MATHEMATICS-II

Garima Singh

KHANNA BOOK PUBLISHING CO. (P) LTD.

PUBLISHER OF ENGINEERING AND COMPUTER BOOKS 4C/4344, Ansari Road, Darya Ganj, New Delhi-110002 Phone: 011-23244447-48 **Mobile:** +91-99109 09320 E-mail: contact@khannabooks.com Website: www.khannabooks.com Dear Readers,

To prevent the piracy, this book is secured with HIGH SECURITY HOLOGRAM on the front title cover. In case you don't find the hologram on the front cover title, please write us to at contact@khannabooks.com or whatsapp us at +91-99109 09320 and avail special gift voucher for yourself.

Specimen of Hologram on front Cover title:

Moreover, there is a SPECIAL DISCOUNT COUPON for you with EVERY HOLOGRAM.

How to avail this SPECIAL DISCOUNT:

Step 1: Scratch the hologram

Step 2: Under the scratch area, your "coupon code" is available

Step 3: Logon to www.khannabooks.com

Step 4: Use your "coupon code" in the shopping cart and get your copy at a special discount

Step 5: Enjoy your reading!

ISBN: 978-93-91505-52-3 **Book Code:** DIP125EN

Mathematics - II by Garima Singh [English Edition]

First Edition: 2021

Published by:

Khanna Book Publishing Co. (P) Ltd. Visit us at: www.khannabooks.com Write us at: contact@khannabooks.com *CIN: U22110DL1998PTC095547*

To view complete list of books, Please scan the QR Code:

Copyright © Reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior permission of the publisher.

This book is sold subject to the condition that it shall not, by way of trade, be lent, re-sold, hired out or otherwise disposed of without the publisher's consent, in any form of binding or cover other than that in which it is published.

Disclaimer: The website links provided by the author in this book are placed for informational, educational & reference purpose only. The Publisher do not endorse these website links or the views of the speaker/ content of the said weblinks. In case of any dispute, all legal matters to be settled under Delhi Jurisdiction only.

Printed in India

अखिल भारतीय तकनीकी शिक्षा परिषद् (मारत सरकार का एक सांविधिक निकाय) (शिक्षा मंत्रालय, मारत सरकार) नेल्सन मंडेला मार्ग, बसंत कुज, नई दिल्ली–110070 दूरमाष : 011–26131498 ई–मेल : chairman@aicte-india.org

ALL INDIA COUNCIL FOR TECHNICAL EDUCATION (A STATUTORY BODY OF THE GOVT. OF INDIA) (Ministry of Education, Govt. of India) Nelson Mandela Marg, Vasant Kunj, New Delhi-110070 Phone : 011-26131498 E-mail : chairman@aicte-india.org

FOREWORD

Engineering has played a very significant role in the progress and expansion of mankind and society for centuries. Engineering ideas that originated in the Indian subcontinent have had a thoughtful impact on the world.

All India Council for Technical Education (AICTE) had always been at the forefront of assisting Technical students in every possible manner since its inception in 1987. The goal of AICTE has been to promote quality Technical Education and thereby take the industry to a greater heights and ultimately turn our dear motherland India into a Modern Developed Nation. It will not be inept to mention here that Engineers are the backbone of the modern society - better the engineers, better the industry, and better the industry, better the country.

NEP 2020 envisages education in regional languages to all, thereby ensuring that each and every student becomes capable and competent enough and is in a position to contribute towards the national growth and development.

One of the spheres where AICTE had been relentlessly working from last few years was to provide high-quality moderately priced books of International standard prepared in various regional languages to all it's Engineering students. These books are not only prepared keeping in mind it's easy language, real life examples, rich contents and but also the industry needs in this everyday changing world. These books are as per AICTE Model Curriculum of Engineering & Technology – 2018.

Eminent Professors from all over India with great knowledge and experience have written these books for the benefit of academic fraternity. AICTE is confident that these books with their rich contents will help technical students master the subjects with greater ease and quality.

