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Preface
Greetings and salutations! This text is an introductory guide to GPU
programming with Python and CUDA. GPU may stand for Graphics
Programming Unit, but we should be clear that this book is not about
graphics programming—it is essentially an introduction to General-
Purpose GPU Programming, or GPGPU Programming for short. Over
the last decade, it has become clear that GPUs are well suited for
computations besides rendering graphics, particularly for parallel
computations that require a great deal of computational throughput. To this
end, NVIDIA released the CUDA Toolkit, which has made the world of
GPGPU programming all the more accessible to just about anyone with
some C programming knowledge.

The aim of Hands-On GPU Programming with Python and CUDA is to get
you started in the world of GPGPU programming as quickly as possible.
We have strived to come up with fun and interesting examples and exercises
for each chapter; in particular, we encourage you to type in these examples
and run them from your favorite Python environment as you go along
(Spyder, Jupyter, and PyCharm are all suitable choices). This way, you will
eventually learn all of the requisite functions and commands, as well as gain
an intuition of how a GPGPU program should be written.

Initially, GPGPU parallel programming seems very complex and daunting,
especially if you've only done CPU programming in the past. There are so
many new concepts and conventions you have to learn that it may seem like
you're starting all over again at zero. During these times, you'll have to have
some faith that your efforts to learn this field are not for naught. With a
little bit of initiative and discipline, this subject will seem like second nature
to you by the time you reach the end of the text.

Happy programming!



Who this book is for
This book is aimed at one person in particular—that is, myself in the year
2014, when I was trying to develop a GPU-based simulation for my
doctoral studies in math. I was poring over multiple books and manuals on
GPU programming, trying to make the slightest sense of the field; most
texts seemed happy to throw an endless parade of hardware schematics and
buzzwords at the reader on every page, while the actual programming took
a back seat.

This book is primarily aimed at those who want to actually do GPU
programming, but without getting bogged down with gritty technical details
and hardware schematics. We will program the GPU in proper C/C++
(CUDA C) in this text, but we will write it inline within Python code by
way of the PyCUDA module. PyCUDA allows us to only write the
necessary low-level GPU code that we need, while it automatically handles
all of the redundancies of compiling, linking, and launching code onto a
GPU for us.



What this book covers
Chapter 1, Why GPU Programming?, gives us some motivations as to why
we should learn this field, and how to apply Amdahl's Law to estimate
potential performance improvements from translating a serial program to
making use of a GPU.

Chapter 2, Setting Up Your GPU Programming Environment, explains how to
set up an appropriate Python and C++ development environment for CUDA
under both Windows and Linux.

Chapter 3, Getting Started with PyCUDA, shows the most essential skills we
will need for programming GPUs from Python. We will notably see how to
transfer data to and from a GPU using PyCUDA's gpuarray class, and how
to compile simple CUDA kernels with PyCUDA's ElementwiseKernel
function.

Chapter 4, Kernels, Threads, Blocks, and Grids, teaches the fundamentals of
writing effective CUDA kernels, which are parallel functions that are
launched on the GPU. We will see how to write CUDA device functions
("serial" functions called directly by CUDA kernels), and learn about
CUDA's abstract grid/block structure and the role it plays in launching
kernels.

Chapter 5, Streams, Events, Contexts, and Concurrency, covers the notion of
CUDA Streams, which is a feature that allows us to launch and synchronize
many kernels onto a GPU concurrently. We will see how to use CUDA
Events to time kernel launches, and how to create and use CUDA Contexts.

Chapter 6, Debugging and Profiling Your CUDA Code, fill in some of the
gaps we have in terms of pure CUDA C programming, and shows us how to
use the NVIDIA Nsight IDE for debugging and development, as well as
how to use the NVIDIA profiling tools.



Chapter 7, Using the CUDA Libraries with Scikit-CUDA, gives us a brief tour
of some of the important standard CUDA libraries by way of the Python
Scikit-CUDA module, including cuBLAS, cuFFT, and cuSOLVER.

Chapter 8, The CUDA Device Function Libraries and Thrust, shows us how
to use the cuRAND and CUDA Math API libraries in our code, as well as
how to use CUDA Thrust C++ containers.

Chapter 9, Implementation of a Deep Neural Network, serves as a capstone in
which we learn how to build an entire deep neural network from scratch,
applying many of the ideas we have learned in the text.

Chapter 10, Working with Compiled GPU Code, shows us how to interface
our Python code with pre-compiled GPU code, using both PyCUDA and
Ctypes.

Chapter 11, Performance Optimization in CUDA, teaches some very low-
level performance optimization tricks, especially in relation to CUDA, such
as warp shuffling, vectorized memory access, using inline PTX assembly,
and atomic operations.

Chapter 12, Where to Go from Here, is an overview of some of the
educational and career paths you will have that will build upon your now-
solid foundation in GPU programming.



To get the most out of this book
This is actually quite a technical subject. To this end, we will have to make
a few assumptions regarding the reader's programming background. To this
end, we will assume the following:

You have an intermediate level of programming experience in Python.
You are familiar with standard Python scientific packages, such as
NumPy, SciPy, and Matplotlib.
You have an intermediate ability in any C-based programming
language (C, C++, Java, Rust, Go, and so on). 
You understand the concept of dynamic memory allocation in C
(particularly how to use the C malloc and free functions.)

GPU programming is mostly applicable to fields that are very scientific or
mathematical in nature, so many (if not most) of the examples will make
use of some math. For this reason, we are assuming that the reader has
some familiarity with first or second-year college mathematics, including:

Trigonometry (the sinusoidal functions: sin, cos, tan …)
Calculus (integrals, derivatives, gradients)
Statistics (uniform and normal distributions)
Linear Algebra (vectors, matrices, vector spaces, dimensionality). 

Don't worry if you haven't learned some of these topics, or if it's been a while, as we
will try to review some of the key programming and math concepts as we go along.

We will be making another assumption here. Remember that we will be
working only with CUDA in this text, which is a proprietary programming
language for NVIDIA hardware. We will, therefore, need to have some
specific hardware in our possession before we get started. So, I will assume
that the reader has access to the following:

A 64-bit x86 Intel/AMD-based PC
4 Gigabytes (GB) of RAM or more



An entry-level NVIDIA GTX 1050 GPU (Pascal Architecture) or
better

The reader should know that most older GPUs will probably work fine with
most, if not all, examples in this text, but the examples in this text have only
been tested on a GTX 1050 under Windows 10 and a GTX 1070 under
Linux. Specific instructions regarding setup and configuration are given in C
hapter 2, Setting Up Your GPU Programming Environment.



Download the example code files
You can download the example code files for this book from your account
at www.packt.com. If you purchased this book elsewhere, you can visit www.packt.
com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the onscreen

instructions.

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/P
acktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

http://www.packt.com/
http://www.packt.com/support
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Download the color images
We also provide a PDF file that has color images of the
screenshots/diagrams used in this book. You can download it here: http://ww
w.packtpub.com/sites/default/files/downloads/9781788993913_ColorImages.pdf.

http://www.packtpub.com/sites/default/files/downloads/9781788993913_ColorImages.pdf


Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and
Twitter handles. Here is an example: "We can now use
the cublasSaxpy function."

A block of code is set as follows:

cublas.cublasDestroy(handle)
print 'cuBLAS returned the correct value: %s' % np.allclose(np.dot(A,x), 
y_gpu.get())

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

def compute_gflops(precision='S'):

if precision=='S':
    float_type = 'float32'
elif precision=='D':
    float_type = 'float64'
else:
    return -1

Any command-line input or output is written as follows:

$ run cublas_gemm_flops.py

Bold: Indicates a new term, an important word, or words that you see on
screen. For example, words in menus or dialog boxes appear in the text like
this.

Warnings or important notes appear like this.

Tips and tricks appear like this.



Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book,
mention the book title in the subject of your message and email us at
customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit www.packt.com/sub
mit-errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details.

Piracy: If you come across any illegal copies of our works in any form on
the internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright@packt.com with a link
to the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in, and you are interested in either writing or contributing to
a book, please visit authors.packtpub.com.
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Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
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Packt can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.
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Why GPU Programming?
It turns out that besides being able to render graphics for video games,
graphics processing units (GPUs) also provide a readily accessible means
for the general consumer to do massively parallel computing—an average
person can now buy a $2,000 modern GPU card from a local electronics
store, plug it into their PC at home, and then use it almost immediately for
computational power that would only have been available in the
supercomputing labs of top corporations and universities only 5 or 10 years
ago. This open accessibility of GPUs has become apparent in many ways in
recent years, which can be revealed by a brief observation of the news—
cryptocurrency miners use GPUs to generate digital money such as
Bitcoins, geneticists and biologists use GPUs for DNA analysis and
research, physicists and mathematicians use GPUs for large-scale
simulations, AI researchers can now program GPUs to write plays and
compose music, while major internet companies, such as Google and
Facebook, use farms of servers with GPUs for large-scale machine learning
tasks… the list goes on and on.

This book is primarily aimed at bringing you up to speed with GPU
programming, so that you too may begin using their power as soon as
possible, no matter what your end goal is. We aim to cover the core
essentials of how to program a GPU, rather than provide intricate technical
details and schematics of how a GPU works. Toward the end of the book,
we will provide further resources so that you may specialize further, and
apply your new knowledge of GPUs. (Further details as to particular
required technical knowledge and hardware follow this section.)

In this book, we will be working with CUDA, a framework for general-
purpose GPU (GPGPU) programming from NVIDIA, which was first
released back in 2007. While CUDA is proprietary for NVIDIA GPUs, it is
a mature and stable platform that is relatively easy to use, provides an
unmatched set of first-party accelerated mathematical and AI-related
libraries, and comes with the minimal hassle when it comes to installation



and integration. Moreover, there are readily available and standardized
Python libraries, such as PyCUDA and Scikit-CUDA, which make GPGPU
programming all the more readily accessible to aspiring GPU programmers.
For these reasons, we are opting to go with CUDA for this book.

CUDA is always pronounced coo-duh, and never as the acronym C-U-D-A! CUDA
originally stood for Compute Unified Device Architecture, but Nvidia has dropped the
acronym and now uses CUDA as a proper name written in all-caps.

We will now start our journey into GPU programming with an overview
of Amdahl's Law. Amdahl's Law is a simple but effective method to
estimate potential speed gains we can get by offloading a program or
algorithm onto a GPU; this will help us determine whether it's worth our
effort to rewrite our code to make use of the GPU. We will then go over a
brief review of how to profile our Python code with the cProfile module, to
help us find the bottlenecks in our code.

The learning outcomes for this chapter are as follows:

Understand Amdahl's Law
Apply Amdahl's Law in the context of your code
Using the cProfile module for basic profiling of Python code



Technical requirements
An installation of Anaconda Python 2.7 is suggested for this chapter:

https://www.anaconda.com/download/

This chapter's code is also available on GitHub:

https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA

For more information about the pre-requisites, check the preface of this book; for the
software and hardware requirements, check the README section in https://github.com/Packt
Publishing/Hands-On-GPU-Programming-with-Python-and-CUDA.

https://www.anaconda.com/download/
https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA
https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA


Parallelization and Amdahl's Law
Before we can dive in and unlock the potential of GPUs, we first have to
realize where their computational power lies in comparison to a modern
Intel/AMD central processing unit (CPU)—the power does not lie in the
fact that it has a higher clock speed than a CPU, nor in the complexity or
particular design of the individual cores. An individual GPU core is actually
quite simplistic, and at a disadvantage when compared to a modern
individual CPU core, which use many fancy engineering tricks, such as
branch prediction to reduce the latency of computations. Latency refers to
the beginning-to-end duration of performing a single computation.

The power of the GPU derives from the fact that there are many, many
more cores than in a CPU, which means a huge step forward in
throughput. Throughput here refers to the number of computations that
can be performed simultaneously. Let's use an analogy to get a better
understanding of what this means. A GPU is like a very wide city road that
is designed to handle many slower-moving cars at once (high throughput,
high latency), whereas a CPU is like a narrow highway that can only admit
a few cars at once, but can get each individual car to its destination much
quicker (low throughput, low latency).

We can get an idea of the increase in throughput by seeing how many cores
these new GPUs have. To give you an idea, the average Intel or AMD CPU
has only two to eight cores—while an entry-level, consumer-grade NVIDIA
GTX 1050 GPU has 640 cores, and a new top-of-the-line NVIDIA RTX
2080 Ti has 4,352 cores! We can exploit this massive throughput, provided
we know how properly to parallelize any program or algorithm we wish to
speed up. By parallelize, we mean to rewrite a program or algorithm so that
we can split up our workload to run in parallel on multiple processors
simultaneously. Let's think about an analogy from real-life.

Suppose that you are building a house and that you already have all of the
designs and materials in place. You hire a single laborer, and you estimate it



will take 100 hours to construct the house. Let's suppose that this particular
house can be built in such a way that the work can be perfectly divided
between every additional laborer you hire—that is to say, it will take 50
hours for two laborers, 25 hours for four laborers, and 10 hours for ten
laborers to construct the house—the number of hours to construct your
house will be 100 divided by the number of laborers you hire. This is an
example of a parallelizable task.

We notice that this task is twice as fast to complete for two laborers, and ten
times as fast for ten laborers to complete together (that is, in parallel) as
opposed to one laborer building the house alone (that is, in serial)—that is,
if N is the number of laborers, then it will be N times as fast. In this case, N
is known as the speedup of parallelizing our task over the serial version of
our task.

Before we begin to program a parallel version of a given algorithm, we
often start by coming up with an estimate of the potential speedup that
parallelization would bring to our task. This can help us determine whether
it is worth expending resources and time writing a parallelization of our
program or not. Because real life is more complicated than the example we
gave here, it's pretty obvious that we won't be able to parallelize every
program perfectly, all of the time—most of the time, only a part of our
program will be nicely parallelizable, while the rest will have to run in
serial.



Using Amdahl's Law
We will now derive Amdahl's Law, which is a simple arithmetic formula
that is used to estimate potential speed gain that may arise from
parallelizing some portion of code from a serial program onto multiple
processors. We will do this by continuing with our prior analogy of building
a house.

