4s2s

10s24

2

4s

1

2s

0

0s

==
+
+

−==
+
+

==
++

+

−=

−=

=

 

 
 Hence, 
 

( )
4s

18
2s

48
s

30sF
+

+
+

−=  

 
 and then 
 

( ) [ ] ( )tue18e4830tf t4t2 −− +−=  
 
 Given this expression, we find that 
 

( ) [ ] 0184830
0t
tflim

=+−=
→

 

 
 and 
 

( ) [ ] 300030
t

tflim
=+−=

∞→
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CHAPTER 14 PROBLEMS 
 
14.1 Find ( )tv0 , t > 0 in the circuit in Fig. 14.1 using (a) nodal analysis, (b) source 

transformation and (c) Norton’s Theorem. 

2Ω
2Η 2Ω

+-

+
2 u(t) V

1F

-
( )tvo

2 u(t) A
 

Fig. 14.1 
 
14.2 Find ( )ti 0 , t > 0 in the circuit in Fig. 14.2 using (a) loop equations and (b) Thevenin’s 

Theorem. 

1Ω1Ω

1F

( ) Atue t−

2 u(t) A

1H

 
Fig. 14.2 

 
14.3 Find ( )ti 0 , t > 0 in the circuit in Fig. 14.3. 

2Ω

t = 0

1Ω
+-12 u(t) V 1F

t = 0

12 u(t) V
( )tio

+-

2Ω2H

 
Fig. 14.3 

 

14.4 Given the network in Fig. 14.4, determine (a) the voltage transfer function ( ) ( )
( )sV
sV

sG
s

0= , 

(b) the undamped natural frequency, (c) the damping ratio and (d) the general form of the 
response of the network to a unit step function. 

1Ω

2Η
+-

+

1F
-
( )tvo

( )tvs

 
Fig. 14.4 

 
14.5 Find the steady-state response ( )tv0  for the network in Fig. 14.5. 
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1Ω1Η

+-
+

1F
-
( )tvo

( ) ( ) Vtut2cos6tvs =

1Ω
1Ω

 
Fig. 14.5 
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CHAPTER 14 SOLUTIONS 
 
14.1 (a) Consider the transformed network in Fig. S14.1(a). 

2

2s 2
+-

+

-
( )sVo

s
1

s
2s

2

( )sV1

 
Fig. S14.1(a) 

 
 A brute force approach to this problem would be to write two nodal equations for the 

nodes labeled ( )sV1  and ( )sV0 .  Using KCL and summing the currents leaving each node 
yields the two linearly independent equations 

 

( ) ( ) ( )
0

s
12

sVsV
s
2

s2
s
2sV

01
1

=
+

−
+−

−
 

 
 and 
 

( ) ( )
0

2
V

s
12

sVsV 010 =+
+

−
 

 
 Solving these equations for ( )sV0  and then performing the inverse Laplace transform 

would yield ( )tv0 . 
 
 Another approach that might be simpler would be to write a node equation for ( )sV1 , 

ignoring ( )sV0 , and then use voltage division to derive ( )sV0  once ( )sV1  is known.  
Applying KCL at ( )sV1  yields 

 

( ) ( )
0

s
14

sV
s
2

s2
s
2sV

1
1

=
+

+−
−

 

 
 Rearranging terms we obtain 
 

( )
s
2

s
1

1s4
s

s2
1sV

21 +=⎥
⎦

⎤
⎢
⎣

⎡
+

+  
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 or 
 

( ) ( ) 2

2

1 s
1s2

1s4s2
1s4s2sV +

=⎥
⎦

⎤
⎢
⎣

⎡
+

++  

 
 Solving for ( )sV1  yields 
 

( ) ( ) ( )
( )1s4s2s

1s41s22sV
21 ++

++
=  

 
 Now applying voltage division 
 

( ) ( )

( )
1s4s2

1s24
s
14

2sVsV

2

10

++
+

=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
=

 

 
 This function can be written in partial fraction expansion form as 
 

71.1s
B

29.0s
A

2
1s2s

2s4
2 +

+
+

=
++

+  

 
 where 
 

59.0
71.1s
2s4A

29.0s

=
+

+
=

−=

 

 
 and 
 

41.3
29.0s
2s4B

71.1s

=
+

+
=

−=

 

 
 Therefore, 
 

( ) [ ] ( ) Vtue41.3e59.0tv t71.1t29.0
0

−− +=  
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 (b) Using source transformation we can convert the voltage source in series with the 
inductor to a current source in parallel with the inductor yielding the network in Fig. 
S14.1(b). 

22s
2 +

-
( )sVos

1

s
2

2s
1

 
Fig. S14.1(b) 

 
 Adding the current sources that are in parallel produces an equivalent source of 
 

( )
22EQ s

1s2
s
2

s
1sI +

=+=  

 
 The network is then reduced to that shown in Fig. S14.1(c). 

22s
2 +

-
( )sVos

1
2s

1s2 +

( )sIo

 
Fig. S14.1(c) 

 
 We could, at this point, transform the current source and inductor back to a voltage 

source in series with the inductor.  However, we can simply apply current division at this 
point with Ohm’s Law and derive the answer immediately. 

 

( )

1s4s2
2s4

2
s
12s2

s2
s

1s2sI

2

20

++
+

=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+++

+
=

 

 
 And 
 

( ) ( )

2
1s2s

2s4sI2sV
2

00

++

+
==  

 
 which is identical to the expression obtained earlier. 
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 (c) To apply Norton’s Theorem we will break the network to the right of the current 
source and form a Norton equivalent circuit for the elements to the left of the break as 
shown in Fig. S14.1(d). 

2s

s
2 ( )sIsc

+-
s
2

 
Fig. S14.1(d) 

 
 The short-circuit current is 
 

( )

2

sc

s
1s2
s
2

s2
s
2

sI

+
=

+=
 

 
 And the Thevenin equivalent impedance is derived from the network in Fig. S14.1(e) as 
 

ZTH(s) = 2s 
2s

( )sZTH

 
Fig. S14.1(e) 

 
 Therefore, attaching the Norton equivalent circuit to the remainder of the network yields 

the circuit in Fig. S14.1(f) which is the same as that in Fig. S14.1(c). 

22s
2 +

-
( )sVos

1
2s

1s2 +

 
Fig. S14.1(f) 

 
14.2 (a) the transformed network is shown in Fig. S14.2(a). 
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1
1 1s

1
+

s
s
1

s
2

( )sI1

( )sI3( )sI2 ( )sI0
 

Fig. S14.2(a) 
 
 Since there are three “window panes” we will need three linearly independent 

simultaneous equations to calculate the loop currents.  Two of the currents go directly 
through the current sources and therefore two of the three equations are 

 

( )

( )
1s

1sI

s
2sI

3

1

+
−

=

=
 

 
 The remaining equation is obtained by using KVL around the loop defined by the current 

I2(s).  That equations is 
 

( ) ( ) ( )[ ] ( ) ( )[ ] 0sIsI1sIsI
s
1sI1 32122 =−+−+  

 
 Substituting the first two equations into the last equation yields 
 

( )
1s

1
s
21

s
11sI

22 +
−=⎥⎦

⎤
⎢⎣
⎡ ++  

 
 or 
 

( ) ( ) ( )1s21ss
2s2ssI

2

2 ++
++−

=  

 
 Then 
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( ) ( ) ( )

( ) ( )

( ) ( )

( )

( )

