WORKSHOP / MANUFACTURING PRACTICES

WITH LAB MANUAL

Veeranna D. Kenchakkanavar

KHANNA BOOK PUBLISHING CO. (P) LTD.

PUBLISHER OF ENGINEERING AND COMPUTER BOOKS 4C/4344, Ansari Road, Darya Ganj, New Delhi-110002 Phone: 011-23244447-48 Mobile: +91-99109 09320 E-mail: contact@khannabooks.com Website: www.khannabooks.com Dear Readers,

To prevent the piracy, this book is secured with HIGH SECURITY HOLOGRAM on the front title cover. In case you don't find the hologram on the front cover title, please write us to at contact@khannabooks.com or whatsapp us at +91-99109 09320 and avail special gift voucher for yourself.

Specimen of Hologram on front Cover title:

Moreover, there is a SPECIAL DISCOUNT COUPON for you with EVERY HOLOGRAM.

How to avail this SPECIAL DISCOUNT:

Step 1: Scratch the hologram

Step 2: Under the scratch area, your "coupon code" is available

Step 3: Logon to www.khannabooks.com

Step 4: Use your "coupon code" in the shopping cart and get your copy at a special discount

Step 5: Enjoy your reading!

ISBN: 978-93-91505-33-2 Book Code: UG006EN

Workshop/Manufacturing Practices

by Veeranna D. Kenchakkanavar [English Edition]

First Edition: 2021

Published by:

Khanna Book Publishing Co. (P) Ltd. Visit us at: www.khannabooks.com Write us at: contact@khannabooks.com *CIN: U22110DL1998PTC095547*

To view complete list of books, Please scan the QR Code:

Copyright © Reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior permission of the publisher.

This book is sold subject to the condition that it shall not, by way of trade, be lent, re-sold, hired out or otherwise disposed of without the publisher's consent, in any form of binding or cover other than that in which it is published.

Disclaimer: The website links provided by the author in this book are placed for informational, educational & reference purpose only. The Publisher do not endorse these website links or the views of the speaker/ content of the said weblinks. In case of any dispute, all legal matters to be settled under Delhi Jurisdiction only.

Printed in India.

प्रो. अनिल डी. सहम्रबुद्धे अघ्यक्ष Prof. Anil D. Sahasrabudhe ^{Chairman}

सत्यमेव जयते

अखिल भारतीय तकनीकी शिक्षा परिषद् (मारत सरकार का एक सांविधिक निकाय) (शिक्षा मंत्रालय, मारत सरकार) नेल्सन मंडेला मार्ग, बसंत कुज, नई दिल्ली–110070 दूरमाष : 011–26131498 ई–मेल : chairman@aicte-india.org

ALL INDIA COUNCIL FOR TECHNICAL EDUCATION (A STATUTORY BODY OF THE GOVT. OF INDIA) (Ministry of Education, Govt. of India) Nelson Mandela Marg, Vasant Kunj, New Delhi-110070 Phone : 011-26131498 E-mail : chairman@aicte-india.org

FOREWORD

Engineering has played a very significant role in the progress and expansion of mankind and society for centuries. Engineering ideas that originated in the Indian subcontinent have had a thoughtful impact on the world.

All India Council for Technical Education (AICTE) had always been at the forefront of assisting Technical students in every possible manner since its inception in 1987. The goal of AICTE has been to promote quality Technical Education and thereby take the industry to a greater heights and ultimately turn our dear motherland India into a Modern Developed Nation. It will not be inept to mention here that Engineers are the backbone of the modern society - better the engineers, better the industry, and better the industry, better the country.

NEP 2020 envisages education in regional languages to all, thereby ensuring that each and every student becomes capable and competent enough and is in a position to contribute towards the national growth and development.

One of the spheres where AICTE had been relentlessly working from last few years was to provide high-quality moderately priced books of International standard prepared in various regional languages to all it's Engineering students. These books are not only prepared keeping in mind it's easy language, real life examples, rich contents and but also the industry needs in this everyday changing world. These books are as per AICTE Model Curriculum of Engineering & Technology – 2018.

Eminent Professors from all over India with great knowledge and experience have written these books for the benefit of academic fraternity. AICTE is confident that these books with their rich contents will help technical students master the subjects with greater ease and quality.