AICTE appreciates the hard work of the original authors, coordinators and the translators for their endeavour in making these Engineering subjects more lucid.

- ADahrwe

(Anil D. Sahasrabudhe)

Acknowledgement

The author is grateful to AICTE for their meticulous planning and execution to publish the technical book for Diploma students.

I sincerely acknowledge the valuable contributions of the reviewer of the book Prof. Billu Ram Saini, for making it students' friendly and giving a better shape in an artistic manner.

This book is an outcome of various suggestions of AICTE members, experts and authors who shared their opinion and thoughts to further develop the engineering education in our country.

It is also with great honour that I state that this book is aligned to the AICTE Model Curriculum and in line with the guidelines of National Education Policy (NEP) -2020. Towards promoting education in regional languages, this book is being translated in scheduled Indian regional languages.

Acknowledgements are due to the contributors and different workers in this field whose published books, review articles, papers, photographs, footnotes, references and other valuable information enriched us at the time of writing the book.

Finally, I like to express my sincere thanks to the publishing house, M/s. Khanna Book Publishing Company Private Limited, New Delhi, whose entire team was always ready to cooperate on all the aspects of publishing to make it a wonderful experience.

Garima Singh

Preface

Mathematics is inextricably woven to all the technological aspects of human kind. An in-depth knowledge of mathematics is of paramount importance when a student enters the world of technology. When applied to technology, it allows scientists and engineers to produce systematic, reproducible, and transmittable knowledge.

The book "Mathematics-II" is primarily designed for the students of diploma engineering(common to all branches) to tackle the 21st century and onward technological challenges. It is strictly aligned to the AICTE's model curriculum for diploma courses in engineering and technology, incorporating student's oriented and self-learning activities as per New National Education Policy 2020. Outcome Based Education and Bloom's Taxonomy concepts are the central ideas behind the book's layout. Each topic in the book has been treated in a lucid and easy style so as to make the mathematical language simple and crisp. There has been a deliberate attempt to keep the number of pages in the book minimum without compromising with the matter. While preparing the manuscript, various standard textbooks, reference books (a few mentioned in the reference section too) has been referred and accordingly the sections have been developed. Efforts have been made to explain the fundamental concepts of the subject in the simplest possible way so as to make learning a pleasure.

This book comprises of five units. There is a uniformity maintained in writing all the units. Each unit starts with the unit specifics, rationale and pre-requisites. Apart from the theory explanation and solved examples, mini-projects, activity, fun-facts, QR codes, case studies, video resources, real life applications have been incorporated so as to enhance interactive understanding and student's applicability skills, which make them competitive and employable. Check-out section has been introduced so as to activate the curiosity part of the student by corelating all the topics studied in this book with MATLAB. The text has been supplemented with notes, remarks, remember sections within grey boxes. In addition, some useful information has been given under the heading 'Know More'. Relevant essential basic information has been incorporated in the Appendices. An attempt has been made to enrich the book by including a few activities in the Annexures part. Overall, an approach has been tried to made so as to discourage rote memorization. For direct recapitulation of main concepts, formulae and results, brief summary of the unit has been given.

At the end of each unit ,an excerpt related to eminent Indian Mathematicians is given so as to make students have a glimpse of the rich Indian heritage, especially in the field of mathematics.

I sincerely hope that the book will motivate and inspire students to learn and apply basics of mathematics and will definitely contribute towards solid foundation building of the subject. I would be grateful to acknowledge any comments/suggestions from the teachers/students/readers towards further improvement of the book in future editions. It was indeed a pleasure writing the book covering varied topics in a crisp manner for future leaders to make fundamental contributions towards society.