⎟
⎠
⎞

⎜
⎝
⎛ +

+
=

+
+

=

++
++

=

+
+

++
++−

=

−=

2
1ss

2s
2
1

1s2s
2s

1s21ss
2s3s

1s
1

1s21ss
2s2s

sIsIsI

2

2

320

 

 
 Expressing this function in partial fraction expansion form we obtain 
 

( )
( )

2
1s

B
s
A

2
1ss

2s
2
1

sI0

+
+=

⎟
⎠
⎞

⎜
⎝
⎛ +

+
=  

 
 where 
 

( )

( )
2
3

s

2s
2
1

B

2

2
1s

2s
2
1

A

2
1s

0s

−=
+

=

=
+

+
=

−=

=

 

 
 Therefore, 
 

( ) ( ) Atue
2
32ti 2

t

0 ⎥⎦

⎤
⎢⎣

⎡ −=
−

 

 
 (b) In order to apply Thevenin’s Theorem, we first break the circuit between the points 

where the current ( )sI0  is located as shown in Fig. S14.2(b). 
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1 1s
1
+

ss
1

s
2

( )sI1

( )sI2

( )sV C0

+

-

 
Fig. S14.2(b) 

 
 Applying KVL to the closed path in the lower left-hand corner of the network yields 
 

( ) ( ) ( )[ ] ( ) 0sVsIsI
s
1sI1 C0122 =+−+  

 
 where 
 

( )

( )
1s

1sI

s
2sI

2

1

+
−

=

=
 

 
 Combining these equations we obtain 
 

( ) ( )

2

2C0

s
2s

s
2

1ss
1

1s
1sV

+
=

+
+

+
+

=
 

 
 The Thevenin equivalent impedance obtained by looking into the open circuit terminals 

with all sources made zero (current sources open-circuited) is derived from the network 
in Fig. S14.2(c). 

ss
1

( )sZTH

 
Fig. S14.2(c) 

 
 Clearly, 
 



 120

( )
s

1s1
s
1sZTH

+
=+=  

 
 If the resistor containing the ( )sI0  is now attached to the Thevenin equivalent circuit we 

obtain the network in Fig. S14.2(d). 

1( )
2C0 s
2ssV +

=

( )
s

1ssZTH

+
=

+-

( )sI0

 
Fig. S14.2(d) 

 
 Then 
 

( )

( )1s2s
2s

1
s

1s
s

2s

sI
2

0

+
+

=

+
+

+

=
 

 
 which is identical to the result obtained earlier. 
 
14.3 To begin, we first determine the initial conditions in the network prior to switch action.  

In the steady-state period prior to switch action, the capacitor looks like an open-circuit 
and the inductor acts like a short-circuit.  Therefore, in this time interval the circuit 
appears as that shown in Fig. S14.3(a). 

2Ω

2Ω

+-
+

-
( )0vC

( )0iL

12 u(t) V

 
Fig. S14.3(a) 

 
 This network indicates that in the steady-state condition for t < 0 
 

( ) A3
22

120iL =
+

=  

 
 and 
 



 121

( ) V6
22

2120vC =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=  

 
 These conditions cannot change instantaneously and hence the network for t > 0 is shown 

in Fig. S14.3(b). 

1F
2Ω

1Ω

+

-
( ) V60vC =

( ) A30iL =

( )ti0

2H

12 u(t) V +-

 
Fig. S14.3(b) 

 
 The corresponding transformed network is shown in Fig. S14.3(c). 

2

1

( )sI2

( )sI0

2s

+-

+ -

s
12

6

+-

s
1

s
1( )sI1

 
Fig. S14.3(c) 

 
 Since the current ( )sI0  is located in the center leg of the circuit, we will employ loop 

equations and specify them such that one of the loops is the same as ( )sI0 .  The two 
equations for the loop currents specified in the network are 

 

( ) ( )( ) ( ) 0sI2sIsI1
s
12

121 =+++
−  

 

( ) ( )( ) ( ) ( ) 0
s
1sI

s
1sIs26sIsI1

s
12

2221 =++++++
−  

 
 Solving the second equation for ( )sI2  yields 
 

( ) ( )
1ss2

sIss611
sI

2
1

2 ++
−−

=  

 
 Substituting this value into the first equation we obtain 
 

( ) ( )
( )

⎟
⎠
⎞

⎜
⎝
⎛ ++

++
==

2
1s

3
1ss

12ss30
6
1

sIsI
2

2

01  
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 The roots of the quadratic term in the denominator, obtained using the quadratic formula, 
are 

 

6
17j

6
1s,s 21 ±−=  

 
 The expression for the desired current can now be written in partial fraction expansion 

form as 
 

( )

6
17j

6
1s

B

6
17j

6
1s

B
s
A

6
17j

6
1ss

12ss30
6
1

*
2

++
+

+−
+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±+

++
 

 
 where 
 

( )

A4

A

2
1s

3
1s

12ss30
6
1

0s

2

2

=

=
++

++

=

 

 
 and 
 

( )
B

6
17j

6
1ss

12ss30
6
1

6
17j

6
1s

2

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

++

+−=

 

 
 The evaluation of this last term involves a lot of tedious, but straight forward, complex 

algebra.  The result is 
 

B74.6209.1 =°∠  
 
 Therefore, knowing the values for A and B we can write the final expression for the 

current in the time domain as 
 

( ) ( ) ( ) Atu74.62t
6
17cose09.124ti 6

t

0
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
°++=

−
 

 
14.4 (a) The transformed network is shown in Fig. S14.4. 
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1 ( )sV0

2s
+-

+

-s
1( )sVs

 
Fig. S14.4 

 
 Using voltage division, the voltage transfer function can be expressed as 
 

( ) ( )
( )

2
1s

2
1s

2
1

2s2s4
2

s
12

s
12

s2

s
12

s
12

sV
sV

sG

2

2

s

0

++
=

++
=

+

⎟
⎠
⎞

⎜
⎝
⎛

+

+

⎟
⎠
⎞

⎜
⎝
⎛

==

 

 
 (b) The denominator, or characteristic equation, is of the form 
 

2
00

2 s2s ω+ζω+  
 
 Therefore the undamped natural frequency is 
 

2
12

0 =ω  

 
 and 
 

s/r707.0
2

1
0 ==ω  

 
 (c) The damping ratio is derived from the expression 
 

2
12 0 =ζω  

 
 and using the value for 0ω  we obtain 
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354.0=ζ  

 
 (d) If the input to the network is a unit step function then 
 

( )
⎟
⎠
⎞

⎜
⎝
⎛ ++

=

2
1s

2
1ss

2
1

sV
2

0  

 
 By employing the quadratic formula, we can write this expression in the form 
 

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±+

=

4
7j

4
1ss

2
1

sV0  

 
 and therefore the general form of the response is 
 

( ) ( ) vtut
4
7coseBAtv

t
4
1

0
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
θ++=

−
 

 
14.5 The transformed circuit is shown in Fig. S14.5. 

1 ( )sV0s
+

-
s
1

( )sVs

1
- +

1

( )sV1

 
Fig. S14.5 

 
 Although the network contains three non-reference nodes, we will try to simplify the 

analysis by first using a supernode to find V1(s) and then employing voltage division to 
determine ( )sV0 . 