Last time, we only considered the actual physical construction of the house
as the entire time duration, but now, we will also consider the time it takes
to design the house into the time duration for building the house. Suppose
that only one person in the world has the ability to design your house—you
—and it takes you 100 hours to design the plans for your house. There is no
possibility that any other person on the planet can compare to your
architectural brilliance, so there is no possibility that this part of the task
can be split up at all between other architects—that is, so it will take 100
hours to design your house, regardless of what resources you have or how
many people you can hire. So, if you have only one laborer to build your
house, the entire time it will take to build your home will be 200 hours—
100 hours for you to design it, and 100 hours for a single laborer to build it.
If we hire two laborers, this will take 150 hours—the time to design the
house will remain at 100 hours, while the construction will take 50 hours.
It's clear that the total number of hours to construct the house will be 100 +
100 / N, where N is the number of laborers we hire.

Now, let's step back and think about how much time building the house
takes if we hire one laborer—we ultimately use this to determine speedup
as we hire additional laborers; that is, how many times faster the process
becomes. If we hire a single laborer, we see that it takes the same amount of
time to both design and construct the house—100 hours. So, we can say that
that the portion of time spent on the design is .5 (50%), and the portion of
the time it takes to construct the house is .5 (50%)—of course, both of these
portions add up to 1, that is 100%. We want to make comparisons to this as
we add laborers—if we have two laborers, the portion of time for the



construction is halved, so in comparison to the original serial version of our
task, this will take .5 + .5/2 = .75 (75%) of the time of the original task, and
.75 x 200 hours is 150 hours, so we can see that this works. Moreover, we
can see that if we have N laborers, we can calculate the percentage of time
our parallelized construction with N laborers will take which the formula .5
+ .5 / N.

Now, let's determine the speedup we are gaining by adding additional
laborers. Since it takes 75% of the time to build a house if we have two
laborers, we can take the reciprocal of .75 to determine the speedup of our
parallelization—that is, the speedup will be 1 / .75, which is around
1.33 times faster than if we only have one laborer. In this case, we see that
the speedup will be 1 / (.5 + .5 / N) if we have N laborers.

We know that .5 / N will shrink very close to 0 as we add more and more
laborers, so we can see there is always an upper bound on the speedup you
can get when you parallelize this task—that is, 1 / (.5 + 0) = 2. We can
divide the original serial time with the estimated maximum speedup to
determine an absolute minimum amount of time this task will take—200 / 2
= 100 hours.

The principle we have just applied to determine speedups in parallel
programming is known as Amdahl's Law. It only requires knowledge of
the parallelizable proportion of execution time for code in our original serial
program, which is referred to as p, and the number of processor cores N that
we have available.

The proportion of execution time for code that is not parallelizable in this case is
always 1 – p, so we only need to know p.

We can now calculate speedup with Amdahl's Law as follows:

To sum it up, Amdahl's Law is a simple formula that allows us to roughly
(very roughly) estimate potential speedup for a program that can be at least



partially parallelized. This can provide a general idea as to whether it will
be worthwhile to write a parallel version of a particular serial program,
provided we know what proportion of the code we can parallelize (p), and
how many cores we can run our parallelized code on (N).



The Mandelbrot set
We are now prepared to see a very standard example for parallel computing
that we will revisit later in this text—an algorithm to generate an image of
the Mandelbrot set. Let's first define exactly what we mean.

For a given complex number, c, we define a recursive sequence for ,

with  and  for . If |zn| remains bounded
by 2 as n increases to infinity, then we will say that c is a member of the
Mandelbrot set. 

Recall that we can visualize the complex numbers as residing on a two-
dimensional Cartesian plane, with the x-axis representing the real
components and the y-axis representing the imaginary components. We can
therefore easily visualize the Mandelbrot set with a very appealing (and
well-known) graph. Here, we will represent members of the Mandelbrot set
with a lighter shade, and nonmembers with a darker shade on the complex
Cartesian plane as follows:



Now, let's think about how we would go about generating this set in Python.
We have to consider a few things first—since we obviously can't check
whether every single complex number is in the Mandelbrot set, we have to
choose a certain range to check over; we have to determine how many points
in each range we will consider (width, height); and the maximum value of n
that we will check |zn| for (max_iters). We can now prepare to implement a
function to generate a graph of the Mandelbrot set—here, we do this by
iterating over every single point in the graph in serial.

We will start by importing the NumPy library, which is a numerical library
that we will be making ample use of throughout this text. Our
implementation here is in the simple_mandelbrot function. We start by using
NumPy's linspace function to generate a lattice that will act as a discrete
complex plane (the rest of the code that follows should be fairly
straightforward):

import numpy as np

def simple_mandelbrot(width, height, real_low, real_high, imag_low, imag_high, 
max_iters):
    
     real_vals = np.linspace(real_low, real_high, width)



     imag_vals = np.linspace(imag_low, imag_high, height)
        
     # we will represent members as 1, non-members as 0.
    
     mandelbrot_graph = np.ones((height,width), dtype=np.float32)
    
     for x in range(width):
        
         for y in range(height):
            
             c = np.complex64( real_vals[x] + imag_vals[y] * 1j  )           
             z = np.complex64(0)
            
             for i in range(max_iters):
                
                 z = z**2 + c
                
                 if(np.abs(z) > 2):
                     mandelbrot_graph[y,x] = 0
                     break
                
     return mandelbrot_graph

Now, we want to add some code to dump the image of the Mandelbrot set to
a PNG format file, so let's add the appropriate headers at the beginning:

from time import time
import matplotlib
# the following will prevent the figure from popping up
matplotlib.use('Agg')
from matplotlib import pyplot as plt

Now, let's add some code to generate the Mandelbrot set and dump it to a
file, and use the time function to time both operations:

if __name__ == '__main__':
    
     t1 = time()
     mandel = simple_mandelbrot(512,512,-2,2,-2,2,256, 2)
     t2 = time()
     mandel_time = t2 - t1
    
     t1 = time()
     fig = plt.figure(1)
     plt.imshow(mandel, extent=(-2, 2, -2, 2))
     plt.savefig('mandelbrot.png', dpi=fig.dpi)
     t2 = time()
    
     dump_time = t2 - t1
    
     print 'It took {} seconds to calculate the Mandelbrot 
graph.'.format(mandel_time)
     print 'It took {} seconds to dump the image.'.format(dump_time)



Now let's run this program (this is also available as the mandelbrot0.py file, in
folder 1, within the GitHub repository): 

It took about 14.62 seconds to generate the Mandelbrot set, and about 0.11
seconds to dump the image. As we have seen, we generate the Mandelbrot
set point by point; there is no interdependence between the values of
different points, and it is, therefore, an intrinsically parallelizable function.
In contrast, the code to dump the image cannot be parallelized.

Now, let's analyze this in terms of Amdahl's Law. What sort of speedups can
we get if we parallelize our code here? In total, both pieces of the program
took about 14.73 seconds to run; since we can parallelize the Mandelbrot set
generation, we can say that the portion of execution time for parallelizable
code is p = 14.62 / 14.73 = .99. This program is 99% parallelizable!

What sort of speedup can we potentially get? Well, I'm currently working on
a laptop with an entry-level GTX 1050 GPU with 640 cores; our N will thus
be 640 when we use the formula. We calculate the speedup as follows:

That is definitely very good and would indicate to us that it is worth our
effort to program our algorithm to use the GPU. Keep in mind that Amdahl's
Law only gives a very rough estimate! There will be additional
considerations that will come into play when we offload computations onto
the GPU, such as the additional time it takes for the CPU to send and receive
data to and from the GPU; or the fact that algorithms that are offloaded to
the GPU are only partially parallelizable.



Profiling your code
We saw in the previous example that we can individually time different
functions and components with the standard time function in Python. While
this approach works fine for our small example program, this won't always
be feasible for larger programs that call on many different functions, some
of which may or may not be worth our effort to parallelize, or even
optimize on the CPU. Our goal here is to find the bottlenecks and hotspots
of a program—even if we were feeling energetic and used time around every
function call we make, we might miss something, or there might be some
system or library calls that we don't even consider that happen to be slowing
things down. We should find candidate portions of the code to offload onto
the GPU before we even think about rewriting the code to run on the GPU;
we must always follow the wise words of the famous American computer
scientist Donald Knuth: Premature optimization is the root of all evil.

We use what is known as a profiler to find these hot spots and bottlenecks
in our code. A profiler will conveniently allow us to see where our program
is taking the most time, and allow us to optimize accordingly.



Using the cProfile module
We will primarily be using the cProfile module to check our code. This
module is a standard library function that is contained in every modern
Python installation. We can run the profiler from the command line with -m
cProfile, and specify that we want to organize the results by the cumulative
time spent on each function with -s cumtime, and then redirect the output into
a text file with the > operator.

This will work on both the Linux Bash or Windows PowerShell command line. 

Let's try this now:

We can now look at the contents of the text file with our favorite text editor.
Let's keep in mind that the output of the program will be included at the
beginning of the file:



Now, since we didn't remove the references to time in the original example,
we see their output in the first two lines at the beginning. We can then see
the total number of function calls made in this program, and the cumulative
amount of time to run it.

Subsequently, we have a list of functions that are called in the program,
ordered from the cumulatively most time-consuming functions to the least;
the first line is the program itself, while the second line is, as expected, the
simple_mandelbrot function from our program. (Notice that the time here aligns
with what we measured with the time command). After this, we can see many
libraries and system calls that relate to dumping the Mandelbrot graph to a
file, all of which take comparatively less time. We use such output from
cProfile to infer where our bottlenecks are within a given program.



Summary
The main advantage of using a GPU over a CPU is its increased throughput,
which means that we can execute more parallel code simultaneously on
GPU than on a CPU; a GPU cannot make recursive algorithms or
nonparallelizable algorithms somewhat faster. We see that some tasks, such
as the example of building a house, are only partially parallelizable—in this
example, we couldn't speed up the process of designing the house (which is
intrinsically serial in this case), but we could speed up the process of the
construction, by hiring more laborers (which is parallelizable in this case).

We used this analogy to derive Amdahl's Law, which is a formula that can
give us a rough estimate of potential speedup for a program if we know the
percentage of execution time for code that is parallelizable, and how many
processors we will have to run this code. We then applied Amdahl's Law to
analyze a small program that generates the Mandelbrot set and dumps it to
an image file, and we determined that this would be a good candidate for
parallelization onto a GPU. Finally, we ended with a brief overview of
profiling code with the cPython module; this allows us to see where the
bottlenecks in a program are, without explicitly timing function calls.

Now that we have a few of the fundamental concepts in place, and have a
motivator to learn GPU programming, we will spend the next chapter
setting up a Linux- or Windows 10-based GPU programming environment.
We will then immediately dive into the world of GPU programming in the
following chapter, where we will actually write a GPU-based version of the
Mandelbrot program that we saw in this chapter.



Questions
1. There are three for statements in this chapter's Mandelbrot example;

however, we can only parallelize over the first two. Why can't we
parallelize over all of the for loops here?

2. What is something that Amdahl's Law doesn't account for when we
apply it to offloading a serial CPU algorithm to a GPU?

3. Suppose that you gain exclusive access to three new top-secret GPUs
that are the same in all respects, except for core counts—the first has
131,072 cores, the second has 262,144 cores, and the third has 524,288
cores. If you parallelize and offload the Mandelbrot example onto
these GPUs (which generates a 512 x 512 pixel image), will there be a
difference in computation time between the first and second GPU?
How about between the second and third GPU?

4. Can you think of any problems with designating certain algorithms or
blocks of code as parallelizable in the context of Amdahl's Law?

5. Why should we use profilers instead of just using Python's
time function?



Setting Up Your GPU
Programming Environment
We will now see how to set up an appropriate environment for GPU
programming under both Windows and Linux. In both cases, there are
several steps we will have to take. We will proceed through these steps one-
by-one, noting any differences between Linux and Windows as we proceed.
You should, of course, feel free to skip or ignore any sections or comments
that don't apply to your choice of operating system.

The reader should note that we will only cover two platforms for 64-bit
Intel/AMD-based PCs in this chapter—Ubuntu LTS (long-term support)
releases and Windows 10. Note that any Ubuntu LTS-based Linux operating
systems (such as Xubuntu, Kubuntu, or Linux Mint) are also equally
appropriate to the generic Unity/GNOME-based Ubuntu releases.

We suggest the use of Python 2.7 over Python 3.x. Python 2.7 has stable
support across all libraries that we use in this text, and we have tested every
example given in this book with Python 2.7 on both Windows and Linux
platforms. Python 3.x users can make use of this book, but should be aware
of the differences between Python 2.7 and Python 3.x. Some of the
examples in this have been tested on using Python 3.7, but require standard
changes, such as adding parentheses with the Python print function. 

Packt author Dr. Sebastian Raschka provides a list of key differences between Python
2.7 and 3.x at https://sebastianraschka.com/Articles/2014_python_2_3_key_diff.html.

We suggest the Anaconda Python 2.7 distribution in particular for both
Windows and Linux users, since this can be installed on a user-by-user
basis without sudo or administrator access, contains all necessary data science
and visualization modules needed for this text, and uses fast pre-optimized
NumPy/SciPy packages that make use of Intel's Math Kernel Library
(MKL). (The default Linux /usr/bin/python installation should also be

https://sebastianraschka.com/Articles/2014_python_2_3_key_diff.html


sufficient for this text, but you may have to install some packages manually,
such as NumPy and Matplotlib.) 

Anaconda Python (both 2.7 and 3.x versions) can be downloaded for all platforms at htt
ps://www.anaconda.com/download/.

Users who are on other supported platforms (for example, macOS,
Windows 7/8, Windows Server 2016, Red Hat/Fedora, OpenSUSE, and
CENTOS) should consult the official NVIDIA CUDA documentation (http
s://docs.nvidia.com/cuda/) for further details. Furthermore, there are other
possibilities for hardware: the reader interested in embedded systems or
robotics with some experience in boards, such as the Raspberry Pi may
wish to start with an ARM-based NVIDIA Jetson development board, while
the reader interested in cloud computing or web programming may consider
remotely using an appropriate Azure or AWS instance. In these cases, the
reader is encouraged to read the official documentation to set up their
drivers, compiler, and CUDA Toolkit. Some of the steps in this chapter may
or may not apply.