Garima Singh

Outcome Based Education

For the implementation of an outcome based education the first requirement is to develop an outcome based curriculum and incorporate an outcome based assessment in the education system. By going through outcome based assessments, evaluators will be able to evaluate whether the students have achieved the outlined standard, specific and measurable outcomes. With the proper incorporation of outcome based education there will be a definite commitment to achieve a minimum standard for all learners without giving up at any level. At the end of the programme running with the aid of outcome based education, a student will be able to arrive at the following outcomes:

Programme Outcomes (POs) are statements that describe what students are expected to know and be able to do upon graduating from the program. These relate to the skills, knowledge, analytical ability attitude and behaviour that students acquire through the program. The POs essentially indicate what the students can do from subject-wise knowledge acquired by them during the program. As such, POs define the professional profile of an engineering diploma graduate.

National Board of Accreditation (NBA) has defined the following seven POs for an Engineering diploma graduate:

- **PO1. Basic and Discipline specific knowledge:** Apply knowledge of basic mathematics, science and engineering fundamentals and engineering specialization to solve the engineering problems.
- **PO2. Problem analysis:** Identify and analyses well-defined engineering problems using codified standard methods.
- **PO3. Design/ development of solutions:** Design solutions for well-defined technical problems and assist with the design of systems components or processes to meet specified needs.
- **PO4. Engineering Tools, Experimentation and Testing:** Apply modern engineering tools and appropriate technique to conduct standard tests and measurements.
- **PO5. Engineering practices for society, sustainability and environment:** Apply appropriate technology in context of society, sustainability, environment and ethical practices.
- **PO6. Project Management:** Use engineering management principles individually, as a team member or a leader to manage projects and effectively communicate about well-defined engineering activities.
- **PO7. Life-long learning:** Ability to analyse individual needs and engage in updating in the context of technological changes.

Course Outcomes

By the end of the course the students are expected to learn:

- **CO-1:** The necessary background in matrices and determinants so as to apply them in finding solutions and aid in interpreting/analysing linear systems, optimization tactics.
- **CO-2:** Determining the area and volume especially by applying simple techniques of Integral calculus.
- **CO-3:** To analyse that coordinate geometry provides a connection between algebra and geometry through graphs of lines and curves.
- **CO-4:** To tell the difference between a resultant and a concurrent force; to interpret and analyse simple physical problems in the form of a differential equation.
- **CO-5:** To explore and visualize data by using the applicability of topics learnt and also with the help of some basics of MATLAB.

Mapping of Course Outcomes with Programme Outcomes to be done according to the matrix given below:

Course Outcomes	Expected Mapping with Programme Outcomes rse Outcomes (1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)					ation)	
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7
CO-1	3	3	3	3	1	1	3
CO-2	3	2	2	2	1	1	3
CO-3	3	2	2	2	1	1	3
CO-4	3	2	2	3	1	1	3
CO-5	3	3	3	3	1	1	3

Symbols and Abbreviations

Symbol/ Abbreviation	Name of Sign/Full form	Symbol/ Abbreviation	Name of Sign/Full form
[A:B] or [A/B]	Augmented matrix	$\frac{dy}{dx}$	Differential operator of variable y w.r.t. variable x
ĀB	Line segment AB	ſ	Integral
AB	The length of \overline{AB}	!	Factorial
Ав	Ray AB	E	Is an element of/belongs to
CO	Course outcomes	¢	Is not an element of/does not belong to
UO	Unit outcomes	≠	Is not equal to
PO	Programme outcomes	~	Is similar to
N	Set of natural numbers		Is parallel to
W	Set of whole numbers	≈	Is approximately equal to
Z	Set of integers	()	Parentheses (grouping symbol)
Q	Set of rational numbers	[]	Square brackets (grouping symbol)
R	Set of real numbers	{ }	Brace or curly brackets (grouping symbol)
С	Set of complex numbers	≅	Is congruent to
I	Set of irrational numbers	3√	Cube root
Lf′ (a)	Left hand derivative of 'f' at 'a'	Σ	The sum of
Rf′ (a)	Right hand derivative of 'f' at 'a'	\subset or \subseteq	Is a sub set of
L.H.S.	Left hand side	⊄ or <u>⊄</u>	Is not a subset
R.H.S.	Right hand side	U	Union of
adj (A)	Adjoint of matrix A	\cap	The intersection of
lim	Limit	φ	Empty set/null set
f ⁿ (a)	n th derivative of (f) at 'a'	\Rightarrow	This implies
s.t.	Such that	\Leftrightarrow	Implies and is implied by
w.r.t.	With respect to		Modulus
A	For all		Therefore
	Norm		Because