 
 KCL for the supernode containing the voltage source is 
 

( ) ( ) ( ) ( ) ( ) ( )
0

2
sV

s
1

sV
s

sVsV
1

sVsV 11s1s1 =++
−

+
−

 

 
 Solving this equation for V1(s) yields 
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( ) ( )sV
1s

2
3s

1ssV s
2

1

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

++

+
=  

 
 And then using voltage division 
 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
11

1sVsV 10  

 
 so that 
 

( )
( )

( )sV
1s

2
3s

1s
2
1

sV s
2

0

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++

+
=  

 
 Therefore, 
 

( )
( )

1s
2
3s

1s
2
1

sH
2 ++

+
=  

 
 Since vs(t) = 6 cos 2t u(t) V, then VM = 6 and 20 =ω .  Hence, 
 

( )
( )

( ) ( )

( )

°−∠=
°−∠

°∠−
=

++

+
=

57.71264.0
4524.4

43.63236.2
2
1

12j
2
32j

12j
2
1

2jH
2

 

 
 and 
 

( )
( ) °−=φ

=

57.712j
264.02jH

 

 
 Therefore, 
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( ) ( ) ( )( )
( ) V57.71t2cos58.1

2jt2cos2jHVtv Mss0

°−=

φ+=
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CHAPTER 15 PROBLEMS 
 
15.1 Find the exponential Fourier series for the waveform in Fig. 15.1. 

-3 -2 -1

1

2

v(t)

t(s)543210
 

Fig. 15.1 
 
15.2 Determine the trigonometric Fourier series for the function shown in Fig. 15.2. 

v(t)

0 t

π

π− π π2 π3
 

Fig. 15.2 
 
15.3 Find the trigonometric Fourier series for the waveform shown in Fig. 15.3. 

v(t)

0
t

π− π π2

A

 
Fig. 15.3 

 
15.4 Find the steady-state voltage ( )tv0  in the circuit in Fig. 15.4 if the input voltage is the 

waveform shown in Fig. 15.3 with A = 1V. 

1H
( )tv02Ω

+-
+

-
( )tvs

1Ω

 
Fig. 15.4 
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15.5 Given the network in Fig. 15.4 with the input source ( ) ( ) Vtue10tv t2
s

−= , use the 
transform technique to find ( )tv0 . 

 



 129

CHAPTER 15 SOLUTIONS 
 

15.1 An examination of the waveform indicates that the period T = 3 and 
3

2
T
2

0

π
=

π
=ω . 

 
 The Fourier coefficients are determined from the expression 
 

( ) dtetv
T
1c tjn

T

0
n

0ω−
∫=  

 
 or in this case 
 

[ ]
( )[ ]

[ ]

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ π

−
π

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ +
−

π
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ +−
π

=

⎥⎦

⎤
⎢⎣

⎡ −+
π

−
=

−+
ω

−
=

−+−
ω

−
=

+
ω

−
=

⎥⎦
⎤

⎢⎣
⎡ ∫+∫=

π−

π−π

π−

π−π−

π−π−

ω−ω−

ω−ω−ω−

ω−ω−

ω−ω−

3
ncose1

jn
1

2
eee22

n2j
1

ee2
n2j

1

2ee
n2j

1

2ee
jn3

1

ee1e2
jn3

1

ee2
jn3

1

dte1dte2
3
1c

jn

3
jn

3
jn

nj

3
n4j

3
n2j

3
n4j

3
n2j

n2jjn

0

jnn2jjn

0

2

1

tjn1

0

tjn

0

tjn
2

1

tjn
1

0
n

00

000

00

00

 

 
 In addition 
 

( )

1

dt1dt2
3
1

dttv
T
1c

2

1

1

0

3

0
0

=

⎥⎦
⎤

⎢⎣
⎡ ∫+∫=

∫=

 

 
 Therefore, 
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( ) tjnjn

0n
n

0e
3

ncose1
jn
11tv ωπ−

∞

≠
∞−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ π

−∑
π

+=  

 
15.2 Since the waveform does not exhibit any symmetry, we will have to determine the 

coefficients nn0 banda,a .  The 0a  coefficient is 
 

( ) dttv
2
1a 0 ∫
π

=
π

π−
 

 

 where, of course, v(t) = t in the interval π≤≤ t0  and zero elsewhere and 1
T
2

0 =
π

=ω . 

 

⎟
⎟
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⎞
⎜
⎜
⎝

⎛ π
=

π
=
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=

π

π
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2
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dtt
2
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0
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 Recall that 0a  is simply the average value of the waveform and therefore can be 

calculated by dividing the area under the curve ( ( ) ( )
22

1bh
2
1Area

2π
=ππ== ) by the 

interval (2π) which yields 
4
π . 

 
 The an coefficient is 
 

dtntcost
2
2a

0
n ∫

π
=

π

 

 
 Using a table of integrals, we find that 
 

π

⎥⎦
⎤

⎢⎣
⎡ +

π
=

0
2n ntsint

n
1ntcos

n
11a  

 
 The second term is zero at t = π and 0 and the first term can be written as 
 

( )[ ]11
n
1a n

2n −−
π

=  

 
 since the cosine term will be +1 or –1 depending upon the value of n.  Thus 
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( )
2

n

n n
11a

π
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 In addition, 
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0
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π
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π

 

 
 Once again, using a set of integral tables we find that 
 

π
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⎤
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⎡ −

π
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0
2n ntcost

n
1ntsin

n
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 The first term will be zero at each limit, but the second term is nonzero at the upper limit 

and thus 
 

( )

( )
n

1

1
n

b

n

n
n

−−
=

−
π
π−

=
 

 
 Therefore, the Fourier series expansion is 
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4
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15.3 To begin our analysis we first note that the waveform is an even function and therefore 

0bn =  for all n.  Thus, we need to find only the 0a  and an coefficients. 
 

 For this waveform, we note that T = 2π and 1
T
2

0 =
π

=ω .  0a  is now 

 

( ) dttv
2
1a 0 ∫
π

=
π

π−
 

 
 However, recall that 0a  is simply the average value and we can easily compute this 

number without resorting to solving the above integral.  This average value can be 
obtained by dividing the area by the base, i.e. 

 

( ) AA
2
12bh

2
12Area π=⎟

⎠
⎞

⎜
⎝
⎛ π=⎟

⎠
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⎜
⎝
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 The base is 2π and therefore 
 

2
A

2
Aa 0 =
π

π
=  

 
 Because the function is even, 
 

dtntcostA
2
4a

0
n ∫

ππ
=

π

 

 

 where the equation of the straight line function in the interval π≤≤ t0  is tA
π

.  So, 
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0

2n ∫
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=
π

 

 
 Using a table of integrals, we find that 
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 Therefore, 
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2
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15.4 The input voltage for the circuit in Fig. 14.4 is given by the expression 
 

( )
( )

ntcos
n
4

2
1tv

oddn
1n

2s ∑
π
−

+=
∞

=
 

 
 where 10 =ω .  The output voltage for the network can be derived using voltage division 

as 
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 and since 10 =ω  
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 Furthermore, 
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 Hence, 
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15.5 The input function to the network can be expressed in the form 
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( )
2j

10jVs +ω
=ω  

 
 The transfer function for the network obtained in the previous problem is 
 

( ) ( )
ω+
ω+

=ω
j32
j12jG  

 
 Then using the time convolution property of the Fourier transform we can express the 

output of the circuit in the form 
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 which can be written as a partial fraction expansion of the form 
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 Evaluating the constants yields 
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 Therefore, 
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CHAPTER 16 PROBLEMS 
 
16.1 Find the Y parameters for the network shown in Fig. 16.1 and then find the output 

voltage of the two-port when a 4mA current source is connected to the input port and a 
4kΩ load is connected to the output port. 

4kΩ 4kΩ

4kΩ

 
Fig. 16.1 

 
16.2 Find the Z parameters for the circuit shown in Fig. 16.2, and then find the current in a – 

j4Ω capacitor connected to the output port when a V06 °∠  source is connected to the 
input port. 

