APPLIED PHYSICS-II (with Lab Manual)

Hussain Jeevakhan

KHANNA BOOK PUBLISHING CO. (P) LTD.

PUBLISHER OF ENGINEERING AND COMPUTER BOOKS 4C/4344, Ansari Road, Darya Ganj, New Delhi-110002 Phone: 011-23244447-48 Mobile: +91-99109 09320 E-mail: contact@khannabooks.com Website: www.khannabooks.com Dear Readers,

To prevent the piracy, this book is secured with HIGH SECURITY HOLOGRAM on the front title cover. In case you don't find the hologram on the front cover title, please write us to at contact@khannabooks.com or whatsapp us at +91-99109 09320 and avail special gift voucher for yourself.

Specimen of Hologram on front Cover title:

Moreover, there is a SPECIAL DISCOUNT COUPON for you with EVERY HOLOGRAM.

How to avail this SPECIAL DISCOUNT:

Step 1: Scratch the hologram

Step 2: Under the scratch area, your "coupon code" is available

Step 3: Logon to www.khannabooks.com

Step 4: Use your "coupon code" in the shopping cart and get your copy at a special discount

Step 5: Enjoy your reading!

ISBN: 978-93-91505-57-8 Book Code: DIP126EN

Applied Physics-II by

Hussain Jeevakhan [English Edition]

First Edition: 2021

Published by:

Khanna Book Publishing Co. (P) Ltd. Visit us at: www.khannabooks.com Write us at: contact@khannabooks.com *CIN: U22110DL1998PTC095547*

To view complete list of books, Please scan the QR Code:

Printed in India.

Copyright © Reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior permission of the publisher.

This book is sold subject to the condition that it shall not, by way of trade, be lent, re-sold, hired out or otherwise disposed of without the publisher's consent, in any form of binding or cover other than that in which it is published.

Disclaimer: The website links provided by the author in this book are placed for informational, educational & reference purpose only. The Publisher do not endorse these website links or the views of the speaker/ content of the said weblinks. In case of any dispute, all legal matters to be settled under Delhi Jurisdiction only.

प्रो. अनिल डी. सहम्रबुद्धे अघ्यक्ष Prof. Anil D. Sahasrabudhe ^{Chairman}

सत्यमेव जयते

अखिल भारतीय तकनीकी शिक्षा परिषद् (मारत सरकार का एक सांविधिक निकाय) (शिक्षा मंत्रालय, मारत सरकार) नेल्सन मंडेला मार्ग, बसंत कुज, नई दिल्ली–110070 दूरमाष : 011–26131498 ई–मेल : chairman@aicte-india.org

ALL INDIA COUNCIL FOR TECHNICAL EDUCATION (A STATUTORY BODY OF THE GOVT. OF INDIA) (Ministry of Education, Govt. of India) Nelson Mandela Marg, Vasant Kunj, New Delhi-110070 Phone : 011-26131498 E-mail : chairman@aicte-india.org

FOREWORD

Engineering has played a very significant role in the progress and expansion of mankind and society for centuries. Engineering ideas that originated in the Indian subcontinent have had a thoughtful impact on the world.

All India Council for Technical Education (AICTE) had always been at the forefront of assisting Technical students in every possible manner since its inception in 1987. The goal of AICTE has been to promote quality Technical Education and thereby take the industry to a greater heights and ultimately turn our dear motherland India into a Modern Developed Nation. It will not be inept to mention here that Engineers are the backbone of the modern society - better the engineers, better the industry, and better the industry, better the country.

NEP 2020 envisages education in regional languages to all, thereby ensuring that each and every student becomes capable and competent enough and is in a position to contribute towards the national growth and development.

One of the spheres where AICTE had been relentlessly working from last few years was to provide high-quality moderately priced books of International standard prepared in various regional languages to all it's Engineering students. These books are not only prepared keeping in mind it's easy language, real life examples, rich contents and but also the industry needs in this everyday changing world. These books are as per AICTE Model Curriculum of Engineering & Technology – 2018.