List of Figures

Unit 1: Determinants and Matrices

Fig. 1.1	Flowchart for homogeneous equations	11
Fig. 1.2	Case study	13
Fig. 1.3	Type of square matrices	15
Fig. 1.4	Application of matrices-reflection of a point about y-axis	29
Fig. 1.5	Application of matrices-reflection about line y = x	30

Unit 2: Integral Calculus

Fig. 2.1	Derivative and anti-derivative	38
Fig. 2.2	Definite Integrals	47
Fig. 2.3	Area bounded by a curve and X-axis	51
Fig. 2.4	Area bounded by a curve and Y-axis	51
Fig. 2.5	Area bounded by a curve below X-axis	52
Fig. 2.6	Area enclosed by a quadrant of a circle	52
Fig. 2.7	Area enclosed by an ellipse	53
Fig. 2.8 & Fig. 2.9	Volume of a solid formed by revolution of an area about X-axis	54
Fig. 2.10 & Fig. 2.11	Volume of a solid formed by revolution of an area about Y-axis	55
Fig. 2.12	Volume generated by revolution of an ellipse	55
Fig. 2.13	Bhakra Dam-application of definite integral	56

Unit 3: Co-ordinate Geometry

Fig. 3.1	Cartesian Co-ordinate system	62
Fig. 3.2	Vertical lines	63
Fig. 3.3	Horizontal lines	63
Fig. 3.4	Perpendicular lines	63
Fig. 3.5	Intercept of line between axes	65
Fig. 3.6	Normal form	65
Fig. 3.7	Isosceles right angled triangle	67
Fig. 3.8	Distance between two parallel lines	69
Fig. 3.9	Circle	69
Fig. 3.10	Characteristics of a circle	71
Fig. 3.11	Circle touching X-axis	72
Fig. 3.12	Circle touching Y-axis	72

Fig. 3.13	Circle touching both X-axis and Y-axis	72
Fig. 3.14	Circle passing through origin	72
Fig. 3.15	Equation of circle in diameter form	75
Fig. 3.16	A cone and conic sections	75
Fig. 3.17	Parabola	76
Fig. 3.18	Hyperbola	77
Fig. 3.19	Ellipse	78
Fig. 3.20	Example of parabola	80
Fig. 3.21	Polar Co-ordinate system	86

Unit 4: Vector Algebra

	-	
Fig. 4.1	Representation of Vectors	89
Fig. 4.2	Graphical example of a vector	89
Fig. 4.3	Rectangular resolution of a vector	90
Fig. 4.4	Triangle law of addition of vectors	91
Fig. 4.5	Parallelogram law of addition of vectors	91
Fig. 4.6	Subtraction of vectors	92
Fig. 4.7	Position vector of a point	93
Fig. 4.8	Examples on vectors	93
Fig. 4.9	Dot/scalar product	93
Fig. 4.10	Work done	94
Fig. 4.11	Cross product of vectors	95
Fig. 4.12	Right handed system	95
Fig. 4.13	Unit vector product cycle	97
Fig. 4.14	Moment of force	97
Fig. 4.15	Example on moment	97
Fig. 4.16	Example on moment	98
Fig. 4.17	Angular velocity	98
Fig. 4.18	Example on angular velocity	98
Fig. 4.19	Case study	100
Fig. 4.20	Triangle law	101
Fig. 4.21	Rebound due to momentum	102
Fig. 4.22	Polygon law of vector addition.	103