2Ω

j2Ω-j1Ω

 
Fig. 16.2 

 
16.3 Find the hybrid parameters for the circuit shown in Fig. 16.3.  What conclusion can be 

drawn from this result. 

2V
+

-
2bV +-

1V
+

-

1CI
2I1I aΩ

dΩ

 
Fig. 16.3 

 
16.4 Find the transmission parameters of the network in Fig. 16.1 by treating the circuit as a 

cascade interconnection of elements. 
 
16.5 Check the validity of the answers obtained in problems 16.1 and 16.4 by using the 

parameter conversion formulas to convert the Y parameters in problem 16.1 to the 
transmission parameters in problem 16.4. 
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CHAPTER 16 SOLUTIONS 
 
16.1 The equations for a two-port in terms of the Y parameters are 
 

I1 = y11 V1 + y12 V2 
I2 = y21 V1 + y22 V2 

 

 Since 
1

1
11 V

Iy =  with 0V2 = , the network in Fig. S16.1(a) is used to find y11. 

1V
+

-

1I

0V2 =4kΩ4kΩ

4kΩ

 
Fig. S16.1(a) 

 
 Since V2 is made zero with the short-circuit, the 4kΩ resistor on the right is shorted and 
 

( )k4k4IV 11 =  
 
 or 
 

S
k2
1y

V
I

11

0V1

1

2

==
=

 

 
 The parameter y12 is found from the expression 
 

0V2

1
12

1
V
I

y
=

=  

 
 The circuit in Fig. S16.1(b) is used to determine this parameter 

2V
+

-

1I

0V1 = 4kΩ4kΩ

4kΩ
2I

 
Fig. S16.1(b) 

 
 Note in this case, the 4kΩ resistor on the left is shorted and 
 

-I1 (4k) = V2 
 
 or 
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S
k4
1y

V
I

12

0V2

1

1

−
==

=

 

 
 We could continue this procedure and determine y21 and y22 in the exact same manner, 

however, since the network looks the same from either port, we know that S
k4
1y21

−
=  

and S
k2
1y22 = .  Therefore, the two-port equations for this network in terms of the Y 

parameters are 
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V
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+
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−=
 

 
 If we now connect a 4mA current to the input and 4kΩ load to the output, the terminal 

conditions are  
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1
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A
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 The two-port equations now become 
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 or 
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V
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V
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1

k
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 Simplifying 
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V3V0
VV816

+−=
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 or 
 

( )

V
23
16V

VV3816

2

22

=

−=
 

 
 The network with the terminal conditions attached is shown in Fig. S16.1(c). 

2V
+

-

1V

4kΩ4kΩ
4kΩ

2V

4kΩ4mA

 
Fig. S16.1(c) 

 
 The nodal equations for this network are 
 

0
k4
1

k4
1

k4
1V

k4
1V

k
4

k4
1V

k4
1

k4
1V
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⎠
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⎜
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⎠
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⎜
⎝
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 Note that these equations are identical to those obtained earlier. 
 
16.2 The equations for a two-port in terms of the Z parameters are 
 

V1 = z11 I1 + z12 I2 
V2 = z21 I1 + z22 I2 

 

 Since 
1

1
11 I

Vz =  with 0I2 = , the network in Fig. S16.2(a) is used to derive z11. 

2Ω

j2Ω

1V
+

-
0I2 =

1I -j1Ω

 
Fig. S16.2(a) 

 
 Note that with the output terminals open-circuited, 0I2 = .  Then 
 

Ω−==
=

1j2
I
V

z
0I1

1
11

2
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 Likewise, the parameter z12 is found from the expression 
 

0I2

1
12

1
I
V

z
=

=  

 
 The circuit used to derive this parameter is shown in Fig. S16.2(b). 

2Ω

j2Ω

1V
+

-

2I

-j1Ω

2V
+

-
 

Fig. S16.2(b) 
 
 With the input terminals open-circuited, 0I1 = .  Since 0I1 = , there is no current in the 

capacitor and therefore no voltage across it.  Then V1 is the voltage across the 2Ω resistor 
and  

 
V1 = 2I2 

 
 and hence 
 

Ω==
=

2
I
V

z
0I2

1
12

1

 

 
 In a similar manner, we find that 
 
 z21 = 2Ω 

z22 = 2 + j2Ω 
 
 Therefore, the two-port equations in terms of the Z parameters are 
 

( )
( ) 212

211

I2j2I2V
I2I1j2V

++=
+−=

 

 
 If we now apply the terminal conditions, the network is shown in Fig. S16.2(c). 

2Ω

j2Ω

1I+-

2I-j1Ω

2V
+

--j4Ω
V06 °∠

 
Fig. S16.2(c) 
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 The terminal conditions are 
 

( ) 22

1

I4jV
V06V

−−=
°∠=

 

 
 And the two-port equations are 
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( ) 21

21

I2j2I20
I2I1j206

−+=
+−=°∠

 

 
 Solving the second equation for I1 and substituting this value into the first equation yields 
 

6 = (-1 + j) (2 – j) + 2I2 
 
 or 
 

A2.2381.3
2

j37I2

°−∠=

−
=

 

 
16.3 The network is redrawn as shown in Fig. S16.3. 

2V
+

-
2bV +-

1V
+

-

1CI
2I1I aΩ

dΩ

 
Fig. S16.3 

 
 The two-port equations in terms of the hybrid parameters are 
 

V1 = h11 I1 + h12 V2 
I2 = h21 I1 + h22 V2 

 
 and thus 
 

0I2

2
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 Let us now apply these definitions to the network.  Note that 
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 and 
 

b
V
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h
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 In a similar manner 
 

C
I
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h
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2
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 and 
 

S
d
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V
I

h
0I2

2
22

1

==
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 Note carefully the match between the network in Fig. S16.3 and the hybrid parameters.  

This network is actually the hybrid model for the basic transistor and given the hybrid 
parameters for a transistor, the model can be constructed immediately. 

 
16.4 The network in Fig. 16.1 can be redrawn in the following manner as shown in Fig. 

S16.4(a). 

4kΩ

4kΩ

4kΩ
 

Fig. S16.4(a) 
 
 In this form we see that the original network can be drawn as a cascade connection of 

three networks.  The general form of the transmission parameters is 
 

V1 = A V2 – B I2 
I1 = C V2 – D I2 

 
 Consider the network in Fig. S16.4(b). 
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4kΩ1V
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1I

 
Fig. S16.4(b) 

 
 For this network 
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 Next consider the network in Fig. S16.4(c). 
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Fig. S16.4(c) 

 
 In this case 
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 Since the transmission parameters for the resistor on the right are the same as those for 
the resistor on the left, we have all the parameters for the individual networks.  Now the 
transmission parameters for the entire network are 
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16.5 The conversion formulas necessary to convert the Y parameters to the transmission 

parameters are as follows. 
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 where 21122211 yyyyy −=∆ .  From the results of problem 16.1 
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 These results check with those obtained in problem 16.4. 
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APPENDIX:  Techniques for Solving Linearly Independent Simultaneous Equations 
 
 
In the solution of various circuit problems we encounter a system of simultaneous 
equations of the form 
 

 

nnnn22n11n

2nn2222121

1nn1212111

bxaxaxa

bxaxaxa
bxaxaxa

=+++

=+++
=+++

"
####

"
"

 (A.1) 

 
where the x’s and b’s are typically voltages and currents or currents and voltages, 
respectively. 
 