Eminent Professors from all over India with great knowledge and experience have written these books for the benefit of academic fraternity. AICTE is confident that these books with their rich contents will help technical students master the subjects with greater ease and quality.

AICTE appreciates the hard work of the original authors, coordinators and the translators for their endeavour in making these Engineering subjects more lucid.

- AD ahre

(Anil D. Sahasrabudhe)

The author grateful to AICTE for their meticulous planning and execution to publish the technical book for Diploma students.

I sincerely acknowledge the valuable contributions of the reviewer of the book Prof. Kavita Agrawal, for making it students' friendly and giving a better shape in an artistic manner.

This book is an outcome of various suggestions of AICTE members, experts and authors who shared their opinion and thoughts to further develop the engineering education in our country.

It is also with great honour that I state that this book is aligned to the AICTE Model Curriculum and in line with the guidelines of National Education Policy (NEP) -2020. Towards promoting education in regional languages, this book is being translated in scheduled Indian regional languages.

Acknowledgements are due to the contributors and different workers in this field whose published books, review articles, papers, photographs, footnotes, references and other valuable information enriched us at the time of writing the book.

Finally, I like to express my sincere thanks to the publishing house, M/s. Khanna Book Publishing Company Private Limited, New Delhi, whose entire team was always ready to cooperate on all the aspects of publishing to make it a wonderful experience.

Hussain Jeevakhan

Preface

The book titled "Applied Physics II" is an outcome of the experience of my teaching physics courses at UG and PG level and training of technical teachers on content specific areas in physics. The importance of applied physics has been proven in all fields of technology and everyone has experienced that Applied physics is important in the development of future technology. As a result, regardless of their primary discipline, every diploma student must master fundamental knowledge and skills to get an understanding of technology's potential and application.

Focus in writing this book has been on developing outcomes in the students related to applied physics, as expected from diploma engineers and to provide learner a successful learning experience. Method for developing unit outcomes and course outcomes adopted in the book is to connect concepts and principle of physics with day to day life experiences and observations, in line with national education policy (NEP) 2020. Corresponding to concept and principles, some activities and microproject are suggested, to create interest and learning challenges in students and which would benefit their clarification. To harness the ICT tool available for teaching learning, QR codes and *url* for the online resources of simulation and videos are given in each unit covering almost all topics, so that it will develop element of self-learning in the students.

In the end of each units the laboratory instructions for the practical's related to that unit has been provided, which will guide students and to perform the practical in the right way with necessary resources required to achieve desired outcome. The laboratory instructions are designed in a way that it is helpful to both the instructors and the students.

Students can apply the knowledge and skills they've gained via this reading this book and by handson learning experiences in laboratory and connected activities to tackle real-world problems in their careers.

Hussain Jeevakhan

Outcome Based Education

Outcome based education (OBE) is based on three pillars outcome- based curriculum (OBC), outcome-based learning teaching (OBLT) and outcome-based assessment (OBA). The learning outcomes can be at program levels (POs), course level (COs), unit level (UOs) and session level outcomes (attained in classroom learning, practical's and using other basic and advanced instructional methods). The mapping between POs and COs & COs and UOs is given in the book so that student can connect learning at any different level directly to the program level outcomes. Assessment is an integral part of learning teaching process. Hence to assess learning outcomes, the difficulty level of solved and unsolved problems given in the book matches with the cognitive level of unit learning outcomes. The course level outcomes can be attained through unit outcome and practical outcomes(PrOs). At the end of the programme running with the aid of outcome based education, a student will be able to arrive at the following outcomes

- **PO-1. Basic and Discipline specific knowledge**: Apply knowledge of basic mathematics, science and engineering fundamentals and engineering specialization to solve the engineering problems.
- **PO-2. Problem analysis**: Identify and analyse well-defined engineering problems using codified standard methods.
- **PO-3. Design/development of solutions**: Design solutions for well-defined technical problems and assist with the design of systems components or processes to meet specified needs.
- **PO-4.** Engineering Tools, Experimentation and Testing: Apply modern engineering tools and appropriate technique to conduct standard tests and measurements.
- **PO-5.** Engineering practices for society, sustainability and environment: Engineering practices for society, sustainability and environment: Apply appropriate technology in context of society, sustainability, environment and ethical practices.
- **PO-6. Project Management**: Use engineering management principles individually, as a team member or a leader to manage projects and effectively communicate about well-defined engineering activities.
- **PO-7.** Life-long learning: Ability to analyse individual needs and engage in updating in the context of technological changes.