The learning outcomes for this chapter are:

Ensuring that we have the appropriate hardware
Installing the NVIDIA GPU drivers
Setting up an appropriate C/C++ programming environment
Installing the NVIDIA CUDA Toolkit
Setting up our Python environment for GPU programming

https://www.anaconda.com/download/
https://docs.nvidia.com/cuda/


Technical requirements
An installation of Anaconda Python 2.7 is suggested for this chapter at http
s://www.anaconda.com/download/.

This chapter's code is also available on GitHub at https://github.com/PacktPubli
shing/Hands-On-GPU-Programming-with-Python-and-CUDA.

For more information about the pre-requisites, check the Preface of this book; and for
the software and hardware requirements, check the README section in https://github.com/
PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA.

https://www.anaconda.com/download/
https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA
https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA


Ensuring that we have the right
hardware
For this book, we recommend that you have the following hardware as a
minimum:

64-bit Intel/AMD-based PC
4 gigabytes (GB) of RAM
NVIDIA GeForce GTX 1050 GPU (or higher)

This configuration will ensure that you can comfortably learn GPU
programming, run all of the examples in this book, and also run some of the
other newer and interesting GPU-based software, such as Google's
TensorFlow (a machine learning framework) or the Vulkan SDK (a cutting-
edge graphics API). 

Note that you must have an NVIDIA brand GPU to make use of this book! The
CUDA Toolkit is proprietary for NVIDIA cards, so it won't work for programming Intel
HD or Radeon GPUs.

As stated, we will be assuming that you are using either the Windows 10 or
Ubuntu LTS (long-term support) release.

Ubuntu LTS releases generally have version numbers of the form 14.04, 16.04, 18.04,
and so on.

Ubuntu LTS, is by and large, the most mainstream version of Linux, which
ensures maximum compatibility with new software and toolkits. Keep in
mind there are many variations of Linux that are based on Ubuntu, such as
Linux Mint or Xubuntu, and these generally work equally well. (I have
personally found that Linux Mint works fairly well out of the box for GPU-
equipped laptops.)

We should note that we are assuming that you have at least an entry-level
GTX 1050 (Pascal) GPU, or the equivalent in any newer architecture. Note



that many of the examples in this book will most likely work on most older
GPUs, but they have only been tested on a GTX 1050 (under Windows 10)
and GTX 1070 (under Linux) by the author. While the examples haven't
been tested on older GPUs, a 2014-era entry level Maxwell architecture
GPU, such as a GTX 750, should also be sufficient for the purposes of this
text.

If you are using a desktop PC, please ensure that you have physically installed your
GPU by following all the included instructions before proceeding.



Checking your hardware (Linux)
We will now do a few basic checks in Linux to ensure that we have the right
hardware. Let's first open up a Terminal and drop to the bash command line
—you can do this quickly in Ubuntu by pressing the combination Ctrl + Alt
+ T.

Let's now check our processor by typing lscpu and pressing Enter. A lot of
information will appear, but just look at the first line and make sure that the
architecture is indeed x86_64:

Next, we check our memory capacity by typing free -g at the bash prompt
and then again press Enter. This will tell us the total number of proper
memory that we have in gigabytes in the first entry of the first row, as well
as the amount of memory in swap space in the following row:

This is certainly sufficient memory.

Finally, let's see whether we have an appropriate GPU. NVIDIA GPUs
communicate with our PC via the PCI bus, so we can use the lspci command
to list all PCI hardware. There is usually a lot of other hardware listed, so



let's use the grep command to filter for just NVIDIA GPUs by entering lspci |
grep -e "NVIDIA" at the bash prompt:

This is a GTX 1070, which fortunately exceeds our need for at least a GTX
1050.



Checking your hardware (windows)
First, we must open the Windows panel. We do this by pressing Windows +
R and then entering Control Panel at the prompt, as demonstrated in the
following screenshot:

The Windows Control Panel will pop up. Now click on System and Security,
and then choose System on the following screen. This will immediately tell
us the amount of RAM that we have and whether we have a 64-bit
processor:



To check our GPU, click on Device Manager in the upper left-hand corner of
this window. The Windows Device Manager will then pop up; you can then
select the Display adapters drop-down box to check which GPUs are on your
system:





Installing the GPU drivers
If you already have drivers for your GPU installed, you may possibly skip
this step; moreover, some versions of CUDA are pre-packaged with the
latest drivers. Quite often, CUDA is very particular about which driver you
have installed and may not even work with the CUDA Toolkit driver, so
you may have to experiment with several different drivers before you find
one that works.

Generally speaking, Windows has better CUDA driver compatibility and a
more user-friendly installation than Linux. Windows users may consider
skipping this step and just use the driver that is packaged with the CUDA
Toolkit, which we will install a little later in this chapter. We would strongly
suggest that Linux users (particularly Linux laptop users), however, closely
follow all the steps in this section before proceeding.



Installing the GPU drivers (Linux)
In Ubuntu, the default driver for NVIDIA GPUs is an open-source driver
called Nouveau; unfortunately, this does not work with CUDA at all, so we
will have to install a proprietary driver. We will have to add the special
graphics-drivers repository to our package manager to be able to download
proprietary NVIDIA drivers to our Ubuntu system. We add the repository by
typing the following line into the bash prompt:

sudo add-apt-repository ppa:graphics-drivers/ppa

Since this is a sudo superuser command, you will have to enter your
password. We now synchronize our system with the new repository by
typing the following line:

sudo apt-get update

We should now be ready to install our driver. From the Ubuntu desktop,
press Windows + R, and then enter software and drivers:

The Software & Drivers setup menu should appear. From here, click on the
tab marked Additional Drivers. You should see a selection of available stable
proprietary drivers for your GPU; choose the newest one you see I(n my
case, it is nvidia-driver-396, demonstrated as follows):



With the latest driver selected, click on Apply Changes. You will be
prompted again for your sudo password, and then the driver will install; a
progress bar should appear. Note that this process can take a long time and it
may appear that your computer is hanging; this process can take well over
an hour, so please be patient. 

Finally, when the process is complete, reset your computer, and return to
your Ubuntu desktop. Now type Windows + A, and then enter nvidia-
settings (or alternatively, run this program from a bash prompt). The
NVIDIA X Server Settings manager should appear, and indicate that you are
using the appropriate driver version:





Installing the GPU drivers
(Windows)
To reiterate—it is generally suggested that the reader initially skip this step,
and then install the drivers that are included with the CUDA Toolkit.

The latest drivers for Windows are available directly from NVIDIA at htt
p://www.nvidia.com/Download/. Simply choose the appropriate Windows 10
drivers for your GPU from the drop-down menu, which are executable
(.exe) files. Simply install the driver by double-clicking on the file from the
file manager.

http://www.nvidia.com/Download/


Setting up a C++ programming
environment
Now that we have our drivers installed, we have to set up our C/C++
programming environment; both Python and CUDA are particular about
what compilers and IDEs they may integrate with, so you may have to be
careful. In the case of Ubuntu Linux users, the standard repository
compilers and IDEs generally work and integrate perfectly with the CUDA
Toolkit, while Windows users might have to exercise a little more caution.



Setting up GCC, Eclipse IDE, and
graphical dependencies (Linux)
Open up a Terminal from the Ubuntu desktop (Ctrl + Alt + T). We first
update the apt repository as follows:

sudo apt-get update

Now we can install everything we need for CUDA with one additional line:

sudo apt-get install build-essential binutils gdb eclipse-cdt

Here, build-essential is the package with the gcc and g++ compilers, and other
utilities such as make; binutils has some generally useful utilities, such as
the LD linker, gdb is the debugger, and Eclipse is the IDE that we will be
using.

Let's also install a few additional dependencies that will allow us to run
some of the graphical (OpenGL) demos included with the CUDA Toolkit
with this line:

sudo apt-get install freeglut3 freeglut3-dev libxi-dev libxmu-dev

Now you should be good to go to install the CUDA Toolkit.



Setting up Visual Studio (Windows)
At the time of writing, only one version of Visual Studio appears to ingrate
perfectly with both Python and the latest CUDA Toolkits—Visual Studio
2015; that is, Visual Studio version 14.0.

While it may be possible to make a sub-installation of this under a later
version of Visual Studio (for example, 2017), we would suggest to the reader
that you directly install Visual Studio 2015 with C/C++ support onto your
system. 

Visual Studio Community 2015, the free version of this software, can be downloaded at ht
tps://visualstudio.microsoft.com/vs/older-downloads/. 

Here, we will do a minimalist installation, with only the necessary
components for CUDA. We run the installation software, and select the
Custom installation:

https://visualstudio.microsoft.com/vs/older-downloads/




Click Next, then click the drop-down box for Programming Languages, and
then choose Visual C++ (feel free to select other packages or programming
languages if you want or need them for other purposes, but Visual C++ is all
we will need for GPU programming):





This should take some time to install. After this is complete, we will be
ready to install the CUDA Toolkit.



Installing the CUDA Toolkit
Finally, we are beginning to get close to our goal! We now download our
CUDA Toolkit by heading over to https://developer.nvidia.com/cuda-
downloads. Select the appropriate operating system and you will see several
options. In the case of both Windows and Linux, there are both network and
local installations. I tend to use the local installation option under both
Windows and Linux, because I prefer to download the entire package up-
front; if there are any network problems, then you can be assured they won't
occur while you are installing the CUDA Toolkit. 

https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads


Installing the CUDA Toolkit
(Linux)
In the case of Linux users, you will see that there are choices for using a
.deb package and a .run file; for most users, I would suggest going with the
.deb file, since this will install any missing packages that CUDA requires
automatically. The .run file installs outside of your system's Advanced
Package Tool (APT) system, which effectively just copies the appropriate
files to the system's /usr binary and library directories. If you don't want to
interfere with your system's APT system or repositories, and have a good
understanding of Linux, the .run file may be more appropriate. In either
case, carefully follow the instructions given on the site about installing the
package, which can vary slightly from one version to the next.

After the package is finished installing, you may have to configure your PATH
and LD_SYSTEM_CONFIG environment variables so that your system can find the
appropriate binary executable and library files needed for CUDA. I would
suggest doing this by appending the followiang lines to the end of your
.bashrc file in your user directory. Open the ~/.bashrc file with your favorite
text editor, such as gedit, nano, emacs, or vim, and, at the very bottom of the
file, add the following lines:

export PATH="/usr/local/cuda/bin:${PATH}
export LD_LIBRARY_PATH="/usr/local/cuda/lib64:${LD_LIBRARY_PATH}"

Save the file and then exit the Terminal. You can now ensure that you've
correctly installed the toolkit by opening a new Terminal and typing nvcc --
version and then pressing Enter, which will give you the version information
of the compiler for your toolkit. (nvcc is the command-line CUDA C
compiler, which is analogous to the gcc compiler.)



Installing the CUDA Toolkit
(Windows)
In the case of Windows users, you can install the package by double-
clicking on the .exe file and following all the on-screen prompts.

Once the installation is complete, reset your system. We will now ensure
that CUDA was installed correctly by checking the nvcc compiler. Under the
Start menu, click on the Visual Studio 2015 folder, and then click VS2015 x64
Native Tools Command Prompt. A Terminal window will pop up; now type
nvcc --version and press Enter, which should give you the version
information of the NVIDIA compiler.



Setting up our Python environment
for GPU programming
With our compilers, IDEs, and the CUDA Toolkit properly installed on our
system, we now can set up an appropriate Python environment for GPU
programming. There are many options here, but we explicitly recommend
that you work with the Anaconda Python Distribution. Anaconda Python is
a self-contained and user-friendly distribution that can be installed directly
in your user directory, and which does not require any administrator or
sudo level system access to install, use, or update.

Keep in mind that Anaconda Python comes in two flavors—Python 2.7, and
Python 3. Since Python 3 is currently not as well-supported for some of the
libraries we will be using, we will be using Python 2.7 in this book, which
still has a broad mainstream usage.

You can install Anaconda Python by going to https://www.anaconda.com/download,
choosing your operating system, and then by choosing to download the
Python 2.7 version of the distribution. Follow the instructions given on the
Anaconda site to install the distribution, which is relatively straightforward.
We can now set up our local Python installation for GPU programming.

We will now set up what is arguably the most important Python package for
this book: Andreas Kloeckner's PyCUDA package.

https://www.anaconda.com/download


Installing PyCUDA (Linux)
Open up a command line in Linux. Ensure that your PATH variable is set up
correctly to use the local Anaconda installation of Python (rather than the
system-wide installation) by typing which python at the bash prompt and
pressing Enter (Anaconda should have automatically configured your
.bashrc during installation); this should tell you that the Python binary is in
your local ~/anaconda2/bin directory, rather than in the /usr/bin directory. If
this isn't the case, open a text editor and put the line export
PATH="/home/${USER}/anaconda2/bin:${PATH}" at the end of your ~/.bashrc file, save
this, open a new Terminal, and then check again.

There are several options for installation of PyCUDA. The easiest option is
to install the latest stable version from the PyPI repository by typing pip
install pycuda. You can also install the latest version of PyCUDA by
following the instructions at the PyCUDA official website at https://mathema.
tician.de/software/pycuda/. Please note that if you wish to re-install PyCUDA
from a different source, be sure to uninstall it first with pip uninstall pycuda.

https://mathema.tician.de/software/pycuda/


Creating an environment launch
script (Windows)
Windows users will need to be particularly careful that both their Visual
Studio and Anaconda Python environment variables are set up correctly in
order to use PyCUDA; otherwise, Python will not be able to find NVIDIA's
nvcc CUDA compiler or Microsoft's cl.exe C++ compiler. Fortunately, batch
scripts are included that will set up these environments for us automatically,
but we will have to be careful that these are executed each and every time
we want to do GPU programming.