As the title implies, we assume that the equations are linearly independent.  As a brief reminder 
of the meaning of linear independence, consider the following KCL equations written for each 
node of a three-node network: 

 04V
2
1V

2
3

21 =−−  (A.2) 

 05V
6
5V

2
1

21 =++−  (A.3) 

 01V
3
1V 21 =−−−  (A.4) 

 
where V1 and V2 are two node voltages that are measured with respect to the third (reference) 
node.  Linear independence implies that we cannot find constants a1, a2, and a3 such that 
 

 01V
3
1Va5V

6
5V

2
1a4V

2
1V

2
3a 213212211 =⎟

⎠
⎞

⎜
⎝
⎛ −−−+⎟

⎠
⎞

⎜
⎝
⎛ ++−+⎟

⎠
⎞

⎜
⎝
⎛ −−  (A.5) 

 
However, in this case if we select a1 = a2 = a3 = 1, we obtain 
 

00

01V
3
1V5V

6
5V

2
14V

2
1V

2
3

212121

=

=−−−++−−−+
 

 
Said another way, this means, for example, that Eqs. (A.2) and (A.3) can be used to obtain Eq. 
(A.4), and therefore, Eq. (A.4) is linearly dependent on Eqs. (A.2) and (A.3).  Furthermore, any 
two of the equations could be used to obtain the third equation.  Therefore, only two of the three 
equations are linearly independent. 
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We will now describe three techniques for solving linearly independent simultaneous equations--
Guassian elimination, determinants and matrices.  Our presentation will be very brief and deal 
only with the elements of these techniques that are needed in this student problem companion. 
 

A.1 Gaussian Elimination 
 
 The following example will serve to demonstrate the steps involved in applying this 

technique. 
 

Example A.1 
 
 Let us find the solution to the following set of equations: 
 
 4XX4X7 321 =−−  (A.6) 
 0X2X7X4 321 =−+−  (A.7) 
 1X3X2X 321 −=+−−  (A.8) 
 
 Solution  The algorithm (i.e., step-by-step procedure) for applying the Gaussian 

elimination method proceeds in the following systematic way.  First, we solve Eq. (A.6) 
for the variable X1 in terms of the other variables in X2 and X3. 

 

 321 X
7
1X

7
4

7
4X ++=  (A.9) 

 
 We then substitute this result into Eqs. (A.7) and (A.8) to obtain 
 

 
7

16X
7

18X
7
33

32 =−  (A.10) 

 
7
3X

7
20X

7
18

32 −=+−  (A.11) 

 
 Continuing the reduction we now solve Eq. (A.10) for X2 in terms of X3: 
 

 32 X
33
18

33
16X +=  (A.12) 

 Substituting this expression for X2 into Eq. (A.11) yields 
 

231
189X

231
336

3 =  

 
 or 
 
 X3 = 0.563 (A.13) 
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 Now backtracking through the equations, we can determine X2 from Eq. (A.12) as 
 

X2 = 0.792 
 
 and X1 from Eq. (A.9) as 
 

X1 = 1.104 
 
 In this simple example we have not addressed such issues as zero coefficients or the 

impact of round-off errors.  We have, however, illustrated the basic procedure. 
 

A.2 Determinants 
 
 A determinant of order  n is a square array of elements aij arranged as follows: 
 

 

nn2n1n

n22221

n11211

aaa

aaa
aaa

"
#

"
"

=∆  (A.14) 

 
 The cofactor cij of the element aij is given by the expression 
 
 cij = (-1)i+jAij (A.15) 
 
 where Aij is the determinant that remains after the ith row and jth column are deleted. 
 
Example A.2 
 
 Given the determinant 
 

333231

232221

131211

aaa
aaa
aaa

=∆  

 
 find the cofactor of the element a21. 
 
 Solution  The cofactor of c21 for the element a21 is 
 

( )
3332

131212
21 aa

aa
1c +−=  

 
 The numerical value of the determinant is equal to the sum of products of the elements in 

any row or column and their cofactors. 
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Example A.3 
 
 Let us determine the value of the determinant in Example A.2 using the first row. 
 
 Solution   
 

( ) ( ) ( )

3231

2221
13

3331

2321
12

3332

2322
11

13
31

1312
21

1211
11

11

131312121111

aa
aa

a
aa
aa

a
aa
aa

a

A1aA1aA1a

cacaca

+−=

−+−+−=

++=∆
+++  

 
 Although the 2-by-2 determinants can be evaluated in the same manner, as illustrated 

above, the result is simply 
 

 cbad
dc
ba

−=  (A.16) 

 
 Therefore, ∆ is 
 

( ) ( ) ( )223132211323313321122332332211 aaaaaaaaaaaaaaa −+−−−=∆  
 
 We could evaluate the determinant using any row or column. 
 
 The method of solving the set of simultaneous equations of the form shown in Eq. (A.1) 

using determinants is known as Cramer’s rule.  Cramer’s rule states that if ∆ ≠ 0 (that is, 
the equations are linearly independent), the value of the variable x1 in Eq. (A.1) is given 
by the expression 

 

 

∆
=

∆
∆

= nnn2n

n2222

n1121

1
1

aab

aab
aab

x

##
"

 (A.17) 

 
 Where ∆1 is the determinant ∆ in which the first column is replaced with the column of 

coefficients.  In the general case, xi is given by an expression similar to Eq. (A.17) with 
the ith column replaced by the column of coefficients. 

 
Example A.4 

 
 Let us solve the following equations using determinants. 
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2I1 – 4I2 = 8 
-4I1 + 6I2 = -4 

 
 Solution  In this case, ∆ defined by Eq. (A.16) is 
 

( ) ( ) ( ) ( ) 44462
64
42

−=−−−=
−

−
=∆  

 Then using Eq. (A.17) 
 

( ) ( ) ( ) ( ) 8
4

4468
4

64
48

I1 −=
−

−−−
=

−
−

−

=  

 
 and 
 

( ) ( ) ( ) ( ) 6
4

8442
4

44
82

I2 −=
−

−−−
=

−
−−

=  

 
A.3 Matrices 

 
 A matrix is defined to be a rectangular array of numbers arranged in rows and columns 

and written in the form 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

mn2m1m

n22221

n11211

aaa

aaa
aaa

"
###

"
"

 

 
 This array is called an m by n (m × n) matrix because is has m rows and n columns.  A 

matrix is a convenient way of representing arrays of numbers; however, one must 
remember that the matrix itself has no numerical value.  In the preceding array the 
numbers or functions aij are called the elements of the matrix.  Any matrix that has the 
same number of rows as columns is called a square matrix. 

 
Example A.5 

 
 Are the following matrices? 
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[ ]321,
8765
1234

,
42
31

,

d
c
b
a

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

 

 
 Solution  Yes. 
 
 The identity matrix is a diagonal matrix in which all diagonal elements are equal to one. 
 

Example A.6 
 
 Are the following identity matrices? 
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

1..00

00100
0.010
0..01

,,
100
010
001

,
10
01

"
#

"
"
"

"  

 
 Solution  Yes. 
 
 Consider now the multiplication of two matrices.  If we are given an m × n matrix A and 

an n × r matrix B, the product AB is defined to be an m × r matrix C whose elements are 
given by the expression 

 

 r,,1j,m,,1i,bac
n

1k
kjikij …… ==∑=

=
 (A.18) 

 
 Note that the product AB is defined only when the number of columns of A is equal to 

the number of rows of B. 
 