After completion of the course the students will be able to:

- **CO-1:** Apply the concept of waves and sound waves for various acoustics and other engineering applications involving wave dynamics
- CO-2: Use optical equipment/ instruments based on ray optics
- CO-3: Select relevant capacitors in electrical circuits.
- **CO-4:** Apply Laws of current electricity in engineering problems
- **CO-5:** Select relevant material by analysing its magnetic properties
- **CO-6:** Apply the basic concepts of semiconductor physics, laser and nanotechnology in solving engineering problems

Course Out-	Expected Mapping with Programme Outcomes (1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)						
come	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7
CO-1	3	1	1	2	1	-	1
CO-2	3	1	1	2	-	-	1
CO-3	3	2	1	2	-	-	1
CO-4	3	2	1	2	1	-	1
CO-5	3	1	1	2	-	-	1
CO-6	3	1	1	1	1	-	-

List of Abbreviations

General Terms					
Abbreviations	Full form	Abbreviations	Full form		
AC	Alternating Current	NDT	Non-Destructive testing		
AFM	Atomic Force Microscope	OHP	Over Head Projector		
СО	Course Outcome	ОСТ	Optical Coherence Tomography		
CD	Compact Disc	PE	Potential Energy		
DC	Direct Current	PO	Programme Outcome		
DVD	Digital Video Disc	RF	Radio Frequency		
DTH	Direct To Home	RI	Refractive Index		
FSD	Full Scale Deflection	RP	Resolving Power		
He-Ne	Helium-Neon	SHM	Simple Harmonic Motion		
KE	Kinetic Energy	SONAR	Sound Navigation and Ranging		
KCL	Kirchhoff's Current Law	SET	Single Electron Transistor		
KVL	Kirchhoff's Voltage Law	SI	International System of Units		
LASER	Light Amplification by Stimu- lated Emission of Radiation	SEM	Scanning Electron Microscope		
LC	Least Count	STM	Scanning Tunneling Microscope		
LCD	Liquid Crystal Display	TIR	Total Internal Reflection		
LED	Light Emitting Diode	TV	Television		
NA	Numerical Aperture	UO	Unit Outcome		
	Units	s Used			
Abbreviations	Full form	Abbreviations	Full form		
Å	angstrom	eV	electron-volt		
С	coloumb	kWh	kilowatt hour		
F	farad	mm	millimeter		
Hz	hertz	ms	millisecond		
W	watt	mW	milliwatt		
cm	centimeter	nm	nanometer		
dB	decibel	Ω	ohm		
esu	electrostatic unit	μF	microfarad		

List of Symbols

Symbols	Description	Symbols	Description
Al ₂ O ₃	Aluminum Oxide	h	Planck's Constant
В	Magnetic Field	i _c	Critical Angle
С	Capacitance	k	Wave number
D	Least Distance of Distinct Vision	v	Velocity
Eg	Band Gap Energy	f	Frequency
н	Magnetic Intensity	f _b	Beat Frequency
H _c	Coercive Magnetic field	f _e	Eyepiece focal length
I	Intensity of Magnetization	f _o	Objective focal length
I _R	Retentivity Magnetization	V _d	Drift Velocity
۱ _s	Saturation Current	ε _r	Relative Permittivity
R	Resistance	к	Specific Conductance
RT ₆₀	Reverberation Time	λ	Wavelength
Т	Time period	μ	Refractive Index
Т _в	Beat Period	ρ	Specific Resistance
Y	Young's modulus	τ	Torque
С	Velocity of Light	ω	Angular velocity