We will, therefore, create a batch script that will launch an appropriate IDE
or command-line environment by calling these other two scripts in
succession. (This script is also available at https://github.com/PacktPublishing/H
ands-On-GPU-Programming-with-Python-and-CUDA/blob/master/2/launch-python-cuda-enviro

nment.bat.)

Be sure to first open up Windows Notepad, and follow along:

First, find where your vcvars.bat file for Visual Studio is; in the case of
Visual Studio 2015, it is at C:\Program Files (x86)\Microsoft Visual Studio
14.0\VC\vcvarsall.bat.

Type the following line into your text editor, and then press Enter: 

call "C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\vcvarsall.bat" amd64

We now need to call the Anaconda's activate.bat script to set up the
Anaconda Python environment variables; the standard path is
Anaconda2\Scripts\activate.bat. We have to further indicate where the
Anaconda libraries are with an argument to this script. In my case, the
second line in my launch script would be call
"C:\Users\%username%\Anaconda2\Scripts\activate.bat" C:\Users\%username%\Anaconda2.

https://github.com/btuomanen/handsongpuprogramming/blob/master/2/launch-python-cuda-environment.bat


Finally, the last line of our batch script will launch whatever environment—
IDE or command-line prompt—you prefer to program in, which will inherit
all of the necessary environment and system variables the prior two scripts
will set up. If you prefer the old standard DOS-style Command Prompt, this
line should just be cmd. If you like to work from PowerShell, change this
to powershell. It will be necessary to use the command line in some cases,
particularly for accessing the command line pip and conda for updating your
Python library.

Finally, save this file to your desktop with the filename launch-python-cuda-
environment.bat. You can now launch our Python GPU programming
environment by double-clicking this file.

(Keep in mind that if you wish to use the Jupyter Notebook or Spyder
Python IDEs, you can simply launch these from the command line with
jupyter-notebook or spyder, or alternatively, you can make a batch script that
just replaces cmd with the appropriate IDE launch command.)



Installing PyCUDA (Windows)
Due to the fact that most Python libraries are primarily written by and for
Linux users, it is suggested that you install a pre-built PyCUDA wheel
binary from Christoph Gohlke's site at the following address: https://www.lfd.
uci.edu/~gohlke/pythonlibs/#pycuda. Download a file of the from pycuda-
2017.1.1+cuda(VERSION)-cp27-cp27m-win_amd64.whl where version is your CUDA
version number. You can now install PyCUDA by typing the following on
the command line, and replacing pycuda.whl with the full path and filename
of your PyCUDA wheel:

pip install pycuda.whl

(Alternatively, you can try installing PyCUDA from the PyPI repository
with pip install pycuda , or by following the instructions on the PyCUDA
website.)

https://www.lfd.uci.edu/~gohlke/pythonlibs/#pycuda


Testing PyCUDA
Finally, we're at the point where we can see whether our GPU programming
environment actually works. We will run a small program from the next
chapter that will query our GPU and yield some relevant information about
the model number, memory, number of cores, architecture, and so forth. Get
the Python file (deviceQuery.py) from directory 3 in the repository, which is
also available at https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-P
ython-and-CUDA/blob/master/3/deviceQuery.py.

If you are using Windows, be sure to launch the GPU programming
environment by launching the .bat file on our desktop we made in the last
section. Otherwise, if you are using Linux, open a bash Terminal. Now type
the following line and press Enter—python deviceQuery.py. 

This will output many lines of data, but the first few lines should indicate
that your GPU has been detected by PyCUDA, and you should see the
model number in the following line:

Congratulations, you are now ready to embark upon the world of GPU
programming!

https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA/blob/master/3/deviceQuery.py


Summary
Setting up your Python environment for GPU programming can be a very
delicate process. The Anaconda Python 2.7 distribution is suggested for
both Windows and Linux users for the purposes of this text. First, we
should ensure that we have the correct hardware for GPU programming;
generally speaking, a 64-bit Windows or Linux PC with 4 gigabytes of
RAM and any entry-level NVIDIA GPU from 2016 or later will be
sufficient for our ends. Windows users should be careful in using a version
of Visual Studio that works well with both the CUDA Toolkit and
Anaconda (such as VS 2015), while Linux users should be particularly
careful in the installation of their GPU drivers, and set up the appropriate
environment variables in their .bashrc file. Furthermore, Windows users
should create an appropriate launch script that will set up their environment
for GPU programming and should use a pre-compiled wheel file for the
installation of the PyCUDA library.

Now, with our programming environment set up and in place, we will spend
the next chapter learning the very basics of GPU programming. We will see
how to write and read data to and from the GPU's memory, and how to
write some very simple elementwise GPU functions in CUDA C. (If you
have seen the classic 1980's film The Karate Kid, then you might think of
the following chapter as the "wax on, wax off" of GPU programming.)



Questions
1. Can we run CUDA on our main processor's built-in Intel HD GPU?

What about on a discrete AMD Radeon GPU?
2. Does this book use Python 2.7 or Python 3.7 for examples?
3. What program do we use in Windows to see what GPU hardware we

have installed?
4. What command-line program do we use in Linux to see what GPU

hardware we have installed?
5. What is the command we use in Linux to determine how much

memory our system has?
6. If we don't want to alter our Linux system's APT repository, should we

use the run or deb installer for CUDA?



Getting Started with PyCUDA
In the last chapter, we set up our programming environment. Now, with our
drivers and compilers firmly in place, we will begin the actual GPU
programming! We will start by learning how to use PyCUDA for some
basic and fundamental operations. We will first see how to query our GPU
—that is, we will start by writing a small Python program that will tell us
what the characteristics of our GPU are, such as the core count,
architecture, and memory. We will then spend some time getting acquainted
with how to transfer memory between Python and the GPU with PyCUDA's
gpuarray class and how to use this class for basic computations. The
remainder of this chapter will be spent showing how to write some basic
functions (which we will refer to as CUDA Kernels) that we can directly
launch onto the GPU.

The learning outcomes for this chapter are as follows:

Determining GPU characteristics, such as memory capacity or core
count, using PyCUDA
Understanding the difference between host (CPU) and device (GPU)
memory and how to use PyCUDA's gpuarray class to transfer data
between the host and device
How to do basic calculations using only gpuarray objects
How to perform basic element-wise operations on the GPU with the
PyCUDA ElementwiseKernel function
Understanding the functional programming concept of reduce/scan
operations and how to make a basic reduction or scan CUDA kernel



Technical requirements
A Linux or Windows 10 PC with a modern NVIDIA GPU (2016 onward) is
required for this chapter, with all necessary GPU drivers and the CUDA
Toolkit (9.0 onward) installed. A suitable Python 2.7 installation (such as
Anaconda Python 2.7) with the PyCUDA module is also required.

This chapter's code is also available on GitHub at https://github.com/PacktPubli
shing/Hands-On-GPU-Programming-with-Python-and-CUDA.

For more information about the prerequisites, check the Preface of this book; for the
software and hardware requirements, check the README section in https://github.com/PacktPubli
shing/Hands-On-GPU-Programming-with-Python-and-CUDA.

https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA
https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA


Querying your GPU
Before we begin to program our GPU, we should really know something
about its technical capacities and limits. We can determine this by doing
what is known as a GPU query. A GPU query is a very basic operation that
will tell us the specific technical details of our GPU, such as available GPU
memory and core count. NVIDIA includes a command-line example written
in pure CUDA-C called deviceQuery in the samples directory (for both Windows
and Linux) that we can run to perform this operation. Let's take a look at the
output that is produced on the author's Windows 10 laptop (which is a
Microsoft Surface Book 2 with a GTX 1050 GPU):



Let's look at some of the essentials of all of the technical information
displayed here. First, we see that there is only one GPU installed, Device 0
—it is possible that a host computer has multiple GPUs and makes use of
them, so CUDA will designate each GPU device an individual number.
There are some cases where we may have to be specific about the device
number, so it is always good to know. We can also see the specific type of
device that we have (here, GTX 1050), and which CUDA version we are
using. There are two more things we will take note of for now: the total
number of cores (here, 640), and the total amount of global memory on the
device (in this case, 2,048 megabytes, that is, 2 gigabytes). 



While you can see many other technical details from deviceQuery, the core count and
amount of memory are usually the first two things your eyes should zero in on the first
time you run this on a new GPU, since they can give you the most immediate idea of the
capacity of your new device.



Querying your GPU with PyCUDA
Now, finally, we will begin our foray into the world of GPU programming
by writing our own version of deviceQuery in Python. Here, we will primarily
concern ourselves with only the amount of available memory on the device,
the compute capability, the number of multiprocessors, and the total number
of CUDA cores.

We will begin by initializing CUDA as follows:

import pycuda.driver as drv
drv.init()

Note that we will always have to initialize PyCUDA with pycuda.driver.init() or by
importing the PyCUDA autoinit submodule with import pycuda.autoinit!

We can now immediately check how many GPU devices we have on our
host computer with this line:

print 'Detected {} CUDA Capable device(s)'.format(drv.Device.count())

Let's type this into IPython and see what happens:

Great! So far, I have verified that my laptop does indeed have one GPU in it.
Now, let's extract some more interesting information about this GPU (and
any other GPU on the system) by adding a few more lines of code to iterate
over each device that can be individually accessed with pycuda.driver.Device
(indexed by number). The name of the device (for example, GeForce GTX
1050) is given by the name function. We then get the compute capability of
the device with the compute_capability function and total amount of device
memory with the total_memory function. 



Compute capability can be thought of as a version number for each NVIDIA GPU
architecture; this will give us some important information about the device that we can't
otherwise query, as we will see in a minute.

Here's how we will write it:

for i in range(drv.Device.count()):
    
     gpu_device = drv.Device(i)
     print 'Device {}: {}'.format( i, gpu_device.name() )
     compute_capability = float( '%d.%d' % gpu_device.compute_capability() )
     print '\t Compute Capability: {}'.format(compute_capability)
     print '\t Total Memory: {} 
megabytes'.format(gpu_device.total_memory()//(1024**2))

Now, we are ready to look at some of the remaining attributes of our GPU,
which PyCUDA yields to us in the form of a Python dictionary type. We will
use the following lines to convert this into a dictionary that is indexed by
strings indicating attributes:

    device_attributes_tuples = gpu_device.get_attributes().iteritems()
     device_attributes = {}
    
     for k, v in device_attributes_tuples:
         device_attributes[str(k)] = v

We can now determine the number of multiprocessors on our device with the
following:

    num_mp = device_attributes['MULTIPROCESSOR_COUNT']

A GPU divides its individual cores up into larger units known as
Streaming Multiprocessors (SMs); a GPU device will have several SMs,
which will each individually have a particular number of CUDA cores,
depending on the compute capability of the device. To be clear: the number
of cores per multiprocessor is not indicated directly by the GPU—this is
given to us implicitly by the compute capability. We will have to look up
some technical documents from NVIDIA to determine the number of cores
per multiprocessor (see http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.
html#compute-capabilities), and then create a lookup table to give us the number
of cores per multiprocessor. We do so as such, using the compute_capability
variable to look up the number of cores:

    cuda_cores_per_mp = { 5.0 : 128, 5.1 : 128, 5.2 : 128, 6.0 : 64, 6.1 : 128, 6.2 
: 128}[compute_capability]

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities


We can now finally determine the total number of cores on our device by
multiplying these two numbers:

    print '\t ({}) Multiprocessors, ({}) CUDA Cores / Multiprocessor: {} CUDA 
Cores'.format(num_mp, cuda_cores_per_mp, num_mp*cuda_cores_per_mp)

We now can finish up our program by iterating over the remaining keys in
our dictionary and printing the corresponding values:

    device_attributes.pop('MULTIPROCESSOR_COUNT')
    
     for k in device_attributes.keys():
         print '\t {}: {}'.format(k, device_attributes[k])

So, now we finally completed our first true GPU program of the text! (Also
available at https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-
and-CUDA/blob/master/3/deviceQuery.py). Now, we can run it as follows: 

https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA/blob/master/3/deviceQuery.py


We can now have a little pride that we can indeed write a program to query
our GPU! Now, let's actually begin to learn to use our GPU, rather than just
observe it.



Using PyCUDA's gpuarray class
Much like how NumPy's array class is the cornerstone of numerical
programming within the NumPy environment, PyCUDA's gpuarray class
plays an analogously prominent role within GPU programming in Python.
This has all of the features you know and love from NumPy—
multidimensional vector/matrix/tensor shape structuring, array-slicing,
array unraveling, and overloaded operators for point-wise computations (for
example, +, -, *, /, and **).

gpuarray is really an indispensable tool for any budding GPU programmer.
We will spend this section going over this particular data structure and
gaining a strong grasp of it before we move on.



Transferring data to and from the
GPU with gpuarray
As we note from writing our prior deviceQuery program in Python, a GPU has
its own memory apart from the host computer's memory, which is known
as device memory. (Sometimes this is known more specifically as global
device memory, to differentiate this from the additional cache memory,
shared memory, and register memory that is also on the GPU.) For the most
part, we treat (global) device memory on the GPU as we do dynamically
allocated heap memory in C (with the malloc and free functions) or C++ (as
with the new and delete operators); in CUDA C, this is complicated further
with the additional task of transferring data back and forth between the CPU
to the GPU (with commands such as cudaMemcpyHostToDevice and
cudaMemcpyDeviceToHost), all while keeping track of multiple pointers in both the
CPU and GPU space and performing proper memory allocations (cudaMalloc)
and deallocations (cudaFree).

Fortunately, PyCUDA covers all of the overhead of memory allocation,
deallocation, and data transfers with the gpuarray class. As stated, this class
acts similarly to NumPy arrays, using vector/ matrix/tensor shape structure
information for the data. gpuarray objects even perform automatic cleanup
based on the lifetime, so we do not have to worry about freeing any GPU
memory stored in a gpuarray object when we are done with it. 

How exactly do we use this to transfer data from the host to the GPU? First,
we must contain our host data in some form of NumPy array (let's call it
host_data), and then use the gpuarray.to_gpu(host_data) command to transfer this
over to the GPU and create a new GPU array. 