 Multiplication is a “row-by-column” operation.  In other words, each element in a row of 

the first matrix is multiplied by the corresponding element in a column of the second 
matrix and then the products are summed.  This operation is diagrammed as follows: 

 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

npnj1n

p1ij11

mn1m

in1i

n111

mp1m

ij

p111

bbb

bbb

aa
aa
aa

cc
c

cc

""
###

""

"
"
"

"
##

"
 (A.19) 

 
 The following examples will illustrate the computational technique. 
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Example A.7 
 
 If 
 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

2
1

and
43
21

53
12

and
42
31

DC

BA

 

 
 Find AB and CD. 
 
 Solution 
 

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( )
( )( ) ( )( ) ⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
+
+

=

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
++
++

=

11
5

2413
2211

2216
1611

54123422
53113321

CD

AB

 

 
 The matrix of order n × m obtained by interchanging the rows and columns of an m × n 

matrix A is called the transpose of A and is denoted by AT. 
 

Example A.8 
 
 If 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

63
52
41

B  

 
 Find BT. 
 
 Solution 
 

⎥
⎦

⎤
⎢
⎣

⎡
=

654
321TB  

 
 As defined for determinants, the cofactor Aij of the element aij of any square matrix A is 

equal to the product (-1)i+j and the determinant of the submatrix obtained from A by 
deleting row i and column j. 
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Example A.9 

 
 Given the matrix 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

333231

232221

131211

aaa
aaa
aaa

A  

 
 Find the cofactors A11, A12, and A22. 
 
 Solution  The cofactors A11, A12, and A22 are 
 

( )

( ) ( )

( ) 13313311
3331

13114
22

23313321
3331

23213
12

23323322
3332

23222
11

aaaa
aa
aa

1A

aaaa
aa
aa

1A

aaaa
aa
aa

1A

−=−=

−−=−=

−=−=

 

 
 The adjoint of the matrix A (adj A) is the transpose of the matrix obtained from A by 

replacing each element aij by its cofactors Aij.  In others words, if 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

nn1n

2221

n11211

aa

.aa
aaa

""
###

"
"

A  

 
 then 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

nnn1

2212

1n2111

AA

.AA
AAA

adj

""
###

"
"

A  

 
 If A is a square matrix and if there exists a square matrix A-1 such that 
 
 A-1A = AA-1 = I (A.20) 
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 Then A-1 is called the inverse of A.  It can be shown that the inverse of the matrix A is 
equal to the adjoint divided by the determinant (written here as |A|); that is 

 

 
A

AA adj1 =−  (A.21) 

 
Example A.10 

 
 Given 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

213
321
132

B  

 
 Find B-1. 
 
 Solution 
 

182152
32
13

3
21
13

1
21
32

2

=+−=

⎥
⎦

⎤
⎢
⎣

⎡
+−=B

 

 
 and 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

175
517

751
adj B  

 
 Therefore, 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=−

175
517

751

18
11B  

 
 We now have the tools necessary to solve Eqs. (A.1) using matrices.  The following 

example illustrates the approach. 
 

Example A.11 
 
 The node equations for a network are 
 

2V1 + 3V2 + V3 = 9 
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V1 + 2V2 + 3V3 = 6 
3V1 + V2 +2V3 = 8 

 
 Let us solve this set of equations using matrix analysis. 
 
 Solution  Note that this set of simultaneous equations can be written as a single matrix 

equation in the form 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

8
6
9

V
V
V

213
321
132

3

2

1

 

 
 or 
 

AV = I 
 
 Multiplying both sides of the preceding equation through A-1 yields 
 

A-1AV = A-1I 
 
 or 
 

V = A-1I 
 
 A-1 was calculated in Example A.10.  Employing that inverse here, we obtain 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

8
6
9

175
517

751

18
1V  

 
 or 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

5
29
35

18
1

V
V
V

3

2

1

 

 
 and hence, 
 

18
5Vand,

18
29V,

18
35V 321 ===  

 
 



E–1

EQUATIONS

CHAPTER 1

Electric current-charge relationship

Voltage-energy relationship

Power

Energy

¢w = 3
t2

t1

p dt = 3
t2

t1

vi dt

dw

dt
= p = vi

v =
dw

dq

i(t) =
dq(t)

dt
  or  q(t) = 3

t

-q
i(x) dx

CHAPTER 2

Ohm’s law

v(t)=R*i(t) or i(t)=Gv(t) where

Power

p(t)=v(t)i(t)

Kirchhoff’s Current Law (KCL)

Kirchhoff’s Voltage Law (KVL)

Two series resistors & voltage divider

vR1

vR2

R1

R2

v(t)

i(t)

+

–

+

–

 vR2
=

R2

R1 + R2
v(t)

 vR1
=

R1

R1 + R2
v(t)

 i(t) =
v(t)

R1 + R2

a
N

j= 1
vj(t) = 0

a
N

j= 1
ij(t) = 0

= Ri2(t) =
v2(t)

R

G =
1

R

Multiple series resistors & voltage divider

 vRi
=

Ri

RS
v(t)

 i(t) =
v(t)

RS

 RS = R1 + R2 + p + RN

RN

RS = R1 + R2 + R3 + … + RN

R1 R2 R3

R4

R5

vR1
vR2

vR3

vRN

vR4

vR5

v(t)

v(t)

i(t)

i(t)

+

+

–

+

–

+ – + – + –

–



Two parallel resistors & current divider

Multiple parallel resistors & current divider

Delta-to-wye resistance conversion 

 Rc =
R1 R3

R1 + R2 + R3

 Rb =
R2 R3

R1 + R2 + R3

 Ra =
R1 R2

R1 + R2 + R3

 ij(t) =
Rp

Rj
io(t)

 
1

Rp
= a

N

i= 1

1

Ri

 i2(t) =
R1

R1 + R2
i(t)

 i1(t) =
R2

R1 + R2
i(t)

 v(t) = Rp i(t) =
R1 R2

R1 + R2
i(t)

 Rp =
R1 R2

R1 + R2

E–2

R1 R2 v(t)i(t)

i1(t) i2(t)

+

–

RpRNR1 R2 v(t)v(t) io(t)

i1(t) i2(t) iN(t)

io(t)

+ +

––

R1

a

bc
R3

R2

a

bc

RbRc

Ra

Delta-to-wye resistance conversion
(Special case: Identical resistors)

Wye-to-delta resistance conversion

Wye-to-delta resistance conversion
(Special case: Identical resistors)

R¢ = 3RY

 R3 =
Ra  Rb + Rb  Rc + Ra  Rc

Ra

 R2 =
Ra  Rb + Rb  Rc + Ra  Rc

Rc

 R1 =
Ra  Rb + Rb  Rc + Ra  Rc

Rb

RY = 1
3 R¢



CHAPTER 3

E–3

Ohm’s law expressed in node voltages

Ohm’s law expressed in loop currents

Ideal op amp

v+

v–

i+

i–
∞

 v+ = v-

 i+ = i- = 0

vS2

vS1

v1

v3 v4

v2 v5

R1

R2

R3 R4

R5

i1 i2
+

–

+

+

+ +– –

–

–

A B C

F E D

v3 = Ai1 - i2B  R3 

vm

+

–

vN

+

–

Node m Node N

i

R

+(vm–vN)-

i =
vm - vN

R

Equivalent circuit forms

R1

R2

R1 + R2

V1

V2

V1 – V2

R1
R2

R1 + R2

R1 R2————

CHAPTER 4

CHAPTER 5



Equivalent circuit forms (continued)

I1 I2 I1 – I2

VS Vo = VS

Io = IS

IS

R

R

+

–

E–4

Thévenin & Norton equivalent circuits

Maximum power transfer theorem
(Thévenin and fixed, load variable)