AICTE appreciates the hard work of the original authors, coordinators and the translators for their endeavour in making these Engineering subjects more lucid.

- AD ahre

(Anil D. Sahasrabudhe)

Acknowledgement

The author(s) are grateful to AICTE for their meticulous planning and execution to publish the technical book for Engineering and Technology students.

We sincerely acknowledge the valuable contributions of the reviewer of the book Prof. Manish Chaturvedi, for making it students' friendly and giving a better shape in an artistic manner.

This book is an outcome of various suggestions of AICTE members, experts and authors who shared their opinion and thoughts to further develop the engineering education in our country.

It is also with great honour that we state that this book is aligned to the AICTE Model Curriculum and in line with the guidelines of National Education Policy (NEP) -2020. Towards promoting education in regional languages, this book is being translated in scheduled Indian regional languages.

Acknowledgements are due to the contributors and different workers in this field whose published books, review articles, papers, photographs, footnotes, references and other valuable information enriched us at the time of writing the book.

Finally, we like to express our sincere thanks to the publishing house, M/s. Khanna Book Publishing Company Private Limited, New Delhi, whose entire team was always ready to cooperate on all the aspects of publishing to make it a wonderful experience.

Veeranna D Kenchakkanavar

Preface

The text book on "Workshop / Manufacturing Practices" is designed to cater the needs of young minds of 21st century. The Workshop is the place where the core of learning about different materials, equipment, tools and techniques. Basically the workshop is used to prepare the small components by hand/power tools. Sometimes they may be parts of the large machines or may be parts for replacement / repairs. The advancement in technology leads all technocrats and professionals to use the advanced tools and technology in manufacturing but without knowing the basics it becomes nothing. So in this text book an attempt has been made to connect the basic principles of workshop technology to advanced machine tools.

The theoretical and practical blend is achieved in all the topics of the content with relevant examples. The AICTE model curriculum is fallowed in designing the content of this text book. The New National Education Policy will become path breaker in the technical education; it demands to incorporate student centric and self learning activities in the curriculum. Such initiatives are very much incorporated here to make this book more meaningful and relevant to current scenario.

The text book will take you in five modules of theory in Part-A and laboratory experiments in Part-B separately. The **Unit-1** deals with the manufacturing methods like casting, forming, machining, joining and advanced machining processes. Many of the products what we use in day today basis may not be knowing their manufacturing processes. For example the alloy wheel of automobile, temple bell is made from casting! Such interesting examples are quoted to raise the curiosity of the readers. **Unit-2** deals with advanced manufacturing machineries like CNC machining and additive manufacturing. The 3D printing and rapid prototyping are discussed in length. The Fitting operations and Power tools is the one more topic in this module gives insights about hand tools to power tool usage in the workshop. **Unit-3** discusses about the electrical and electronic engineering, where the basics to applications were discussed. The electricity and its connectivity is explained with relevant applications. **Unit-4** will focus on carpentry, plastic moulding and glass cutting operations. The various industrial applications were discussed. **Unit -5** is meant for casting design, welding and brazing operations and identification of the need is discussed elaboratively.

The text book is made according to the new generation readers; the relevant of each topic is discussed in sub title rationale of each topic. The interesting facts in each topic will tell you about unheard facts about that topic. The brief summary at the end of each module may give the instant glance of the content of that module. The video resources are added keeping in view of digital natives, who are well verse with the digital usage of the topics. The exercise is prepared with increasing order of Blooms taxonomy and in line with the AICTE exam reform document.

Although every care has been taken to avoid misprints and mistakes, yet it is difficult to claim perfection. I will be grateful to the readers if any errors are pointed out. Suggestions for further improvement of the book will be thankfully acknowledged.