Let's now perform a simple computation within the GPU (pointwise
multiplication by a constant on the GPU), and then retrieve the GPU data
into a new with the gpuarray.get function. Let's load up IPython and see how



this works (note that here we will initialize PyCUDA with import
pycuda.autoinit):

One thing to note is that we specifically denoted that the array on the host
had its type specifically set to a NumPy float32 type with the dtype option
when we set up our NumPy array; this corresponds directly with the float
type in C/C++. Generally speaking, it's a good idea to specifically set data
types with NumPy when we are sending data to the GPU. The reason for this
is twofold: first, since we are using a GPU for increasing the performance of
our application, we don't want any unnecessary overhead of using an
unnecessary type that will possibly take up more computational time or
memory, and second, since we will soon be writing portions of code in inline
CUDA C, we will have to be very specific with types or our code won't
work correctly, keeping in mind that C is a statically-typed language.

Remember to specifically set data types for NumPy arrays that will be transferred to the
GPU. This can be done with the dtype option in the constructor of the numpy.array class.



Basic pointwise arithmetic
operations with gpuarray
In the last example, we saw that we can use the (overloaded) Python
multiplication operator (* ) to multiply each element in a gpuarray object by a
scalar value (here it was 2); note that a pointwise operation is intrinsically
parallelizable, and so when we use this operation on a gpuarray object
PyCUDA is able to offload each multiplication operation onto a single
thread, rather than computing each multiplication in serial, one after the
other (in fairness, some versions of NumPy can use the advanced SSE
instructions found in modern x86 chips for these computations, so in some
cases the performance will be comparable to a GPU). To be clear: these
pointwise operations performed on the GPU are in parallel since the
computation of one element is not dependent on the computation of any
other element. 

To get a feel for how the operators work, I would suggest that the reader
load up IPython and create a few gpuarray objects on the GPU, and then play
around with these operations for a few minutes to see that these operators
do work similarly to arrays in NumPy. Here is some inspiration:





Now, we can see that gpuarray objects act predictably and are in accordance
with how NumPy arrays act. (Notice that we will have to pull the output off
the GPU with the get function!) Let's now do some comparison between
CPU and GPU computation time to see if and when there is any advantage
to doing these operations on the GPU.



A speed test
Let's write up a little program (time_calc0.py) that will do a speed comparison
test between a scalar multiplication on the CPU and then the same operation
on the GPU. We will then use NumPy's allclose function to compare the two
output values. We will generate an array of 50 million random 32-bit floating
point values (this will amount to roughly 48 megabytes of data, so this
should be entirely feasible with several gigabytes of memory on any
somewhat modern host and GPU device), and then we will time how long it
takes to scalar multiply the array by two on both devices. Finally, we will
compare the output values to ensure that they are equal. Here's how it's done:

import numpy as np
import pycuda.autoinit
from pycuda import gpuarray
from time import time
host_data = np.float32( np.random.random(50000000) )

t1 = time()
host_data_2x =  host_data * np.float32(2)
t2 = time()

print 'total time to compute on CPU: %f' % (t2 - t1)
device_data = gpuarray.to_gpu(host_data)

t1 = time()
device_data_2x =  device_data * np.float32( 2 )
t2 = time()

from_device = device_data_2x.get()
print 'total time to compute on GPU: %f' % (t2 - t1)

print 'Is the host computation the same as the GPU computation? : 
{}'.format(np.allclose(from_device, host_data_2x) )

(You can find the time_calc0.py file on the repository provided to you earlier.)

Now, let's load up IPython and run this a few times to get an idea of the
general speed of these, and see if there is any variance. (Here, this is being
run on a 2017-era Microsoft Surface Book 2 with a Kaby Lake i7 processor
and a GTX 1050 GPU.):



We first notice that the CPU computation time is about the same for each
computation (roughly 0.08 seconds). Yet, we notice that the GPU
computation time is far slower than the CPU computation the first time we
run this (1.09 seconds), and it becomes much faster in the subsequent run,
which remains roughly constant in every following run (in the range of 7 or
9 milliseconds). If you exit IPython, and then run the program again, the
same thing will occur. What is the reason for this phenomenon? Well, let's
do some investigative work using IPython's built-in prun profiler. (This works
similarly to the cProfiler module that was featured in Chapter 1, Why GPU
Programming?.)



First, let's load our program as text within IPython with the following lines,
which we can then run with our profiler via Python's exec command:

with open('time_calc0.py','r') as f:
     time_calc_code = f.read()

We now type %prun -s cumulative exec(time_calc_code) into our IPython console
(with the leading %) and see what operations are taking the most time:

Now, there are a number of suspicious calls to a Python module file,
compiler.py; these take roughly one second total, a little less than the time it
takes to do the GPU computation here. Now let's run this again and see if
there are any differences:



Notice that this time, there are no calls to compiler.py. Why is this? By the
nature of the PyCUDA library, GPU code is often compiled and linked with
NVIDIA's nvcc compiler the first time it is run in a given Python session; it is
then cached and, if the code is called again, then it doesn't have to be
recompiled. This may include even simple operations such as this scalar
multiply! (We will see eventually see that this can be ameliorated by using
the pre-compiled code in, Chapter 10, Working with Compiled GPU Code, or
by using NVIDIA's own linear algebra libraries with the Scikit-CUDA
module, which we will see in Chapter 7, Using the CUDA Libraries with
Scikit-CUDA).

In PyCUDA, GPU code is often compiled at runtime with the NVIDIA nvcc compiler and
then subsequently called from PyCUDA. This can lead to an unexpected slowdown,
usually the first time a program or GPU operation is run in a given Python session.



Using PyCUDA's
ElementWiseKernel for performing
pointwise computations
We will now see how to program our own point-wise (or equivalently,
element-wise) operations directly onto our GPU with the help of PyCUDA's
ElementWiseKernel function. This is where our prior knowledge of C/C++
programming will become useful—we'll have to write a little bit of inline
code in CUDA C, which is compiled externally by NVIDIA's nvcc compiler
and then launched at runtime by our code via PyCUDA.

We use the term kernel quite a bit in this text; by kernel, we always mean a
function that is launched directly onto the GPU by CUDA. We will use
several functions from PyCUDA that generate templates and design patterns
for different types of kernels, easing our transition into GPU programming.

Let's dive right in; we're going to start by explicitly rewriting the code to
multiply each element of a gpuarray object by 2 in CUDA-C; we will use the
ElementwiseKernel function from PyCUDA to generate our code. You should try
typing the following code directly into an IPython console. (The less
adventurous can just download this from this text's Git repository, which has
the filename simple_element_kernel_example0.py): 

import numpy as np
import pycuda.autoinit
from pycuda import gpuarray
from time import time
from pycuda.elementwise import ElementwiseKernel
host_data = np.float32( np.random.random(50000000) )
gpu_2x_ker = ElementwiseKernel(
"float *in, float *out",
"out[i] = 2*in[i];",
"gpu_2x_ker")

Let's take a look at how this is set up; this is, of course, several lines of inline
C. We first set the input and output variables in the first line ( "float *in,



float *out" ), which will generally be in the form of C pointers to allocated
memory on the GPU. In the second line, we define our element-wise
operation with "out[i] = 2*in[i];", which will multiply each point in in by two
and place this in the corresponding index of out.

Note that PyCUDA automatically sets up the integer index i for us. When
we use i as our index, ElementwiseKernel will automatically parallelize our
calculation over i among the many cores in our GPU. Finally, we give our
piece of code its internal CUDA C kernel name ( "gpu_2x_ker" ). Since this
refers to CUDA C's namespace and not Python's, it's fine (and also
convenient) to give this the same name as in Python.

Now, let's do a speed comparison:

def speedcomparison():
    t1 = time()
    host_data_2x =  host_data * np.float32(2)
    t2 = time()
    print 'total time to compute on CPU: %f' % (t2 - t1)
    device_data = gpuarray.to_gpu(host_data)
    # allocate memory for output
    device_data_2x = gpuarray.empty_like(device_data)
    t1 = time()
    gpu_2x_ker(device_data, device_data_2x)
    t2 = time()
    from_device = device_data_2x.get()
    print 'total time to compute on GPU: %f' % (t2 - t1)
    print 'Is the host computation the same as the GPU computation? : 
{}'.format(np.allclose(from_device, host_data_2x) )

if __name__ == '__main__':
    speedcomparison()

Now, let's run this program:

Whoa! That doesn't look good. Let's run the speedcomparison() function a few
times from IPython:



As we can see, the speed increases dramatically after the first time we use a
given GPU function. Again, as with the prior example, this is because
PyCUDA compiles our inline CUDA C code the first time a given GPU
kernel function is called using the nvcc compiler. After the code is compiled,
then it is cached and re-used for the remainder of a given Python session.

Now, let's cover something else important before we move on, which is very
subtle. The little kernel function we defined operates on C float pointers; this
means that we will have to allocate some empty memory on the GPU that is



pointed to by the out variable. Take a look at this portion of code again from
the speedcomparison() function:

device_data = gpuarray.to_gpu(host_data)
# allocate memory for output
device_data_2x = gpuarray.empty_like(device_data)

As we did before, we send a NumPy array over to the GPU (host_data) via the
gpuarray.to_gpu function, which automatically allocates data onto the GPU and
copies it over from the CPU space. We will plug this into the in part of our
kernel function. In the next line, we allocate empty memory on the GPU
with the gpuarray.empty_like function. This acts as a plain malloc in C, allocating
an array of the same size and data type as device_data, but without copying
anything. We can now use this for the out part of our kernel function. We
now look at the next line in speedcomparison() to see how to launch our kernel
function onto the GPU (ignoring the lines we use for timing):

gpu_2x_ker(device_data, device_data_2x)

Again, the variables we set correspond directly to the first line we defined
with ElementwiseKernel (here being, "float *in, float *out").



Mandelbrot revisited
Let's again look at the problem of generating the Mandelbrot set from Chapter
1, Why GPU Programming?. The original code is available under the
1 folder in the repository, with the filename mandelbrot0.py, which you should
take another look at before we continue. We saw that there were two main
components of this program: the first being the generation of the Mandelbrot
set, and the second concerning dumping the Mandelbrot set into a PNG file.
In the first chapter, we realized that we could parallelize only the generation
of the Mandelbrot set, and considering that this takes the bulk of the time for
the program to do, this would be a good candidate for an algorithm to
offload this onto a GPU. Let's figure out how to do this. (We will refrain
from re-iterating over the definition of the Mandelbrot set, so if you need a
deeper review, please re-read the Mandelbrot revisited section of Chapter
1, Why GPU Programming?)

First, let's make a new Python function based on simple_mandelbrot from the
original program. We'll call it gpu_mandelbrot, and this will take in the same
exact input as before:

def gpu_mandelbrot(width, height, real_low, real_high, imag_low, imag_high, 
max_iters, upper_bound):

We will proceed a little differently from here. We will start by building a
complex lattice that consists of each point in the complex plane that we will
analyze. 

Here, we'll use some tricks with the NumPy matrix type to easily generate
the lattice, and then typecast the result from a NumPy matrix type to a two-
dimensional NumPy array (since PyCUDA can only handle NumPy array
types, not matrix types). Notice how we are very carefully setting our NumPy
types:

    real_vals = np.matrix(np.linspace(real_low, real_high, width), 
dtype=np.complex64)
    imag_vals = np.matrix(np.linspace( imag_high, imag_low, height), 
dtype=np.complex64) * 1j



    mandelbrot_lattice = np.array(real_vals + imag_vals.transpose(), 
dtype=np.complex64)  

So, we now have a two-dimensional complex array that represents the lattice
from which we will generate our Mandelbrot set; as we will see, we can
operate on this very easily within the GPU. Let's now transfer our lattice to
the GPU and allocate an array that we will use to represent our Mandelbrot
set:

    # copy complex lattice to the GPU
    mandelbrot_lattice_gpu = gpuarray.to_gpu(mandelbrot_lattice)    
    # allocate an empty array on the GPU
    mandelbrot_graph_gpu = gpuarray.empty(shape=mandelbrot_lattice.shape, 
dtype=np.float32)

To reiterate—the gpuarray.to_array function only can operate on NumPy array
types, so we were sure to have type-cast this beforehand before we sent it to
the GPU. Next, we have to allocate some memory on the GPU with the
gpuarray.empty function, specifying the size/shape of the array and the type.
Again, you can think of this as acting similarly to malloc in C; remember that
we won't have to deallocate or free this memory later, due to the gpuarray
object destructor taking care of memory clean-up automatically when the
end of the scope is reached.

When you allocate memory on the GPU with the PyCUDA functions gpuarray.empty or
gpuarray.empty_like, you do not have to deallocate this memory later due to the destructor
of the gpuarray object managing all memory clean up.

We're now ready to launch the kernel; the only change we have to make is to
change the

We haven't written our kernel function yet to generate the Mandelbrot set,
but let's just write how we want the rest of this function to go:

    mandel_ker( mandelbrot_lattice_gpu, mandelbrot_graph_gpu, np.int32(max_iters), 
np.float32(upper_bound))
              
    mandelbrot_graph = mandelbrot_graph_gpu.get()
    
    return mandelbrot_graph

So this is how we want our new kernel to act—the first input will be the
complex lattice of points (NumPy complex64 type) we generated, the second
will be a pointer to a two-dimensional floating point array (NumPy float32



type) that will indicate which elements are members of the Mandelbrot set,
the third will be an integer indicating the maximum number of iterations for
each point, and the final input will be the upper bound for each point used
for determining membership in the Mandelbrot class. Notice that we are very
careful in typecasting everything that goes into the GPU!

The next line retrieves the Mandelbrot set we generated from the GPU back
into CPU space, and the end value is returned. (Notice that the input and
output of gpu_mandelbrot is exactly the same as that of simple_mandelbrot).