Unit 5: Differential Equations

Fig. 5.1	Live Editor	111
Fig. 5.2	Graphics	112
Fig. 5.3	App Building	112

Fig. 5.4	A few parallel computing toolboxes	113
Fig. 5.5	Use of application deployment to share MATLAB programs	113
Fig. 5.6	Runs in various cloud environments	114
Fig. 5.7	A schematic diagram of MATLAB's main features	114
Fig. 5.8	MATLAB desktop	115
Fig. 5.9	3-D Helix	117

The implementation of Outcome Based Education (OBE) framework and enhanced focus on the use of

Guidelines for Teachers

Bloom's Taxonomy necessitates that knowledge level and professional skills of the students should be enhanced. Teachers should take a major responsibility for the proper implementation of OBE. Some of the responsibilities (not limited to) for the teachers in OBE system may be as follows:

- Within reasonable constraint, they should manipulate time to the best advantage of all students.
- They should assess the students only upon certain defined criterion without considering any other potential ineligibility to discriminate them.
- They should try to grow the learning abilities of the students to a certain level before they leave the institute.
- They should try to ensure that all the students are equipped with the quality knowledge as well as competence after they finish their education.
- They should always encourage the students to develop their ultimate performance capabilities.
- They should facilitate and encourage group work and team work to consolidate newer approach.
- They should follow Blooms taxonomy in every part of the assessment.

Level	Teacher should Check	Student should be able to	Possible Mode of Assessment	
Creating	Students ability t	Design or Create	Mini project	
Evaluating	Students ability Justify/evaluate	o Explain or Defend	Assignment	
Analysing	Students ability f Scrutinize	o Differentiate or examine	Project Methodology/Case Study	
Applying	Students ability use information	o Solve or implement	Presentation/ Demonstration of solution of real life problems	
Understanding	Students ability texplain the ideas		Presentation/Seminar	
Remembering	Students abili to recall (o remember)	br Define or Recall	Quiz	

Bloom's Taxonomy

Guidelines for Students

Students should take equal responsibility for implementing the OBE. Some of the responsibilities (not limited to) for the students in OBE system are as follows:

- Students should be well aware of each UO before the start of a unit in each and every course.
- Students should be well aware of each CO before the start of the course.
- Students should be well aware of each PO before the start of the programme.
- Students should think critically and reasonably with proper reflection and action.
- Learning of the students should be connected and integrated with practical and real-life consequences.
- Students should be well aware of their competency at every level of OBE.

Contents

For	ewoi	rd			iii	
Ack	now	ledgen	ient		ν	
Pre	face				vii	
Out	tcom	e Base	d Ed	lucation	ix	
Coi	urse	Outcor	nes		x	
Abl	brevi	ations	and	Symbols	xi	
Lisi	t of F	Figures			xii	
Gu	idelin	nes for	Tead	chers	xv	
Gu	idelii	nes for	Stuc	lents	xvi	
1.	De	eterm	inaı	nts and Matrices	1-36	
		Unit S	pecif	fics	1	
		Ration	nale		1	
		Pre-re	1			
		CO-U	lapping	2		
		Topic	1: De	eterminants	2	
	1.1	Introduction				
		Defin	2			
		Determinant of order 1				
		Determinant of order 2				
		Deter	mina	nts of order 3	3	
		1.1.1	Val	ue/Expansion of Determinants of Third Order	4	
		1.1.2	Mir	nors and Cofactors	5	
		1.1.3	Exp	pansion of a Determinant in terms of Minors and Cofactors	5	
		1.1.4	Pro	perties of Determinants	5	
		1.1.5	Ми	ltiplication of Two Determinants	7	
		1.1.6	Nat	ture of System of Linear Equations and Cramer's rule	8	
			Ι.	Nature of System of Linear Equations with Two Variables	8	
			II.	Cramer's Rule for Solving System of Linear Equations	8	
				System of Linear Equations (Cramer's Rule) in Two Variables	8	
				System of Linear Equations in Three Variables (Cramer's Rule)	8	
				(xvii)		