Veeranna D. Kenchakkanavar

Outcome Based Education

For the implementation of an outcome based education the first requirement is to develop an outcome based curriculum and incorporate an outcome based assessment in the education system. By going through outcome based assessments evaluators will be able to evaluate whether the students have achieved the outlined standard, specific and measurable outcomes. With the proper incorporation of outcome based education there will be a definite commitment to achieve a minimum standard for all learners without giving up at any level. At the end of the programme running with the aid of outcome based education, a students will be able to arrive at the following outcomes:

- **PO-1** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO-2 Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO-3 Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO-4** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO-5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO-6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO-7** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO-8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO-9 Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO-10 Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

- **PO-11 Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO-12** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Course Outcomes

After completion of the course the students will be able to:

- **CO-1:** Differentiate among the Manufacturing Methods like casting, forming, machining, joining and advanced manufacturing methods.
- **CO-2:** Practice the CNC machining, classify different Additive manufacturing processes and perform various fitting operations using hand/power tools.
- **CO-3:** Make electric circuits and comment on basic Electrical & Electronics components.
- **CO-4:** Demonstrate the usage of Carpentry, Plastic moulding and glass cutting operations and related tools.
- **CO-5:** Practice of Metal casting operations and various Welding (arc welding & gas welding), brazing operations.

Mapping of Course Outcomes with Programme Outcomes to be done according to the matrix given below:

Course Outcome	Expected Mapping with Programme Outcomes (1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)											
Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1												
CO-2												
CO-3												
CO-4												
CO-5												

Abbreviations and Symbols

Symbol	Details
A	Semi taper angle
D	Diameter of work piece
I	Current
К	Conicity
L	Length of taper
N	Spindle speed
Р	Power
R	Resistance
V	Cutting Speed
V	Volt
d1	Original diameter of the work piece
d2	Final diameter of the work piece
t	Depth of cut
α	Semi taper angle
ρ	Specific resistance

List of Figures

Unit 1: N	Manufacturing Methods	
Fig. 1.1:	Cope and Drag	5
Fig. 1.2:	Casting Terminology	5
Fig. 1.3:	Upsetting Forging Operation	10
Fig. 1.4:	Rolling Operation	11
Fig. 1.5:	Extrusion Products	12
Fig. 1.6:	Direct and Indirect Extrusion	12
Fig. 1.7:	Lathe Machine	15
Fig. 1.8:	Turning Operation	15
Fig. 1.9:	Drilling Machine	18
Fig. 1.10:	Milling Machine	19
Fig. 1.11:	Soldering	21
Fig. 1.12:	Abrasive Jet Machining	25
Fig. 1.13:	Laser Beam Machining	25
Fig. 1.14:	Electro Chemical Machining	26
Unit 2: (CNC Machining, Additive Manufacturing, Fitting Operations and Power Tools	
Fig. 2.1:	CNC Machine Block Diagram	33
Fig. 2.2:	Axis of Rotation	34
Fig. 2.3:	Fixed Origin Method	35
Fig. 2.4:	Floating Origin System	35
Fig. 2.5:	Incremental Coordinate System	35
Fig. 2.6:	3D Printing Mechanism	38
Fig. 2.7:	Bench Vice	40
Fig. 2.8:	C-clamp	40
Fig. 2.9:	V-block	41
Fig. 2.10:	Different Types of Callipers	41
Fig. 2.11:	Scriber	42
Fig. 2.12:	Dot Punch	42
Fig. 2.13:	Try-square	42
e	Angle Plate	43
Fig. 2.15:	Surface Plate	43
Fig. 2.16:	Hacksaw	43
	Types of Chisels	44
	File Nomenclature	44
Fig. 2.19:		45
Fig. 2.20:	Square File	46
Fig. 2.21:	Triangular File	46