Let's now look at how to properly define our GPU kernel. First, let's add the
appropriate include statements to the header:

import pycuda.autoinit
from pycuda import gpuarray
from pycuda.elementwise import ElementwiseKernel

We are now ready to write our GPU kernel! We'll show it here and then go
over this line-by-line:

mandel_ker = ElementwiseKernel(
"pycuda::complex<float> *lattice, float *mandelbrot_graph, int max_iters, float 
upper_bound",
"""
mandelbrot_graph[i] = 1;
pycuda::complex<float> c = lattice[i]; 
pycuda::complex<float> z(0,0);
for (int j = 0; j < max_iters; j++)
    {  
     z = z*z + c;     
     if(abs(z) > upper_bound)
         {
          mandelbrot_graph[i] = 0;
          break;
         }
    }         
""",
"mandel_ker")

First, we set our input with the first string passed to ElementwiseKernel. We
have to realize that when we are working in CUDA-C, particular C datatypes
will correspond directly to particular Python NumPy datatypes. Again, note
that when arrays are passed into a CUDA kernel, they are seen as C pointers
by CUDA. Here, a CUDA C int type corresponds exactly to a NumPy int32
type, while a CUDA C float type corresponds to a NumPy float32 type. An



internal PyCUDA class template is then used for complex types—here
PyCUDA ::complex<float> corresponds to Numpy complex64.

Let's look at the content of the second string, which is deliminated with three
quotes ("""). This allows us to use multiple lines within the string; we will
use this when we write larger inline CUDA kernels in Python. 

While the arrays we have passed in are two-dimensional arrays in Python,
CUDA will only see these as being one-dimensional and indexed by i.
Again, ElementwiseKernel indexes i across multiple cores and threads for us
automatically. We initialize each point in the output to one
with mandelbrot_graph[i] = 1;, as i will be indexed over every single element of
our Mandelbrot set; we're going to assume that every point will be a member
unless proven otherwise. (Again, the Mandelbrot set is over two dimensions,
real and complex, but ElementwiseKernel will automatically translate everything
into a one-dimensional set. When we interact with the data again in Python,
the two-dimensional structure of the Mandelbrot set will be preserved.)

We set up our c value as in Python to the appropriate lattice point
with pycuda::complex<float> c = lattice[i]; and initialize our z value to 0
with pycuda::complex<float> z(0,0); (the first zero corresponds to the real part,
while the second corresponds to the imaginary part). We then perform a loop
over a new iterator, j, with for(int j = 0; j < max_iters; j++). (Note that this
algorithm will not be parallelized over j or any other index—only i! This for
loop will run serially over j—but the entire piece of code will be parallelized
across i.)

We then set the new value of z with z = z*z + c; as per the Mandelbrot
algorithm. If the absolute value of this element exceeds the upper bound (
if(abs(z) > upper_bound) ), we set this point to 0 ( mandelbrot_graph[i] = 0; ) and
break out of the loop with the break keyword. 

In the final string passed into ElementwiseKernel we give the kernel its internal
CUDA C name, here "mandel_ker".

We're now ready to launch the kernel; the only change we have to make is to
change the reference from simple_mandelbrot in the main function to



gpu_mandelbrot, and we're ready to go. Let's launch this from IPython:

Let's check the dumped image to make sure this is correct:

This is certainly the same Mandelbrot image that is produced in the first
chapter, so we have successfully implemented this onto a GPU! Let's now
look at the speed increase we're getting: in the first chapter, it took us 14.61
seconds to produce this graph; here, it only took 0.894 seconds. Keep in
mind that PyCUDA also has to compile and link our CUDA C code at
runtime, and the time it takes to make the memory transfers to and from the
GPU. Still, even with all of that extra overhead, it is a very worthwhile speed
increase! (You can view the code for our GPU Mandelbrot with the file
named gpu_mandelbrot0.py in the Git repository.)



A brief foray into functional
programming
Before we continue, let's briefly do a review of two functions available in
Python for functional programming—map and reduce. These are both
considered to be functional because they both act on functions for their
operation. We find these interesting because these both correspond to
common design patterns in programming, so we can swap out different
functions in the input to get a multitude of different (and useful) operations.

Let's first recall the lambda keyword in Python. This allows us to define an
anonymous function—in most cases, these can be thought of as a
throwaway function that we may only wish to use once, or functions that are
able to be defined on a single line. Let's open up IPython right now and
define a little function that squares a number as such—pow2 = lambda x : x**2.
Let's test it out on a few numbers:

Let's recall that map acts on two input values: a function and a list of objects
that the given function can act on. map outputs a list of the function's output
for each element in the original list. Let's now define our squaring operation



as an anonymous function which we input into map, and a list of the last
few numbers we checked with the following—map(lambda x : x**2, [2,3,4]):

We see that map acts as ElementwiseKernel! This is actually a standard design
pattern in functional programming. Now, let's look at reduce; rather than
taking in a list and outputting a directly corresponding list, reduce takes in a
list, performs a recursive binary operation on it, and outputs a singleton.
Let's get a notion of this design pattern by typing reduce(lambda x, y : x + y,
[1,2,3,4]). When we type this in IPython, we will see that this will output a
single number, 10, which is indeed the sum of 1+2+3+4. You can try
replacing the summation above with multiplication, and seeing that this
indeed works for recursively multiplying a long list of numbers together.
Generally speaking, we use reduce operations with associative binary
operations; this means that, no matter the order we perform our operation
between sequential elements of the list, will always invariably give the
same result, provided that the list is kept in order. (This is not to be
confused with the commutative property.)

We will now see how PyCUDA handles programming patterns akin to
reduce—with parallel scan and reduction kernels.



Parallel scan and reduction kernel
basics
Let's look at a basic function in PyCUDA that reproduces the functionality
of reduce—InclusiveScanKernel. (You can find the code under the
simple_scankernal0.py filename.) Let's execute a basic example that sums a
small list of numbers on the GPU:

import numpy as np
import pycuda.autoinit
from pycuda import gpuarray
from pycuda.scan import InclusiveScanKernel
seq = np.array([1,2,3,4],dtype=np.int32)
seq_gpu = gpuarray.to_gpu(seq)
sum_gpu = InclusiveScanKernel(np.int32, "a+b")
print sum_gpu(seq_gpu).get()
print np.cumsum(seq)

We construct our kernel by first specifying the input/output type (here,
NumPy int32) and in the string, "a+b". Here, InclusiveScanKernel sets up
elements named a and b in the GPU space automatically, so you can think of
this string input as being analogous to lambda a,b: a + b in Python. We can
really put any (associative) binary operation here, provided we remember to
write it in C.

When we run sum_gpu, we see that we will get an array of the same size as the
input array. Each element in the array represents the value for each step in
the calculation (the NumPy cumsum function gives the same output, as we can
see). The last element will be the final output that we are seeking, which
corresponds to the output of reduce:

Let's try something a little more challenging; let's find the maximum value
in a float32 array:



import numpy as np
import pycuda.autoinit
from pycuda import gpuarray
from pycuda.scan import InclusiveScanKernel
seq = np.array([1,100,-3,-10000, 4, 10000, 66, 14, 21],dtype=np.int32)
seq_gpu = gpuarray.to_gpu(seq)
max_gpu = InclusiveScanKernel(np.int32, "a > b ? a : b")
print max_gpu(seq_gpu).get()[-1]
print np.max(seq)

(You can find the complete code in the file named simple_scankernal1.py.)

Here, the main change we made is to replace the a + b string with a > b ? a :
b. (In Python, this would be rendered within a reduce statement as lambda a,
b:  max(a,b)). Here, we are using a trick to give the max among a and b with
the C language's ? operator. We finally display the last value of the resulting
element in the output array, which will be exactly the last element (which
we can always retrieve with the [-1] index in Python).

Now, let's finally look one more PyCUDA function for generating GPU
kernels—ReductionKernel. Effectively, ReductionKernel acts like a
ElementwiseKernel function followed by a parallel scan kernel. What algorithm
is a good candidate for implementing with a ReductionKernel? The first that
tends to come to mind is the dot product from linear algebra. Let's
remember computing the dot product of two vectors has two steps:

1. Multiply the vectors pointwise
2. Sum the resulting pointwise multiples

These two steps are also called multiply and accumulate. Let's set up a
kernel to do this computation now:

dot_prod = ReductionKernel(np.float32, neutral="0", reduce_expr="a+b", 
map_expr="vec1[i]*vec2[i]", arguments="float *vec1, float *vec2")

First, note the datatype we use for our kernel (a float32). We then set up the
input arguments to our CUDA C kernel with arguments, (here two float arrays
representing each vector designated with float *) and set the pointwise
calculation with map_expr, here it is pointwise multiplication. As with
ElementwiseKernel, this is indexed over i. We set up reduce_expr the same as
with InclusiveScanKernel. This will take the resulting output from the element-



wise operation and perform a reduce-type operation on the array. Finally,
we set the neutral element with neutral. This is an element that will act as
an identity for reduce_expr; here, we set neutral=0, because 0 is always the
identity under addition (under multiplication, one is the identity). We'll see
why exactly we have to set this up when we cover parallel prefix in greater
depth later in this book.



Summary
We first saw how to query our GPU from PyCUDA, and with this re-create
the CUDA deviceQuery program in Python. We then learned how to transfer
NumPy arrays to and from the GPU's memory with the PyCUDA gpuarray
class and its to_gpu and get functions. We got a feel for using gpuarray objects
by observing how to use them to do basic calculations on the GPU, and we
learned to do a little investigative work using IPython's prun profiler. We
saw there is sometimes some arbitrary slowdown when running GPU
functions from PyCUDA for the first time in a session, due to PyCUDA
launching NVIDIA's nvcc compiler to compile inline CUDA C code. We
then saw how to use the ElementwiseKernel function to compile and launch
element-wise operations, which are automatically parallelized onto the GPU
from Python. We did a brief review of functional programming in Python
(in particular the map and reduce functions), and finally, we covered how to do
some basic reduce/scan-type computations on the GPU using the
InclusiveScanKernel and ReductionKernel functions.

Now that we have the absolute basics down about writing and launching
kernel functions, we should realize that PyCUDA has covered the vast
amount of the overhead in writing a kernel for us with its templates. We
will spend the next chapter learning about the principles of CUDA kernel
execution, and how CUDA arranges concurrent threads in a kernel into
abstract grids and blocks.



Questions
1. In simple_element_kernel_example0.py, we don't consider the memory

transfers to and from the GPU in measuring the time for the GPU
computation. Try measuring the time that the gpuarray functions, to_gpu
and get, take with the Python time command. Would you say it's worth
offloading this particular function onto the GPU, with the memory
transfer times in consideration?

2. In Chapter 1, Why GPU Programming?, we had a discussion of
Amdahl's Law, which gives us some idea of the gains we can
potentially get by offloading portions of a program onto a GPU. Name
two issues that we have seen in this chapter that Amdahl's law does not
take into consideration.

3. Modify gpu_mandel0.py to use smaller and smaller lattices of complex
numbers, and compare this to the same lattices CPU version of the
program. Can we choose a small enough lattice such that the CPU
version is actually faster than the GPU version?

4. Create a kernel with ReductionKernel that takes two complex64 arrays on the
GPU of the same length and returns the absolute largest element
among both arrays.

5. What happens if a gpuarray object reaches end-of-scope in Python?

6. Why do you think we need to define neutral when we use
ReductionKernel?

7. If in ReductionKernel we set reduce_expr ="a > b ? a : b", and we are
operating on int32 types, then what should we set "neutral" to?



Kernels, Threads, Blocks, and
Grids
In this chapter, we'll see how to write effective CUDA kernels. In GPU
programming, a kernel (which we interchangeably use with terms such as
CUDA kernel or kernel function) is a parallel function that can be launched
directly from the host (the CPU) onto the device (the GPU), while a device
function is a function that can only be called from a kernel function or
another device function. (Generally speaking, device functions look and act
like normal serial C/C++ functions, only they are running on the GPU and
are called in parallel from kernels.)

We'll then get an understanding of how CUDA uses the notion of
threads, blocks, and grids to abstract away some of the underlying
technical details of the GPU (such as cores, warps, and streaming
multiprocessors, which we'll cover later in this book), and how we can use
these notions to ease the cognitive overhead in parallel programming. We'll
learn about thread synchronization (both block-level and grid-level), and
intra-thread communication in CUDA using both global and shared
memory. Finally, we'll delve into the technical details of how to implement
our own parallel prefix type algorithms on the GPU (that is, the scan/reduce
type functions we covered in the last chapter), which allow us to put all of
the principles we'll learn in this chapter into practice.

The learning outcomes for this chapter are as follows:

Understanding the difference between a kernel and a device function
How to compile and launch a kernel in PyCUDA and use a device
function within a kernel
Effectively using threads, blocks, and grids in the context of launching
a kernel and how to use threadIdx and blockIdx within a kernel
How and why to synchronize threads within a kernel, using both
__syncthreads() for synchronizing all threads among a single block and



the host to synchronize all threads among an entire grid of blocks

How to use device global and shared memory for intra-thread
communication
How to use all of our newly acquired knowledge about kernels to
properly implement a GPU version of the parallel prefix sum



Technical requirements
A Linux or Windows 10 PC with a modern NVIDIA GPU (2016 onward) is
required for this chapter, with all necessary GPU drivers and the CUDA
Toolkit (9.0 onward) installed. A suitable Python 2.7 installation (such as
Anaconda Python 2.7) with the PyCUDA module is also required.

This chapter's code is also available on GitHub at:

https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA

For more information about the prerequisites, check the Preface of this book; for the
software and hardware requirements, check the README section in https://github.com/PacktPubli
shing/Hands-On-GPU-Programming-with-Python-and-CUDA.

https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA
https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA


Kernels
As in the last chapter, we'll be learning how to write CUDA kernel
functions as inline CUDA C in our Python code and launch them onto our
GPU using PyCUDA. In the last chapter, we used templates provided by
PyCUDA to write kernels that fall into particular design patterns; in
contrast, we'll now see how to write our own kernels from the ground up, so
that we can write a versatile variety of kernels that may not fall into any
particular design pattern covered by PyCUDA, and so that we may get a
more fine-tuned control over our kernels. Of course, these gains will come
at the expense of greater complexity in programming; we'll especially have
to get an understanding of threads, blocks, and grids and their role in
kernels, as well as how to synchronize the threads in which our kernel is
executing, as well as understand how to exchange data among threads.