UNIT 1

Fig. 1.1 Ripple in water due to energy transfer from stone	2
Fig. 1.2 Pulse on string	3
Fig. 1.3 Disturbance in one dimensional medium	3
Fig. 1.4 Longitudinal and transverse waves	4
Fig. 1.5 Displacement v/s Time graph	5
Fig. 1.6 Displacement v/s position graph	5
Fig. 1.7 Propagation of disturbance	6
Fig. 1.8 Particles in same and different phases	7
Fig. 1.9 Formation of beats	8
Fig. 1.10 Particle executing SHM	10
Fig. 1.11 Vibration of cantilever	13
Fig. 1.12 Reverberation and Echo	15
Fig. 1.13 Absorption of sound wave	16
Fig. 1.14 Types of sonic waves	17
Fig. 1.15 Ultrasonic position sensor	18
UNIT 2	
Fig. 2.1 Phenomenon of reflection	33
Fig. 2.2 Phenomenon of refraction	33
Fig. 2.3 Image formation by lens	40
Fig. 2.4 Chromatic aberration	41
Fig. 2.5 Spherical aberration	42
Fig. 2.6 Coma	42
Fig. 2.7 Astigmatism	43
Fig. 2.8 Total internal reflection	43
Fig. 2.9 TIR in optical fiber	44
Fig. 2.10 Simple microscope	46
Fig. 2.11 Compound microscope	47
Fig. 2.12 Astronomical telescope	47
Fig. 2.13 Optical projection system	49
UNIT 3	
Fig. 3.1 Coulomb force between charges	67
Fig. 3.2 Electric field due to point charge	68
Fig. 3.3 Electric lines of force	69
Fig. 3.4 Electric flux passing through surface	69

Fig. 3.5 Electric flux passing through surface making angle with Electric field	70
Fig. 3.6 Electric potential due to point charge	70
Fig. 3.7 Work done in displacing charge	70
Fig. 3.8 Electric potential difference	71
Fig. 3.9 Depiction of Gauss' law	72
Fig. 3.10 Direction of electric field due to long straight charged wire	72
Fig. 3.11 Electric field due to an infinitely long straight charged wire by Gauss' law	73
Fig. 3.12 Electric field due to uniformly charged plane sheet	74
Fig. 3.13 Electric field due to uniformly charged sphere	75
Fig. 3.14 Capacitor	77
Fig. 3.15 Type of capacitor	78
Fig. 3.16 Charge on capacitor	78
Fig. 3.17 Parallel plate capacitor	79
Fig. 3.18 Capacitors in series	79
Fig. 3.19 Capacitors in parallel	80
Fig. 3.20 Dielectrics in capacitor	80
UNIT 4	
Fig. 4.1 Direction of electrical current	91
Fig. 4.2 Depiction of electric current as scalar quantity	92
Fig. 4.3 Electric current in conductor	92
Fig. 4.4 Current and drift velocity	92
Fig. 4.5 Direct current	93
Fig. 4.6 Alternating current	93
Fig. 4.7 Series and parallel combinations of resistances	95
Fig. 4.8 Colour coding of carbon resistor	96
Fig. 4.9 Voltage V/s current graph	97
Fig. 4.10 Kirchhoff's Current Law	98
Fig. 4.11 Kirchhoff's Voltage Law	98
Fig. 4.12 Wheatstone's bridge	99
Fig. 4.13 Meter bridge	99
Fig. 4.14 Electric cell	100
Fig. 4.15 emf and terminal potential difference	100
Fig. 4.16 Heating due to electric current in circuit	101
UNIT 5	
Fig. 5.1 Orbital and spin angular momentum associated with electrons	121
Fig. 5.2 Ferromagnetic materials	122
Fig. 5.3 Magnetic field due to bar magnet	123