Fig. 2.22:	Round file	46
Fig. 2.23:	Half Round File	47
Fig. 2.24:	Types of Hammers	47
Fig. 2.25:	Mallet	48
Fig. 2.26:	Power Driller	49
Fig. 2.27:	Power Screw Driver	49
Fig. 2.28:	Power Chain Saw	49
Fig. 2.29:	Pneumatic Impact Wrench	50
Unit 3: H	Electrical and Electronics	
Fig. 3.1:	(a) Electric bulb	54
Fig. 3.1:	(b) Computer CPU	54
Fig. 3.1:	(c) Mobile phone Circuit	54
Fig. 3.2:	Ohm's Law Pie Chart	56
Fig. 3.3:	Resistance in Series	56
Fig. 3.4:	Resistance in Parallel	57
Fig. 3.5:	Current Law Circuit	58
Fig. 3.6:	Transformer	58
Fig. 3.7:	Electric Motor Classification	59
Fig. 3.8:	Stator and Rotor	60
Fig. 3.9:	Classification of electric loads	61
Fig. 3.10:	Electric Drive block diagram	62
Fig. 3.11:	Open loop control system	63
Fig. 3.12:	Closed loop system.	64
Unit 4: (Carpentry Plastic Moulding Glass Cutting	
Fig. 4.1:	Folding Ruler	72
Fig. 4.2:	Try Square	72
Fig. 4.3:	Bevel Square	73
Fig. 4.4:	Marking Gauge	73
Fig. 4.5:	Mitre Square	73
Fig. 4.6:	Mortise Gauge	74
Fig. 4.7:	Rip Saw	74
Fig. 4.8:	Cross Cut Saw	75
Fig. 4.9:	Coping Saw	75
Fig. 4.10:	Tenon Saw	75
Fig. 4.11:	(e) Firmer Chisel	76
Fig. 4.11:	(f) Beveled Edge Firmer	76
Fig. 4.11:	(g) Paring Chisel	76
Fig. 4.11:	(h) Mortise Chisel	76
	Gouge Chisel	77
Fig. 4.13:	Wooden Jack Plane	77

Fig. 4.14: Metal Jack Plane	78
Fig. 4.15: Smoothing Plane	78
Fig. 4.16: Rebate Plane	79
Fig. 4.17: Bradawl Tool	79
Fig. 4.18: Gimlet Tool	80
Fig. 4.19: Ratchet Brace	80
Fig. 4.20: (a) Wooden Mallet	81
Fig. 4.20: (b) Nylon Mallet	81
Fig. 4.21: Warrington Hammer	81
Fig. 4.22: Claw Hammer	81
Fig. 4.23: Carpenter Vice	82
Fig. 4.24: C-clamp	82
Fig. 4.25: Circular Saw	83
Fig. 4.26: Power Drill	83
Fig. 4.27: Table Saw	84
Fig. 4.28: Nail Gun	84
Fig. 4.29: Jig Saw	85
Fig. 4.30: Random Orbital Sander	85
Fig. 4.31: Wood Router	86
Fig. 4.32: Extrusion Moulding	88
Fig. 4.33: Compression Moulding	88
Fig. 4.34: Blow Moulding	89
Fig. 4.35: Injection Moulding	89
Fig. 4.36: Rotational Moulding	90
Fig. 4.37: Continuous Process	92
Fig. 4.38: Batch Process	92
Fig. 4.39: Glass Cutting Classification	93
Fig. 4.40: Conventional Glass Cutting Method	93
Fig. 4.41: Non-Conventional Glass Cutting Method	94
Unit 5: Metal Casting Welding Brazing	
Fig. 5.1: Classification of Casting	101
Fig. 5.2: Sand Casting	102
Fig. 5.3: Shell Casting	103
Fig. 5.4: Plaster Casting	103
Fig. 5.5: Investment Casting	104
Fig. 5.6: Die Casting	105
Fig. 5.7: Centrifugal Casting	105
Fig. 5.8: Squeeze Casting	106
Fig. 5.9: Vacuum Casting	106
Fig. 5.10: I-Section	107

Fig. 5.11: Taper Section	107
Fig. 5.12: Flux-cored Arc Welding	110
Fig. 5.13: Detailed View of Flux-cored Arc Welding	110
Fig. 5.14: Metal Inert Gas welding	111
Fig. 5.15: Plasma Arc Welding	112
Fig. 5.16: Submerged Arc Welding	112
Fig. 5.17: Oxy-Acetylene Gas Mixing Chamber	113
Fig. 5.18: Types of Flame	114
Fig. 5.19: Oxy-Acetylene Welding Process	115
Fig. 5.20: Brazing Process	117

List of Tables

Unit 4: Carpentry Plastic Moulding Glass Cutting	
Table 4.1: Glass composition and applications	91
Unit 5: Metal Casting Welding Brazing	
Table 5.1: Welding defects and remedies	115

Guidelines for Teachers

To implement Outcome Based Education (OBE) knowledge level and skill set of the students should be enhanced. Teachers should take a major responsibility for the proper implementation of OBE. Some of the responsibilities (not limited to) for the teachers in OBE system may be as follows:

- Within reasonable constraint, they should manipulate time to the best advantage of all students.
- They should assess the students only upon certain defined criterion without considering any other potential ineligibility to discriminate them.
- They should try to grow the learning abilities of the students to a certain level before they leave the institute.
- They should try to ensure that all the students are equipped with the quality knowledge as well as competence after they finish their education.
- They should always encourage the students to develop their ultimate performance capabilities.
- They should facilitate and encourage group work and team work to consolidate newer approach.
- They should follow Blooms taxonomy in every part of the assessment.