Let's start simple and try to re-create some of the element-wise operations
we saw in the last chapter, but this time without using the ElementwiseKernel
function; we'll now be using the SourceModule function. This is a very
powerful function in PyCUDA that allows us to build a kernel from scratch,
so as usual it's best to start simple.



The PyCUDA SourceModule
function
We'll use the SourceModule function from PyCUDA to compile raw inline
CUDA C code into usable kernels that we can launch from Python. We
should note that SourceModule actually compiles code into a CUDA
module, this is like a Python module or Windows DLL, only it contains a
collection of compiled CUDA code. This means we'll have to "pull out" a
reference to the kernel we want to use with PyCUDA's get_function, before
we can actually launch it. Let's start with a basic example of how to use a
CUDA kernel with SourceModule.

As before, we'll start with making one of the most simple kernel functions
possible—one that multiplies a vector by a scalar. We'll start with the
imports:

import pycuda.autoinit
import pycuda.driver as drv
import numpy as np
from pycuda import gpuarray
from pycuda.compiler import SourceModule

Now we can immediately dive into writing our kernel:

ker = SourceModule("""
__global__ void scalar_multiply_kernel(float *outvec, float scalar, float *vec)
{
 int i = threadIdx.x;
 outvec[i] = scalar*vec[i];
}
""")

So, let's stop and contrast this with how it was done in ElementwiseKernel.
First, when we declare a kernel function in CUDA C proper, we precede it
with the __global__ keyword. This will distinguish the function as a kernel to
the compiler. We'll always just declare this as a void function, because we'll
always get our output values by passing a pointer to some empty chunk of
memory that we pass in as a parameter. We can declare the parameters as



we would with any standard C function: first we have outvec, which will be
our output scaled vector, which is of course a floating-point array pointer.
Next, we have scalar, which is represented with a mere float; notice that this
is not a pointer! If we wish to pass simple singleton input values to our
kernel, we can always do so without using pointers. Finally, we have our
input vector, vec, which is of course another floating-point array pointer.

Singleton input parameters to a kernel function can be passed in directly from the host
without using pointers or allocated device memory. 

Let's peer into the kernel before we continue with testing it. We recall that
ElementwiseKernel automatically parallelized over multiple GPU threads by a
value, i, which was set for us by PyCUDA; the identification of each
individual thread is given by the threadIdx value, which we retrieve as
follows: int i = threadIdx.x;.

threadIdx is used to tell each individual thread its identity. This is usually used to
determine an index for what values should be processed on the input and output data
arrays. (This can also be used for assigning particular threads different tasks than
others with standard C control flow statements such as if or switch.)

Now, we are ready to perform our scalar multiplication in parallel as
before: outvec[i] = scalar*vec[i];.

Now, let's test this code: we first must pull out a reference to our compiled
kernel function from the CUDA module we just compiled with SourceModule.
We can get this kernel reference with Python's get_function as follows:

scalar_multiply_gpu = ker.get_function("scalar_multiply_kernel")

Now, we have to put some data on the GPU to actually test our kernel. Let's
set up a floating-point array of 512 random values, and then copy these into
an array in the GPU's global memory using the gpuarray.to_gpu function.
(We're going to multiply this random vector by a scalar both on the GPU
and CPU, and see if the output matches.) We'll also allocate a chunk of
empty memory to the GPU's global memory using the gpuarray.empty_like
function:

testvec = np.random.randn(512).astype(np.float32)
testvec_gpu = gpuarray.to_gpu(testvec)



outvec_gpu = gpuarray.empty_like(testvec_gpu)

We are now prepared to launch our kernel. We'll set the scalar value as 2.
(Again, since the scalar is a singleton, we don't have to copy this value to
the GPU—we should be careful that we typecast it properly, however.) Here
we'll have to specifically set the number of threads to 512 with the block and
grid parameters. We are now ready to launch:

scalar_multiply_gpu( outvec_gpu, np.float32(2), testvec_gpu, block=(512,1,1), 
grid=(1,1,1))

We can now check whether the output matches with the expected output by
using the get function in our gpuarray output object and comparing this to the
correct output with NumPy's allclose function:

print "Does our kernel work correctly? : {}".format(np.allclose(outvec_gpu.get() , 
2*testvec) )

(The code to this example is available as the
simple_scalar_multiply_kernel.py file, under 4 in the repository.)

Now we are starting to remove the training wheels of the PyCUDA kernel
templates we learned in the previous chapter—we can now directly write a
kernel in pure CUDA C and launch it to use a specific number of threads on
our GPU. However, we'll have to learn a bit more about how CUDA
structures threads into collections of abstract units known as blocks and
grids before we can continue with kernels.



Threads, blocks, and grids
So far in this book, we have been taking the term thread for granted. Let's
step back for a moment and see exactly what this means—a thread is a
sequence of instructions that is executed on a single core of the GPU—
cores and threads should not be thought of as synonymous! In fact, it is
possible to launch kernels that use many more threads than there are cores
on the GPU. This is because, similar to how an Intel chip may only have
four cores and yet be running hundreds of processes and thousands of
threads within Linux or Windows, the operating system's scheduler can
switch between these tasks rapidly, giving the appearance that they are
running simultaneously. The GPU handles threads in a similar way,
allowing for seamless computation over tens of thousands of threads.

Multiple threads are executed on the GPU in abstract units known as
blocks. You should recall how we got the thread ID from threadIdx.x in our
scalar multiplication kernel; there is an x at the end because there is also
threadIdx.y and threadIdx.z. This is because you can index blocks over three
dimensions, rather than just one dimension. Why do we do this? Let's recall
the example regarding the computation of the Mandelbrot set from Chapter
1, Why GPU Programming? and Chapter 3, Getting Started with PyCUDA.
This is calculated point-by-point over a two-dimensional plane. It may
therefore make more sense for us to index the threads over two dimensions
for algorithms like this. Similarly, it may make sense to use three
dimensions in some cases—in a physics simulation, we may have to
calculate the positions of moving particles within a 3D grid.

Blocks are further executed in abstract batches known as grids, which are
best thought of as blocks of blocks. As with threads in a block, we can index
each block in the grid in up to three dimensions with the constant values
that are given by blockIdx.x , blockIdx.y, and blockIdx.z. Let's look at an
example to help us make sense of these concepts; we'll only use two
dimensions here for simplicity.



Conway's game of life
The Game of Life (often called LIFE for short) is a cellular automata
simulation that was invented by the British mathematician John Conway
back in 1970. This sounds complex, but it's really quite simple—LIFE is a
zero-player game that consists of a two-dimensional binary lattice of
cells that are either considered live or dead. The lattice is iteratively updated
by the following set of rules:

Any live cell with fewer than two live neighbors dies
Any live cell with two or three neighbors lives
Any live cell with more than three neighbors dies
Any dead cell with exactly three neighbors comes to life

These four simple rules give rise to a complex simulation with interesting
mathematical properties that is also aesthetically quite pleasing to watch
when animated. However, with a large number of cells in the lattice, it can
run quite slowly, and usually results in choppy animation when
programmed in pure serial Python. However, this is parallelizable, as it is
clear that each cell in the lattice can be managed by a single CUDA thread.

We'll now implement LIFE as a CUDA kernel and animate it as using the
matplotlib.animation module. This will be interesting to us right now because
namely we'll be able to apply our new knowledge of blocks and grids here.

We'll start by including the appropriate modules as follows:

import pycuda.autoinit 
import pycuda.driver as drv 
from pycuda import gpuarray 
from pycuda.compiler import SourceModule 
import numpy as np 
import matplotlib.pyplot as plt  
import matplotlib.animation as animation

Now, let's dive into writing our kernel via SourceModule . We're going to start
by using the C language's #define directive to set up some constants and



macros that we'll use throughout our kernel. Let's look at the first two we'll
set up, _X and _Y:

ker = SourceModule(""" 
#define _X  ( threadIdx.x + blockIdx.x * blockDim.x ) 
#define _Y  ( threadIdx.y + blockIdx.y * blockDim.y )

Let's first remember how #define works here—it will literally replace any
text of _X or _Y with the defined values (in the parentheses here) at
compilation time—that is, it creates macros for us. (As a matter of personal
style, I usually precede all of my C macros with an underscore.)

In C and C++, #define is used for creating macros. This means that #define doesn't
create any function or set up a proper constant variables—it just allows us to write
things shorthand in our code by swapping text out right before compilation time.

Now, let's talk about what _X and _Y mean specifically—these will be the
Cartesian x and y values of a single CUDA thread's cell on the two-
dimensional lattice we are using for LIFE. We'll launch the kernel over a
two-dimensional grid consisting of two-dimensional blocks that will
correspond to the entire cell lattice. We'll have to use both thread and block
constants to find the Cartesian point on the lattice. Let's look at some
diagrams to make the point. A thread residing in a two-dimensional CUDA
block can be visualized as follows:



At this point, you may be wondering why we don't launch our kernel over a
single block, so we can just set _X as threadIdx.x and _Y as threadIdx.y and be
done with it. This is due to a limitation on block size imposed on us by
CUDA—currently, only blocks consisting of at most 1,024 threads are
supported. This means that we can only make our cell lattice of dimensions
32 x 32 at most, which would make for a rather boring simulation that
might be better done on a CPU, so we'll have to launch multiple blocks over
a grid. (The dimensions of our current block will be given by blockDim.x and
blockDim.y, which will help us determine the objective x and y coordinates, as
we'll see.)

Similarly, as before, we can determine which block we are in within a two-
dimensional grid with blockIdx.x and blockIdx.y:

After we think of the math a little bit, it should be clear that _X should be
defined as (threadIdx.x + blockIdx.x * blockDim.x) and _Y should be defined as
( threadIdx.y + blockIdx.y * blockDim.y ). (The parentheses are added so as not
to interfere with the order of operations when the macros are inserted in the
code.) Now, let's continue defining the remaining macros:

#define _WIDTH  ( blockDim.x * gridDim.x ) 
#define _HEIGHT ( blockDim.y * gridDim.y  ) 
 
#define _XM(x)  ( (x + _WIDTH) % _WIDTH ) 
#define _YM(y)  ( (y + _HEIGHT) % _HEIGHT )

The _WIDTH and _HEIGHT macros will give us the width and height of our cell
lattice, respectively, which should be clear from the diagrams. Let's discuss



the _XM and _YM macros. In our implementation of LIFE, we'll have the
endpoints "wrap around" to the other side of the lattice—for example, we'll
consider the x-value of -1 to be _WIDTH - 1, and a y-value of -1 to be _HEIGHT -
1, and we'll likewise consider an x-value of _WIDTH to be 0 and a y-value of
_HEIGHT to be 0. Why do we need this? When we calculate the number of
living neighbors of a given cell, we might be at some edge and the
neighbors might be external points—defining these macros to modulate our
points will cover this for us automatically. Notice that we have to add the
width or height before we use C's modulus operator—this is because, unlike
Python, the modulus operator in C can return negative values for integers.

We now have one final macro to define. We recall that PyCUDA passes
two-dimensional arrays into CUDA C as one-dimensional pointers; two-
dimensional arrays are passed in row-wise from Python into one
dimensional C pointers. This means that we'll have to translate a given
Cartesian (x,y) point for a given cell on the lattice into a one dimensional
point within the pointer corresponding to the lattice. Here, we can do so as
follows:

#define _INDEX(x,y)  ( _XM(x)  + _YM(y) * _WIDTH )

Since our cell lattice is stored row-wise, we have to multiply the y-value by
the width to offset to the point corresponding to the appropriate row. We
can now finally begin with our implementation of LIFE. Let's start with the
most important part of LIFE—counting the number of living neighbors a
given cell has. We'll implement this using a CUDA device function, as
follows:

__device__ int nbrs(int x, int y, int * in) 
{ 
     return ( in[ _INDEX(x -1, y+1) ] + in[ _INDEX(x-1, y) ] + in[ _INDEX(x-1, y-
1) ] \ 
                   + in[ _INDEX(x, y+1)] + in[_INDEX(x, y - 1)] \ 
                   + in[ _INDEX(x+1, y+1) ] + in[ _INDEX(x+1, y) ] + in[ 
_INDEX(x+1, y-1) ] ); 
}

A device function is a C function written in serial, which is called by an
individual CUDA thread in kernel. That is to say, this little function will be
called in parallel by multiple threads from our kernel. We'll represent our



cell lattice as a collection of 32-bit integers (1 will represent a living cell
and 0 will represent a dead one), so this will work for our purposes; we just
have to add the values of the neighbors around our current cell.

A CUDA device function is a serial C function that is called by an individual CUDA
thread from within a kernel. While these functions are serial in themselves, they can be
run in parallel by multiple GPU threads. Device functions cannot by themselves by
launched by a host computer onto a GPU, only kernels.

We are now prepared to write our kernel implementation of LIFE. Actually,
we've done most of the hard work already—we check the number of
neighbors of the current thread's cell, check whether the current cell is
living or dead, and then use the appropriate switch-case statements to
determine its status for the next iteration according to the rules of LIFE.
We'll use two integer pointer arrays for this kernel—one will be in reference
to the last iteration as input (lattice) and the other in reference to the
iteration that we'll calculate as output (lattice_out):

__global__ void conway_ker(int * lattice_out, int * lattice  ) 
{ 
   // x, y are the appropriate values for the cell covered by this thread 
   int x = _X, y = _Y; 
    
   // count the number of neighbors around the current cell 
   int n = nbrs(x, y, lattice); 
                    
     
    // if the current cell is alive, then determine if it lives or dies for the 
next generation. 
    if ( lattice[_INDEX(x,y)] == 1) 
       switch(n) 
       { 
          // if the cell is alive: it remains alive only if it has 2 or 3 
neighbors. 
          case 2: 
          case 3: lattice_out[_INDEX(x,y)] = 1; 
                  break; 
          default: lattice_out[_INDEX(x,y)] = 0;                    
       } 
    else if( lattice[_INDEX(x,y)] == 0 ) 
         switch(n) 
         { 
            // a dead cell comes to life only if it has 3 neighbors that are 
alive. 
            case 3: lattice_out[_INDEX(x,y)] = 1; 
                    break; 
            default: lattice_out[_INDEX(x,y)] = 0;          
         } 
          
} 
""") 



 
 
conway_ker = ker.get_function("conway_ker")

We remember to close off the inline CUDA C segment with the triple-
parentheses, and then get a reference to our CUDA C kernel with
get_function. Since the kernel will only update the lattice once, we'll set up a
short function in Python that will cover for all of the overhead of updating
the lattice for the animation:

def update_gpu(frameNum, img, newLattice_gpu, lattice_gpu, N):    

The frameNum parameter is just a value that is required by Matplotlib's
animation module for update functions that we can ignore, while img will be
the representative image of our cell lattice that is required by the module
that will be iteratively displayed.