		III.	Nature of Solutions of System of Linear Equations with Three Variables	9		
		IV.	Homogeneous System of Linear Equations	11		
	Video	Resc	ources	12		
	Applic	catior	n of Determinants	12		
	Case S	Study		13		
	Check	Out		13		
	Activi	ty		13		
	Topic	2: Ma	atrices	14		
1.2	Introduction					
	1.2.1	Тур	es of Matrices	14		
	1.2.2	Alg	ebra of Matrices	16		
		Ι.	Addition of Matrices	16		
		Pro	perties of Matrix Addition	16		
		II.	Scalar Multiplication	17		
		III.	Subtraction of Matrices	17		
		IV.	Multiplication of Matrices (Row by Column)	17		
		Pro	perties of Matrix Multiplication	19		
	1.2.3	The	e Transpose of a Matrix (Changing Rows and Columns)	19		
	1.2.4 Orthogonal Matrix					
	1.2.5	Syn	imetric and Skew Symmetric Matrix	20		
	1.2.6	1.2.6 Singular and Non-Singular Matrices				
	1.2.7	Inve	erse of a Matrix	22		
		Ι.	Adjoint of a Square Matrix	22		
		Rul	e to Write Cofactors of an Element	22		
		II.	Inverse of a Matrix (Reciprocal Matrix)	24		
		Pro	perties of Inverse	24		
	1.2.8	Ma	trix Method	26		
	Types of Equations and their Consistency					
	Video	Video Resources				
	Applic	catior	n of Matrices	30		
	Geometrical Applications					
	General Applications					
	Summ	ary		31		
	Exerci	ses		32		
	Subjec	tive	Questions	32		

Comprehension Case Study Check Out!!!! Activity Mini Project	 33 34 35 35 35
Check Out!!!! Activity	35 35
Activity	35
Mini Project	35
Know More	35
References and Suggested Readings	35
tegral Calculus 3	67-60
Unit Specifics	37
Rationale	37
Pre-requisites	37
CO-UO Mapping	38
Introduction	38
2.1.1 Integration as an Inverse Operation of Differentiation	38
Indefinite Integrals (Denoted by ∫ Sign)	39
Properties of Indefinite Integrals	39
Standard Results	39
Solved Examples on Integration as the Inverse Operation of Differentiation	40
Solved Examples based on Standard Results	41
Important Techniques/Methods of Integration	43
Rule 1: Integration By Substitution (i.e., by Changing Variables)	43
Examples	43
Rule 2. Integration by Parts	44
Examples:	44
Rule 3: Integration By Partial Fractions	45
Examples:	46
Definite Integrals	47
Some Common Properties of Definite Integrals	48
Examples:	49
Use of Walli's Integral Formula	49
Applications of Integration	51
I. Area Bounded by a Curve and Axes	51
	Solved Examples based on Standard ResultsImportant Techniques/Methods of IntegrationRule 1: Integration By Substitution (i.e., by Changing Variables)ExamplesRule 2. Integration by PartsExamples:Rule 3: Integration By Partial FractionsExamples:Definite IntegralsSome Common Properties of Definite IntegralsExamples:Use of Walli's Integral FormulaApplications of Integration

		Miscel	laneous Applications of Integral Calculus	56
		Video	Resources	56
		Case S	tudy	57
		Check	Out!!!!	57
		Summ	ary	57
		Subjec	tive Questions	59
		Object	tive Questions	59
		Mini I	Project	59
		Activit	ÿ	59
		Know	More	60
		Refere	nces and Suggested Readings	60
2	C			1 07
3.	C		nate Geometry	
			pecifics	61
		Ration		61
			quisites	61
	2 1		O Mapping nt of Coordinate Coordinate	62 62
	5.1		pt of Coordinate Geometry	62
	2 2	Straigl	ian Co-ordinates System	62
	3.2	-	on of Vertical Lines	63
		-	on of Horizontal Line	63
		3.2.1	Slope of a Line	64
		3.2.2	Equation of Straight Line in Various Standard Forms	64
		3.2.3	Angle between Two Lines	65
		3.2.4	Distance of Perpendicular from a Point on a Line	67
		3.2.5	Distance between Two Parallel Lines	68
		Circle		69
	3.3		pt of Circle	69
		3.3.1	General Equation of Circle	70
		3.3.2	<i>Characteristics of a Circle</i>	71
		3.3.3	Find Equation of Circle Given	71
			I. Centre and Radius	71
			<i>II.</i> Equation of a Circle through Three Given Points	74
			III. Equation of Circle in Diameter Form	75