Pload =
v2

4R

RL = R

RLRv

i = isc -
vo

RThvo = voc - RTh i

i

isc
Circuit

B

A

B

vo

+

–

RThvoc = RTh isc

i

voc

A

B

Circuit
B

vo

+

–

RTh

Parallel-plate capacitor-Capacitance Charge stored on a capacitor

Current-voltage relationship of a capacitor

 v(t) =
1

C 3
t

-q
i(x) dx

 i = C
dv

dt

q = Cv

dq
dt

(a)

Dielectric

A
C

d

(b)

q(t)v(t)

+

–

i = ——

+

–

C =
eo A
d

RL

Ri

v

v & R fixed, RL variable

CHAPTER 6



Energy stored in a capacitor

Current-voltage relationship of an inductor

Energy stored in an inductor

Capacitors connected in series

Capacitors connected in parallel

Inductors connected in series

Inductors connected in parallel

1

Lp
= a

N

i= 1

1

Li

LS = a
N

i= 1
Li

Cp = a
N

i= 1
Ci

1

CS
= a

N

i= 1

1

Ci

wL(t) = 1
2 Li2(t) J

Lv(t)

i(t)

+

–

 i(t) =
1

L 3
t

-q
v(x) dx

 v(t) = L
di(t)

dt

 wC(t) =
1

2

q2(t)

C
= 1

2 Cv2(t) J

E–5

First-order circuits

The unit step function

General form of the step response
of a first-order circuit excited at 

where is the initial value and is
the final value.

Time constant of a first-order capacitive circuit

Time constant of a first-order inductive circuit

Second-order circuits

Characteristic equation of a second-order circuit

Roots of the characteristic equation

Overdamped response (i.e., � > 1)

Critically damped response (i.e., � = 1)

Underdamped response (i.e., � < 1)

where and �d = �021 - �2� = ��0 ,

x(t) = e-�tAA1 cos �d t + A2 sin �d tB,

x(t) = B1 e-��0 t + B2 te-��0 t

x(t) = K1 e-A��0-�02�2- 1Bt + K2 e-A��0+�02�2- 1Bt

 s2 = -��0 - �02�2 - 1

 s1 = -��0 + �02�2 - 1

s2 + 2��0 s + �2
0 = 0

� =
L

RTh

 � = RTh C

x (q)x At0B
x(t) = x(q) + Cx At0B - x(q) De-At- t0B��,  t = t0

t = t0

u(t) = b0

1

t 6 0

t 7 0

CHAPTER 7



E–6

General form of a sinusoidal waveform

where

Conversion between sine and cosine functions

Impedance

Impedances connected in series

Impedances connected in parallel

Admittance

Admittances of R, L, and C

Admittances connected in series

Admittances connected in parallel

Yp = a
N

i= 1
Yi

1

YS
= a

N

i= 1

1

Yi

 YC = j�C = �C/90°

 YL =
1

j�L
= -

1

�L
/90°

 YR =
1

R
= G

Y =
1

Z
=

I
V

1

Zp
= a

N

i= 1

1

Zi

ZS = a
N

i= 1
Zi

Z =
V
I
=

VM/�v

IM/�i
=

VM

IM
/�v - �i = Z/�z

 sin �t = cos a�t -
�

2
b

 cos �t = sin a�t +
�

2
b

� =
2�

T
= 2�fx(t) = XM sin (�t + �)

Impedances of R, L, and C

Passive element Impedance

R

L

C
Z =

1

j�C
= jXC = -

1

�C
/90° , XC = -

1

�C

Z = j�L = jXL = �L/90° , XL = �L

Z = R

CHAPTER 9

Average (real) power absorbed by an impedance
(watts)

Maximum average power transfer theorem
(When and fixed, load variable)

Average power absorbed by a resistor

Power factor (pf)

Complex power (volt-amperes)

 = Vrms Irms/�v - �i = I2
rms Z

 S = P + jQ = Vrms/�v Irms/-�i

pf = cos A�v - �iB = cos �ZL

P = I2
rms R =

V2
rms

R

oc

+

–

VL

ac circuit

Voc

ZTh

ZL

IL

ZL = RL + jXL = RTh - jXTh = Z*Th

ZLZThVOC

P = 1
2 VM IM cos A�v - �iB

CHAPTER 8



E–7

Maximum average power transfer theorem
(Special case: )

RMS value of a sinusoidal waveform

Average power absorbed in terms of rms values

Average (real) power (watts)

Reactive power (vars)

Power triangle relationship

tan A�v - �iB = tan �Z =
Q

P

 Q = Im(S) = Vrms Irms sin A�v - �iB = I2
rms Im(Z)

 P = Re(S) = Vrms Irms cos A�v - �iB = I2
rms Re(Z)

P = Vrms Irms cos A�v - �iB

Irms =
IM

12

RL = 2R2
Th + X2

Th

XL = 0

Voc & ZTh fixed, ZL variable

▲

▲Im

Re
θv–θi

▲

▲

θv–θi

+Q

–Q

P

S

S

▲

▲

▲
▲

CHAPTER 10

Magnetic flux, voltage and current relationships

�=N�=Li  webers

Voltage-current relationships for
mutually coupled coils

L1 L2

M

v1(t) v2(t)

i1(t) i2(t)

+

–

+

–

 v2(t) = M
di1(t)

dt
+ L2

di2(t)

dt

 v1(t) = L1

di1(t)

dt
+ M

di2(t)

dt

v N �

+

–

i

v =
d�

dt
= L

di

dt

Phasor voltage-current relationships
for mutually coupled coils

Energy stored in magnetically coupled inductors

The coefficient of coupling

Ideal transformer equations in phasor form

Ideal transformer equations

The turns ratio of a transformer

n =
N2

N1

i1(t) i2(t)

v1(t) v2(t)
+
–

▼

▼φ

φ

N1 N2+
–

• •
A

▼▼

 
v1

v2
= - 

i1

i2
=

N1

N2

V1

V2
=

I2

I1
=

N1

N2

k =
M

2L1 L2

  where  0 	 k 	 1

w(t) = 1
2 L1 C i1(t) D2 + 1

2 L2 C i2(t) D2 ; Mi1(t)i2(t)

 V2 = j�L2 I2 + j�MI1

 V1 = j�L1 I1 + j�MI2



Three-phase terminology

Voltage, current, and impedance relationhips of Y and � configurations

E–8

Quantity Wye Delta

Line current 

Ia , Ib , Ic

Phase current 

Line-to-neutral voltage 

Van , Vbn , Vcn

Phase voltage 

Line-to-line, phase-to-phase, line voltage 

Vab , Vbc , Vca Phase voltage 

Iab , Ibc , Ica Phase current AIpB
AVpB
AVLB

AVpB

AVpB
AIpB

AILB

Y �

Line voltage

Line current 

Phase voltage

Phase current

Load impedance 3 ZY /� - �ZY /� - �

IL

13
/� + 30°IL /�

13 Vp /� + 30°Vp /� AVan or VANB

IL /�IL /�IaA

= VL /� + 30°AVab or VABB
VL /� + 30°13 Vp /� + 30°
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Resonant frequency of a series or parallel RLC circuit