Fig. 5.4 Magnetic lines of force originating from bar magnet	123
Fig. 5.5 Magnetization curve	124
Fig. 5.6 Magnetic field due to solenoid	124
Fig. 5.7 Force on a moving charge in magnetic field	125
Fig. 5.8 Force on current carrying conductor	126
Fig. 5.9 Force on rectangular coil placed in magnetic field	127
Fig. 5.10 Moving coil galvanometer	128
Fig. 5.11 Force on rectangular coil in moving coil galvanometer	128
Fig. 5.12 Conversion of galvanometer into ammeter	129
Fig. 5.13 Conversion of galvanometer into voltmeter	130
UNIT 6	
Fig. 6.1 Energy bands in solids	145
Fig. 6.2 Energy band diagram for conductor, semiconductor and insulator	146
Fig. 6.3 Fourth group of periodic table	147
Fig. 6.4 Covalent bond in Si and Ge	147
Fig. 6.5 p type semiconductor	148
Fig. 6.6 n type semiconductor	149
Fig. 6.7 Depletion region in pn junction	149
Fig. 6.8 pn junction diode and its symbol	150
Fig. 6.9 (a) Diode in forward and reverse bias	150
Fig. 6.9 (b) Forward and reverse bias characteristics	151
Fig. 6.10 Half wave rectifier	152
Fig. 6.11 Full wave rectifier	153
Fig. 6.12 npn and pnp transistor and their symbols	154
Fig. 6.13 Operation of transistor	154
Fig. 6.14 Photocell	155
Fig. 6.15 Solar cell: construction, symbol and VI characteristics	156
UNIT 7	
Fig. 7.1 Energy level diagram of hydrogen atom	169
Fig. 7.2 Optical Absorption	170
Fig. 7.3 Spontaneous Emission	170
Fig. 7.4 Stimulated Emission	170
Fig. 7.5 Width of excited energy level	170
Fig. 7.6 Number of atoms in excited state in normal and population inversion conditions	170
Fig. 7.7 Three and four level pumping schemes	171
Fig. 7.8 Optical resonator	172
Fig. 7.9 Construction of ruby laser and energy level diagram of ruby laser	173

Fig. 7.10 Construction of He-Ne laser and energy level diagram of He-Ne laser	174
Fig. 7.11 Diode laser	175
Fig. 7.12 Normal and laser light	175
Fig. 7.13 Construction of optical fiber	177
Fig. 7.14 Light propagation in optical fiber	178
Fig. 7.15 TIR in optical fiber	178
Fig. 7.16 Refractive index profile and light propagation step index fiber	179
Fig. 7.17 Refractive index profile and light propagation Graded index fiber	179
Fig. 7.18 Optical fiber communication system	180
Fig. 7.19 Comparison of nanomaterial with bulk material	182
Fig. 7.20 Variation of surface to volume ratio	183

Guidelines for Teachers

To implement Outcome Based Education (OBE) knowledge level and skill set of the students should be enhanced. Teachers should take a major responsibility for the proper implementation of OBE. Some of the responsibilities (not limited to) for the teachers in OBE system may be as follows:

- Within reasonable constraint, they should manipulate time to the best advantage of all students.
- They should assess the students only upon certain defined criterion without considering any other potential ineligibility to discriminate them.
- They should try to grow the learning abilities of the students to a certain level before they leave the institute.
- They should try to ensure that all the students are equipped with the quality knowledge as well as competence after they finish their education.
- They should always encourage the students to develop their ultimate performance capabilities.
- They should facilitate and encourage group work and team work to consolidate newer approach.
- They should follow Blooms taxonomy in every part of the assessment.

Level		Teacher should Check	Student should be able to	Possible Mode of Assessment	
	Creating		Students ability to create	Design or Create	Mini project
	Evaluating		Students ability to Justify	Argue or Defend	Assignment
	Analysing		Students ability to distinguish	Differentiate or Distinguish	Project/Lab Methodology
	Applying		Students ability to use information	Operate or Demonstrate	Technical Presentation/ Demonstration
	Understanding		Students ability to explain the ideas	Explain or Classify	Presentation/Seminar
	Remembering		Students ability to recall (or remember)	Define or Recall	Quiz

Bloom's Taxonomy

Guidelines for Students

Students should take equal responsibility for implementing the OBE. Some of the responsibilities (not limited to) for the students in OBE system are as follows:

- Students should be well aware of each UO before the start of a unit in each and every course.
- Students should be well aware of each CO before the start of the course.
- Students should be well aware of each PO before the start of the programme.
- Students should think critically and reasonably with proper reflection and action.
- Learning of the students should be connected and integrated with practical and real life consequences.
- Students should be well aware of their competency at every level of OBE.