	3.4	Conic Sections	75
		General Equation of a Conic	76
		3.4.1 Parabola	76
		Some Important Terms	76
		3.4.2 Hyperbola	77
		Some Important Definitions	77
		3.4.3 Ellipse	78
		Applications of Coordinate Geometry	82
		Case Study	82
		Check Out!!!!	82
		Summary	82
		Exercises	85
		Subjective Questions	85
		Objective Questions	85
		Mini Project	86
		Activity	86
		Know More	86
		References and Suggested Readings	86
	• •		00 104
4.	Ve	ctor Algebra	. 88-104
		Unit Specifics	88
		Rationale	88
		Pre-requisites	88
		CO-UO-Mapping	88
	4.1	Introduction	89
		Representation of Vectors	89
		Rectangular Resolution of a Vector	90
	4.3	Algebra of Vectors	91
		Properties of Vector Addition	91
	4.4	Types of Vectors	93
	4.5	Product of Two Vectors	93
		1. Dot product or Scalar product:	93
		Applications of Dot Product	94
		2. Cross product or vector product of two vectors	95

		Video	Resources	99
			cation of Vector Algebra	100
		Case S	-	100
			, c Out!!!!	100
		Sumn		100
		Exerc		102
		Subjee	ctive Questions	102
			tive Questions	102
			Project	103
		Activi	ty	103
		Know	More	103
		Refere	ences and Suggested Readings	104
5.	Di	fferei	ntial Equations	105-123
		Unit S	Specifics	105
		Ratio	nale	105
		Pre-re	equisites	105
		CO-U	'O Mapping	105
	5.1	Differ	ential Equation	106
	5.2	Basic	Definitions/Concepts	106
		5.2.1	Order and Degree of a Differential Equation	106
		5.2.2	Solution of an Ordinary Differential Equation	108
		5.2.3	Formation of a Differential Equation Whose General Solution is Given	109
	5.3		on of First Order and First Degree Differential Equation	
		•	riable Separation Method	109
	5.4	Matla	b – An Introduction	111
		5.4.1	Salient Features	111
		5.4.2	Basics OF MATLAB	115
		5.4.3	Advantages of MATLAB	117
		5.4.4	Disadvantages of MATLAB	117
		5.4.5	A few Keyboard shortcuts for MATLAB	117
			Resources	118
			cation of Differential Equations and MATLAB	119
		Case S		120
		Check	c Out!!!!	120

	Summary	120
	Exercises	121
	Subjective Questions	121
	Objective Questions	121
	Mini Project	122
	Activity	122
	Know More	122
	References and Suggested Readings	123
Appen	dices & Annexures	12/ 122
		124-132
Appendi		124-132 124
••		
••	x-A	124
Appendi	x-A Experiment 1:	124 124
Appendi	x-A Experiment 1: Experiment 2:	124 124 126
Appendi	x-A Experiment 1: Experiment 2: x-B: Assessments Aligned to Bloom's Level Suggested Table of Specification for Question Paper Design	124 124 126 128
Appendi Appendi	x-A <i>Experiment 1:</i> <i>Experiment 2:</i> x-B: Assessments Aligned to Bloom's Level <i>Suggested Table of Specification for Question Paper Design</i> re-1	124 124 126 128 128