Quality factor of a series RLC circuit

Bandwidth of a series RLC circuit

where

and

Quality factor of a parallel RLC circuit

Bandwidth of a parallel RLC circuit

where

and

Half-power (break) frequency of a
first-order RC filter

Bandwidth of a series RLC bandpass filter

L

V1 Vo

+

–

C

R

BW = �HI - �LO =
R

L

� =
1
�

 =
1

RC

 �HI =
1

2RC
+ B

1

(2RC)2 +
1

LC

 �LO = -
1

2RC
+ B

1

(2RC)2 +
1

LC

BW = �HI - �LO =
1

RC

Q =
�0

BW
= RA

C

L

 �2
0 = �LO �HI

 � HI = �0 c 1

2Q
+ B a

1

2Q
b 2

+ 1 d

 �  LO = �0 c- 1

2Q
+ B a

1

2Q
b 2

+ 1 d

 BW = �HI - �LO =
�0

Q

Q =
�0 L

R
=

1

�0 CR
=

1

RB
L

C

�0 =
1

1LC

E–8
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E–10

Property Number f(t) F(s)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11. F1(s)F2(s)3
t

0
f1(�)f2(t - �) d�

1

s
F(s)3

t

0
f(�) d�

3
q

s
F(�) d�

f(t)

t

-
dF(s)

ds
tf(t)

snF(s) - sn- 1f(0) - sn-2f1(0) p s0fn- 1(0)
dnf(t)

dtn

F(s + a)e-atf(t)

e-t0 sL CfAt + t0B Df(t)uAt - t0B
e-t0 sF(s)fAt - t0BuAt - t0B, t0 
 0

1

a
F a s

a
b , a 7 0f(at)

F1(s) ; F2(s)f1(t) ; f2(t)

AF(s)Af(t)

Laplace transform of a function 

The unit impulse function

and

Sampling property of the unit impulse function

The initial-value theorem

The final-value theorem

Laplace transforms of some special functions

f(t) F(s)

1

t

s + a

(s + a)2 + b2
e-at cos bt

b

(s + a)2 + b2
e-at sin bt

s

s2 + b2
cos bt

b

s2 + b2
sin bt

1

(s + a)n+ 1

tne-at

n!

1

(s + a)2
te-at

1

sn+ 1

tn

n!

1

s2

1

s + a
e-at

1

s
u(t)

�(t)

lim
tSq

f(t) = lim
SS0

sF(s)

lim
tS0

f(t) = lim
SSq

sF(s)

3
t2

t1

f(t)�At - t0B dt = bf At0B
0

  t1 6 t0 6 t2

t0 6 t1 , t0 7 t2

 3
t0+�

t0-�

�At - t0B dt = 1   � 7 0

 �At - t0B = 0   t Z t0

L Cf(t) D = F(s) = 3
q

0
f(t)e-st dt

f(t)

Some properties of Laplace transform
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E–11

The voltage-current relationship of a
resistor in the s-domain

The voltage-current relationship of a
capacitor in the s-domain

The voltage-current relationship of a
inductor in the s-domain

Transfer or network function

Yo(s)

Xi(s)
= H(s)

 I(s) =
V(s)

sL
+

i(0)

s

 V(s) = sLI(s) - Li(0)

 I(s) = sCV(s) - Cv(0)

 V(s) =
I(s)

sC
+

v(0)

s

V(s) = RI(s)

CHAPTER 14

Trigonometric Fourier series of
a periodic function 

where

and

Exponential Fourier series of
a periodic function 

where

Relationships between various Fourier series
coefficients 

Fourier transform pair

Fourier transform of some special functions

 f(t) = F-1 CF(�) D = 1

2� 3
q

-q
F(�)ej�t d�

 F(�) = F Cf(t) D = 3
q

-q
f(t)e-j�t dt

Dn/�n = 2cn = an - jbn

cn =
1

T0 3
t1+T0

t1

f(t)e-jn�0 t dt

f(t) = a
q

n=-q
cn ejn�0 t

f(t)

Dn/�n = an - jbn

 bn =
2

T0 3
t1+T0

t1

f(t) sin n�0 t dt

 an =
2

T0 3
t1+T0

t1

f(t) cos n�0 t dt

 = a0 + a
q

n= 1
an cos n�0 t + bn sin n�0 t

 f(t) = a0 + a
q

n= 1
Dn cos An�0 t + �nB
f(t)

f(t)

�0

(j� + a)2 + �2
0

e-at sin �0 tu(t), a 7 0

j� + a

(j� + a)2 + �2
0

e-at cos �0 tu(t), a 7 0

2a

a2 + �2e-∑t∑, a 7 0

1

a + j�
e-at u(t), a 7 0

j��A� + �0B - j��A� - �0Bsin �0 t

��A� - �0B + ��A� + �0Bcos �0 t

2��A� - �0Bej�0 t

2�A�(�)A

e-j�a�(t - a)

F(�)
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Some properties of Fourier transform

Convolution property of the Fourier transform

Vo(�) = H(�)Vi(�)

E–12

f(t) Property

Linearity

Time-scaling

Time-shifting

Modulation

Differentiation

Convolution
1

2� 3
q

-q
F1(x)F2(� - x) dxf1(t)f2(t)

F1(�)F2(�)3
q

-q
f1(x)f2(t - x) dx

(j)n
dn F(�)

d�ntnf(t)

(j�)n F(�)
dn f(t)

dtn

FA� - �0Bej�t0 f(t)

e-j�t0 F(�)fAt - t0B

1
a

F a�

a
b , a 7 0f(at)

F1(�) ; F2(�)f1(t) ; f2(t)

AF(�)Af(t)

F(�)

Two-port network admittance equations

Admittance parameters

Two-port network impedance equations

Impedance parameters

Two-port network hybrid equations

BV1

I2
R = Bh11

h21

h12

h22
R B I1

V2
R

 z22 =
V2

I2

2
I1=0

 z21 =
V2

I1

2
I2=0

 z12 =
V1

I2

2
I1=0

 z11 =
V1

I1

2
I2=0

BV1

V2
R = B z11

z21

z12

z22
R B I1

I2
R

 y22 =
I2

V2

2
V1=0

 y21 =
I2

V1

2
V2=0

 y12 =
I1

V2

2
V1=0

y11 =
I1

V1

2
V2=0

V1 V2

I1 I2

Linear
network

B I1

I2
R = By11

y21

y12

y22
R BV1

V2
R

CHAPTER 16



Hybrid parameters

Two-port network transmission equations

Transmission parameters

 D =
I1

-I2

2
V2=0

 C =
I1

V2

2
I2=0

 B =
V1

-I2

2
V2=0

 A =
V1

V2

2
I2=0

BV1

I1
R = BA

C
B
D
R B V2

-I2
R

 h22 =
I2

V2

2
I1=0

 h21 =
I2

I1

2
V2=0

 h12 =
V1

V2

2
I1=0

 h11 =
V1

I1

2
V2=0

E–13

B h11

h21

h12

h22
RD B

D

-
1

D

¢T

D
C
D

TD 1

y11

y21

y11

-y12

y11

¢Y

y11

TD ¢Z

z22

-z21

z22

z12

z22

1

z22

T

D -¢H

h21

-h22

h21

-h11

h21

-1

h21

TcA B
C D

dD -y22

y21

-¢Y

y21

-1

y21

-y11

y21

TD z11

z21

1

z21

¢Z

z21

z22

z21

T

D 1

h11

h21

h11

-h12

h11

¢H

h11

TD D
B

-
1

B

-¢T

B
A
B

TB y11

y21

y12

y22
RD z22

¢Z

-z21

¢Z

-z12

¢Z

z11

¢Z

T

D ¢H

h22

-h21

h22

h12

h22

1

h22

TDA
C
1

C

¢T

C
D
C

TD y22

¢Y

-y21

¢Y

-y12

¢Y

y11

¢Y

TB z11

z21

z12

z22
R

Two-port network parameter conversions
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