Level			Teacher should Check	Student should be able to	Possible Mode of Assessment
	Creating		Students ability to create	Design or Create	Mini project
	Evaluating		Students ability to Justify	Argue or Defend	Assignment
	Analysing		Students ability to distinguish	Differentiate or Distinguish	Project/Lab Methodology
	Applying		Students ability to use information	Operate or Demonstrate	Technical Presentation/ Demonstration
	Understanding		Students ability to explain the ideas	Explain or Classify	Presentation/Seminar
	Remembering		Students ability to recall (or remember)	Define or Recall	Quiz

Bloom's Taxonomy

Guidelines for Students

Students should take equal responsibility for implementing the OBE. Some of the responsibilities (not limited to) for the students in OBE system are as follows:

- Students should be well aware of each UO before the start of a unit in each and every course.
- Students should be well aware of each CO before the start of the course.
- Students should be well aware of each PO before the start of the programme.
- Students should think critically and reasonably with proper reflection and action.
- Learning of the students should be connected and integrated with practical and real life consequences.
- Students should be well aware of their competency at every level of OBE.

Contents

For	eword	l		iii				
Ack	nowle	edgemer	t	v				
Pre	face			vii				
Ou	Dutcome Based Education							
Сог	Course Outcomes							
Abł	brevia	tions an	d Symbols	xii				
	t of fig		, ,	xiii				
	t of Ta			xvii				
	•	es for Te	achers	xviii				
		es for Sta		xviii				
PA	RT-	A: MA	NUFACTURING PRACTICES	1-120				
1.	Ma	Manufacturing Methods						
		Unit Specifics						
	Rationale							
		Pre-Re	equisites	3				
		Unit C	Putcomes	4				
		Introd	uction	4				
	1.1	Castin	g	4				
		1.1.1	Casting Terminology	5				
		1.1.2	Advantages and Limitations of Casting Process	6				
	1.2	Formi	ng	7				
		1.2.1	Introduction	7				
		1.2.2	Forming Process Classification	8				
		1.2.3	Forging	8				
		1.2.4	Forging Process Classification	9				
		1.2.5	Advantages and Limitations of Forging Process	10				
		1.2.6	Rolling Operation	10				
		1.2.7	Advantages and Limitations	11				
		1.2.8	Extrusion Process	12				
		1.2.9	Methods of Extrusion Process	12				
		1.2.10	Advantages and Disadvantages	13				

		1.2.11 Deep Drawing	13
		1.2.12 Pipe Bending	13
	1.3	Machining Process	14
		1.3.1 Turning Operation	14
		1.3.2 Classification of Lathes	16
		1.3.3 Terminology of Turning Operations	16
		1.3.4 Drilling Operation	18
		1.3.5 Milling Operation	18
	1.4	Joining Process	19
		1.4.1 Temporary Joints	19
		1.4.2 Permanent Joints	20
	1.5	Advanced Manufacturing /Non-Traditional Machining	23
		1.5.1 Abrasive Jet Machining	24
		1.5.2 Laser Beam Machining	25
		1.5.3 Electro Chemical Machining	26
		Unit Summary	28
		Exercises	28
		Know More	29
		References & Suggested Readings	30
2.	CN	NC Machining, Additive Manufacturing, Fitting Operations and Power T	Tools 31-52
		Unit Specifics	31
		Rationale	31
		Pre-Requisites	32
		Unit Outcomes	32
	2.1	CNC Machining	32
		2.1.1 CNC Machining Principle	33
		2.1.2 Axis of Rotation	34
		2.1.3 Coordinate System for Tool Movement	34
		2.1.4 Working of CNC Machine	36
		2.1.5 Advantages and Disadvantages of CNC Machines	36
	2.2	Additive Manufacturing	37
		2.2.1 Additive Manufacturing Processes	38
		2.2.2 Applications	38
	2.3	Fitting Operations	39
		2.3.1 Holding Tools	40
		2.3.2 Measuring and Marking Tools	41
		2.3.3 Cutting Tools	43
		2.3.4 Finishing Tools	44