Contents

Prefa Outc Cour Abbr	owledgment	iii v vii ix xi xii xii xii
	elines for Teachers	xviii
1. V	Vave Motion and its Applications	1-30
1.1	Unit specifics Rationale Pre-Requisites Unit Outcomes Wave motion 1.1.1 Transverse and Longitudinal waves 1.1.2 Sound and light waves and their properties 1.1.3 Wave Equation 1.1.4 Principle of superposition of waves	1 1 2 2 2 2 3 5 6 7
1.2	 1.1.5 Beat Formation Simple Harmonic Motion (SHM) 1.2.1 SHM 1.2.2 Simple harmonic progressive wave 1.2.3 Vibration of cantilever 1.2.4 Free, forced and resonant vibrations with examples 	8 10 10 12 13 13
1.3	Acoustics of buildings 1.3.1 Echo and Reverberation 1.3.2 Reverberation time 1.3.3 Coefficient of absorption of sound 1.3.4 Methods to control reverberation time 1.3.5 Ultrasonic waves 1.3.6 Engineering and medical applications of ultrasonic waves <i>Unit summary</i> <i>Exercises</i> <i>Practical</i> <i>Know More</i> <i>References & Suggested Readings</i>	13 15 15 15 15 16 17 17 19 19 22 28 30
2. C	Optics	31-64
	Unit Specifics	31

Onit specifics	51
Rationale	31
Pre-Requisites	31
Unit Outcomes	32
Basic Optical laws	32
	Rationale Pre-Requisites Unit Outcomes

2.1.1 Reflect	ion	33
2.1.2 Refract	ion	33
2.1.3 Refract	ive index	33
2.1.4 Image	and image formation by mirrors, lens and thin lenses	34
2.1.5 Lens fo	rmula	40
2.1.6 Power	of Lens	41
2.1.7 Magnif	ication and Defects	41
2.1.8 Total I	nternal reflection (TIR)	43
2.2.1 Simple	and compound microscope	45
2.2.2 Astron	omical telescope in normal Adjustment	47
2.2.3 Magnif	ying power	48
2.2.4 Resolvi	ng power	48
2.2.5 Uses of	microscope and telescope	48
2.2.6 Optical	Projection system	48
Unit Summa	ury	50
Exercises		50
Practical		52
Know More		63
References	Suggested Readings	64

65-89

3. Electrostatics

	Unit Specifics	65
	Rationale	65
	Pre-Requisites	65
	Unit Outcomes	66
3.1	Coulomb's Law	66
	3.1.1 Unit of charge	67
	3.1.2 Electric field	68
	3.1.3 Electric lines of force and their properties	68
	3.1.4 Electric flux (ϕ)	69
	3.1.5 Electric Potential (V)	70
	3.1.6 Electric Potential difference	71
	3.1.7 Gauss' Law	71
	3.1.8 Applications of Gauss' law	72
3.2	Capacitors and its working	77
	3.2.1 Types of capacitors	78
	3.2.2 Capacitance and its units	78
	3.2.3 Parallel plate capacitor	78
	3.2.4 Series and parallel Combination of capacitors	79
	3.2.5 Dielectric and its effect on Capacitance.	80
	3.2.6 Dielectric breakdown	81
	Unit Summary	82
	Exercises	82
	Practical	84
	Know More	88
	References & Suggested Readings	89