		2.3.5 Striking Tools	47
	2.4	Power Tools	48
		Unit Summary	50
		Exercises	51
		Know More	52
		References and Suggested Reading	52
3.	Ele	ectrical and Electronics	53-68
		Unit Specifics	53
		Rationale	53
		Pre-Requisites	53
		Unit Outcomes	54
	3.1	Introduction	54
	3.2	Basic Terminology	55
	3.3	Resistance in Series	56
		Resistances in Parallel	57
	3.5	Kirchhoff's Law	57
		3.5.1 Current Law	57
		3.5.2 Voltage Law	58
	3.6	Transformer	58
		3.6.1 Application	59
	3.7	Electric Motors	59
		3.7.1 Classification of Motors	59
		3.7.2 Three Phase Induction Motor	60
		3.7.3 Application of 3-Phase Induction Motors	60
	3.8	Electric Load	61
		3.8.1 Classification of Electric Load	61
	3.9	Electric Drive	62
		3.9.1 Applications of Electrical Drives	62
	3.10	Electronic Engineering	63
		3.10.1 Control System	63
		Unit Summary	65
		Exercises	66
		Teachers know more	67
		References and Suggested Reading	67
4.	Ca	rpentry Plastic Moulding Glass Cutting	69-98
		Unit Specifics	69
		Rationale	69

		Pre-Re	equisites	70
		Unit C	Outcomes	70
	4.1	Carper	ntry	70
		4.1.1	Advantages of Wood	71
		4.1.2	Applications of Wood	71
		4.1.3	Wood Working Tools	71
		4.1.4	Marking and Measuring Tools	72
		4.1.5	Cutting Tools	74
		4.1.6	Planing Tools	76
		4.1.7	Boring / Drilling Tools	79
		4.1.8	Striking Tools	80
		4.1.9	Holding Tools	82
		4.1.10	Power Tools	82
	4.2	Plastic	Moulding	86
		4.2.1	Types of Plastics	87
		4.2.2	Advantages of Plastics	87
		4.2.3	Applications of Plastics	87
		4.2.4	Plastic Moulding Methods	89
	4.3	Glass (Cutting	91
		4.3.1	Types of Glass	91
		4.3.2	Glass Manufacturing	92
		4.3.3	Glass Cutting	93
		Unit S	ummary	95
		Exerci	ses	95
		know	More	96
		Refere	nces & Suggested Readings	96
5.	Me	tal Cas	sting Welding Brazing	99-120
		Unit S	pecifics	99
		Ration	ale	99
		Pre-Re	equisites	100
		Unit C	Dutcomes	100
	5.1	Castin	g	100
		5.1.1	Casting Phenomena	101
		5.1.2	Classification of Metal Casting	101
		5.1.3	Expendable Mould / Temporary Mould Casting	102
		5.1.4	Permanent Mould Casting	104
		5.1.5	Design Considerations of Casting	107
		5.1.6	Casting Defects	108

5.2	Welding Technology	109
	5.2.1 Arc Welding	109
	5.2.2 Gas Welding	113
	5.2.3 Welding Defects	115
5.3	Brazing	116
	5.3.1 Advantages of Brazing	117
	5.3.2 Applications of Brazing	117
	Unit Summary	118
	Exercises	119
	Know More	120
	References & Suggested Readings	120
PART-E	B: WORKSHOP PRACTICE LABORATORY	121-144
	Rationale	123
	Laboratory Learning Outcomes	124
	Machine Shop	124
	Fitting Shop	126
	Carpentry	128
	Electrical and Electronics	132
	Welding Shop	135
	Casting	138
	Smithy	141
	Plastic Moulding and Glass Cutting	143
Ap	pendices	145-146
	Appendix-A	145
	Appendix-B	146
	Appendix-C	146
Ind	ex	147-148