4.5	Conductance (G)	94
4.6	Specific Conductance (κ)	94
4.7	Series and parallel combinations of resistance	95
4.8	Factors affecting the resistance of wire	96
4.9	Carbon resistances and color coding	96
4.10	Ohm's Law and its verification	97
4.11	Kirchhoff's laws	98
4.12	Wheatstone bridge and its applications	99
4.13	Concept of terminal potential difference and Electro motive force	100
4.14	Heating effect of current	101
4.15	Electric power	101
4.16	Electric energy and its units	102
4.17	Advantages of Electric Energy over other forms of energy	102
	Unit Summary	104
	Exercises	104
	Practical	106
	Know More	118
	References & Suggested Readings	119
5. Electromagnetism		120-143
	Unit specifics	120
	Rationale	120
	Pre-Requisites	120
	Unit Outcomes	121
5.1	Types of Magnetic materials	121
	5.1.1 Dia, para and ferromagnetic materials with their properties	121
	5.1.2 Magnetic field and units	122
	5.1.3 Magnetic intensity	123
	5.1.4 Magnetic lines of force	123
	5.1.5 Magnetic flux and units	123
	5.1.6 Magnetization	124
5.2	Concept of electromagnetic induction	124
	5.2.1 Faraday's laws	125
	5.2.2 Lorentz force (force on moving charge in magnetic field)	125
	5.2.3 Force on current carrying conductor.	126
	5.2.4 Force on rectangular coil placed in magnetic field	126
	5.2.5 Moving coil galvanometer: Principle, construction and working,	127
	(xxi)	

4. Current Electricity

Unit specifics

Pre-Requisites

Unit Outcomes

Electric current and its units

Resistance (R) and its units

Specific Resistance (ρ)

Direct and Alternating current.

Rationale

4.1

4.2

4.3

4.4

5.3	Conversion of a galvanometer into ammeter and voltmeter	129
	Unit Summary	131
	Exercises	131
	Practical	133
	Know More	142
	References & Suggested Readings	143

6. Semiconductor Physics

	Unit Specifics	144
	Rationale	144
	Pre-Requisites	144
	Unit Outcomes	145
6.1	Energy bands in solids	145
6.2	Types of materials (insulator, semiconductor, conductor)	146
6.3	Intrinsic and extrinsic semiconductors.	147
6.4	p-n junction	149
6.5	Junction diode and V-I Characteristics	150
6.6	Types of junction diode	151
6.7	Diode as rectifier	152
6.8	Transistor	153
6.9	Types of Transistors	153
6.10	Some electronic Applications of Transistor	154
6.11	Photocells	155
6.12	Solar cells	155
	Unit Summary	157
	Exercises	157
	Practical	159
	Know More	165
	References & Suggested Readings	166

7. Modern Physics

167-193

	Unit Specifics	167
	Rationale	167
	Pre-Requisites	168
	Unit Outcomes	168
7.1	Lasers	168
	7.1.1 Energy Level	169
	7.1.2 Ionization and Excitation potential	169
	7.1.3 Spontaneous and Stimulated emission	169
	7.1.4 Population inversion	170
	7.1.5 Pumping method	171
	7.1.6 Optical feedback	171
	7.1.7 Types of Lasers	172
	7.1.8 Laser characteristics	175
	7.1.9 Engineering and medical applications of lasers.	176
7.2	Fiber Optics	177

	7.2.1 Introduction to optical Fibers.	177
	7.2.2 Light propagation, acceptance angle and numerical aperture.	177
	7.2.3 Fiber types	179
	7.2.4 Applications in telecommunication, medical and sensors	180
7.3	Nanoscience and Nanotechnology: Introduction	181
	7.3.1 Nanoparticles and nanomaterials	181
	7.3.2 Properties at Nanoscale	182
	7.3.3 Nanotechnology	183
	7.3.4 Nanotechnology based devices and applications	183
	7.3.5 Nanometer size devices	184
	Unit summary	185
	Exercises	185
	Practical	187
	Know More	193
	References & Suggested Readings	193
Table of Physical Constants		194
Appendices Annexures References for Further Learning		195
		197
		198
CO and PO Attainment Table		199
Index	200	