Let's focus on the other three remaining parameters—newLattice_gpu and
lattice_gpu will be PyCUDA arrays that we'll keep persistent, as we want to
avoid re-allocating chunks of memory on the GPU when we can. lattice_gpu
will be the current generation of the cell array that will correspond to the
lattice parameter in the kernel, while newLattice_gpu will be the next
generation of the lattice. N will indicate the the height and width of the
lattice (in other words, we'll be working with an N x N lattice).

We launch the kernel with the appropriate parameters and set the block and
grid sizes as follows:

    conway_ker(newLattice_gpu, lattice_gpu, grid=(N/32,N/32,1), block=(32,32,1) )   

We'll set the block sizes as 32 x 32 with (32, 32, 1); since we are only using
two dimensions for our cell lattice, we can just set the z-dimension as one.
Remember that blocks are limited to 1,024 threads—32 x 32 = 1024, so this
will work. (Keep in mind that there is nothing special here about 32 x 32;
we could use values such as 16 x 64 or 10 x 10 if we wanted to, as long as
the total number of threads does not exceed 1,024.)

The number of threads in a CUDA block is limited to a maximum of 1,024.



We now look at grid value—here, since we are working with dimensions of
32, it should be clear that N (in this case) should be divisible by 32. That
means that in this case, we are limited to lattices such as 64 x 64, 96 x 96,
128 x 128, and 1024 x 1024. Again, if we want to use lattices of a different
size, then we'll have to alter the dimensions of the blocks. (If this doesn't
make sense, then please look at the previous diagrams and review how we
defined the width and height macros in our kernel.)

We can now set up the image data for our animation after grabbing the
latest generated lattice from the GPU's memory with the get() function. We
finally copy the new lattice data into the current data using the PyCUDA
slice operator, [:], which will copy over the previously allocated memory
on the GPU so that we don't have to re-allocate:

    img.set_data(newLattice_gpu.get() )     
    lattice_gpu[:] = newLattice_gpu[:] 
     
    return img

Let's set up a lattice of size 256 x 256. We now will set up an initial state for
our lattice using the choice function from the numpy.random module. We'll
populate a N x N graph of integers randomly with ones and zeros; generally,
if around 25% of the points are ones and the rest zeros, we can generate
some interesting lattice animations, so we'll go with that:

if __name__ == '__main__': 
    # set lattice size 
    N = 256 
     
    lattice = np.int32( np.random.choice([1,0], N*N, p=[0.25, 0.75]).reshape(N, N) 
) 
    lattice_gpu = gpuarray.to_gpu(lattice)

Finally, we can set up the lattices on the GPU with the appropriate gpuarray
functions and set up the Matplotlib animation accordingly, as follows:

lattice_gpu = gpuarray.to_gpu(lattice)
    lattice_gpu = gpuarray.to_gpu(lattice)
    newLattice_gpu = gpuarray.empty_like(lattice_gpu) 

    fig, ax = plt.subplots()
    img = ax.imshow(lattice_gpu.get(), interpolation='nearest')
    ani = animation.FuncAnimation(fig, update_gpu, fargs=(img, newLattice_gpu, 
lattice_gpu, N, ) , interval=0, frames=1000, save_count=1000) 



     
    plt.show()

We can now run our program and enjoy the show (the code is also available
as the conway_gpu.py file under the 4 directory in the GitHub repository):



Thread synchronization and
intercommunication
We'll now discuss two important concepts in GPU programming—thread
synchronization and thread intercommunication. Sometimes, we need to
ensure that every single thread has reached the same exact line in the code
before we continue with any further computation; we call this thread
synchronization. Synchronization works hand-in-hand with thread
intercommunication, that is, different threads passing and reading input
from each other; in this case, we'll usually want to make sure that all of the
threads are aligned at the same step in computation before any data is
passed around. We'll start here by learning about the CUDA __syncthreads
device function, which is used for synchronizing a single block in a kernel.



Using the __syncthreads() device
function
In our prior example of Conway's Game of Life, our kernel only updated the
lattice once for every time it was launched by the host. There are no issues
with synchronizing all of the threads among the launched kernel in this
case, since we only had to work with the lattice's previous iteration that was
readily available. 

Now let's suppose that we want to do something slightly different—we
want to re-write our kernel so that it performs a certain number of iterations
on a given cell lattice without being re-launched over and over by the host.
This may initially seem trivial—a naive solution would be to just put an
integer parameter to indicate the number of iterations and a for loop in the
inline conway_ker kernel, make some additional trivial changes, and be done
with it. 

However, this raises the issue of race conditions; this is the issue of
multiple threads reading and writing to the same memory address and the
problems that may arise from that. Our old conway_ker kernel avoids this issue
by using two arrays of memory, one that is strictly read from, and one that
is strictly written to for each iteration. Furthermore, since the kernel only
performs a single iteration, we are effectively using the host for the
synchronization of the threads.

We want to do multiple iterations of LIFE on the GPU that are fully
synchronized; we also will want to use a single array of memory for the
lattice. We can avoid race conditions by using a CUDA device function
called __syncthreads(). This function is a block level synchronization
barrier—this means that every thread that is executing within a block will
stop when it reaches a __syncthreads() instance and wait until each and every
other thread within the same block reaches that same invocation of



__syncthreads() before the the threads continue to execute the subsequent
lines of code.

 __syncthreads() can only synchronize threads within a single CUDA block, not all
threads within a CUDA grid! 

Let's now create our new kernel; this will be a modification of the prior
LIFE kernel that will perform a certain number of iterations and then stop.
This means we'll not represent this as an animation, just as a static image,
so we'll load the appropriate Python modules in the beginning. (This code is
also available in the conway_gpu_syncthreads.py file, in the GitHub repository):

import pycuda.autoinit
import pycuda.driver as drv
from pycuda import gpuarray
from pycuda.compiler import SourceModule
import numpy as np
import matplotlib.pyplot as plt 

Now, let's again set up our kernel that will compute LIFE:

ker = SourceModule("""

Of course, our CUDA C code will go here, which will be largely the same
as before. We'll have to only make some changes to our kernel. Of course,
we can preserve the device function, nbrs. In our declaration, we'll use only
one array to represent the cell lattice. We can do this since we'll be using
proper thread synchronization. We'll also have to indicate the number of
iterations with an integer. We set the parameters as follows:

__global__ void conway_ker(int * lattice, int iters)
{

We'll continue similarly as before, only iterating with a for loop:

 int x = _X, y = _Y; 
 for (int i = 0; i < iters; i++)
 {
     int n = nbrs(x, y, lattice); 
     int cell_value;

Let's recall that previously, we directly set the new cell lattice value directly
within the array. Here, we'll hold the value in the cell_value variable until all



of the threads in the block are synchronized. We proceed similarly as
before, blocking execution with __syncthreads until all of the new cell values
are determined for the current iteration, and only then setting the values
within the lattice array:

 if ( lattice[_INDEX(x,y)] == 1)
 switch(n)
 {
 // if the cell is alive: it remains alive only if it has 2 or 3 neighbors.
 case 2:
 case 3: cell_value = 1;
 break;
 default: cell_value = 0; 
 }
 else if( lattice[_INDEX(x,y)] == 0 )
 switch(n)
 {
 // a dead cell comes to life only if it has 3 neighbors that are alive.
 case 3: cell_value = 1;
 break;
 default: cell_value = 0; 
 } 
 __syncthreads();
 lattice[_INDEX(x,y)] = cell_value; 
 __syncthreads();
 } 
}
""")

We'll now launch the kernel as before and display the output, iterating over
the lattice 1,000,000 times. Note that we are using only a single block in our
grid, which is of a size of 32 x 32, due to the limit of 1,024 threads per
block. (Again, it should be emphasized that __syncthreads only works over all
threads in a block, rather than over all threads in a grid, which is why we
are limiting ourselves to a single block here):

conway_ker = ker.get_function("conway_ker")
if __name__ == '__main__':
 # set lattice size
 N = 32
 lattice = np.int32( np.random.choice([1,0], N*N, p=[0.25, 0.75]).reshape(N, N) )
 lattice_gpu = gpuarray.to_gpu(lattice)
 conway_ker(lattice_gpu, np.int32(1000000), grid=(1,1,1), block=(32,32,1))
 fig = plt.figure(1)
 plt.imshow(lattice_gpu.get())

When we run the program, we'll get the desired output as follows (this is
what a random LIFE lattice will converge to after one million iterations!):





Using shared memory
We can see from the prior example that the threads in the kernel can
intercommunicate using arrays within the GPU's global memory; while it is
possible to use global memory for most operations, we can speed things up
by using shared memory. This is a type of memory meant specifically for
intercommunication of threads within a single CUDA block; the advantage
of using this over global memory is that it is much faster for pure inter-
thread communication. In contrast to global memory, though, memory
stored in shared memory cannot directly be accessed by the host—shared
memory must be copied back into global memory by the kernel itself first.

Let's first step back for a moment before we continue and think about what
we mean. Let's look at some of the variables that are declared in our
iterative LIFE kernel that we just saw. Let's first look at x and y, two
integers that hold the Cartesian coordinates of a particular thread's cell.
Remember that we are setting their values with the _X and
_Y macros. (Compiler optimizations notwithstanding, we want to store these
values in variables to reduce computation because directly
using _X and _Y will recompute the x and y values every time these macros
are referenced in our code):

 int x = _X, y = _Y; 

We note that, for every single thread, there will be a unique Cartesian point
in the lattice that will correspond to x and y. Similarly, we use a variable, n,
which is declared with int n = nbrs(x, y, lattice);, to indicate the number of
living neighbors around a particular cell. This is because, when we
normally declare variables in CUDA, they are by default local to each
individual thread. Note that, even if we declare an array within a thread
such as int a[10];, there will be an array of size 10 that is local to each
thread.

Local thread arrays (for example, a declaration of int a[10]; within the kernel) and
pointers to global GPU memory (for example, a value passed as a kernel parameter of



the form int * b) may look and act similarly, but are very different. For every thread in
the kernel, there will be a separate a array that the other threads cannot read, yet there
is a single b that will hold the same values and be equally accessible for all of the
threads.

We are prepared to use shared memory. This allows us to declare variables
and arrays that are shared among the threads within a single CUDA block.
This memory is much faster than using global memory pointers (as we have
been using till now), as well as reduces the overhead of allocating memory
in the case of pointers.

Let's say we want a shared integer array of size 10. We declare it as follows
—__shared__ int a[10] . Note that we don't have to limit ourselves to arrays;
we can make shared singleton variables as follows: __shared__ int x.

Let's rewrite a few lines of iterative version of LIFE that we saw in the last
sub-section to make use of shared memory. First, let's just rename the input
pointer to p_lattice, so we can instead use this variable name on our shared
array, and lazily preserve all of the references to " lattice" in our code. Since
we'll be sticking with a 32 x 32 cell lattice here, we set up the new shared
lattice array as follows:

__global__ void conway_ker_shared(int * p_lattice, int iters)
{
 int x = _X, y = _Y;
 __shared__ int lattice[32*32];

We'll now have to copy all values from the global memory p_lattice
array into lattice. We'll index our shared array exactly in the same way, so
we can just use our old _INDEX macro here. Note that we make sure to put
__syncthreads() after we copy, to ensure that all of the memory accesses to
lattice are entirely completed before we proceed with the LIFE algorithm:

 lattice[_INDEX(x,y)] = p_lattice[_INDEX(x,y)];
 __syncthreads();

The rest of the kernel is exactly as before, only we have to copy from the
shared lattice back into the GPU array. We do so as follows and then close
off the inline code:



 __syncthreads();
 p_lattice[_INDEX(x,y)] = lattice[_INDEX(x,y)];
 __syncthreads();
} """)

We can now run this as before, with the same exact test code. (This example
can be seen in conway_gpu_syncthreads_shared.py in the GitHub repository.)



The parallel prefix algorithm
We'll now be using our new knowledge of CUDA kernels to implement the
parallel prefix algorithm, also known as the scan design pattern. We
have already seen simple examples of this in the form of
PyCUDA's InclusiveScanKernel and ReductionKernel functions in the previous
chapter. We'll now look into this idea in a little more detail.

The central motivation of this design pattern is that we have a binary
operator  , that is to say a function that acts on two input values and gives
one output value (such as—+, ,  (maximum),  (minimum)), and
collection of elements, , and from these we wish to
compute  efficiently. Furthermore, we make the
assumption that our binary operator  is associative—this means that, for
any three elements, x, y, and z, we always have:  .

We wish to retain the partial results, that is the n - 1 sub-computations—
. The aim of the parallel prefix

algorithm is to produce this collection of n sums efficiently. It normally
takes O(n) time to produce these n sums in a serial operation, and we wish
to reduce the time complexity.

When the terms "parallel prefix" or "scan" are used, it usually means an algorithm that
produces all of these n results, while "reduce"/"reduction" usually means an algorithm
that only yields the single final result, . (This is the case with
PyCUDA.)

There are actually several variations of the parallel prefix algorithm, and
we'll first start with the simplest (and oldest) version first, which is called
the naive parallel prefix algorithm.



The naive parallel prefix algorithm
The naive parallel prefix algorithm is the original version of this
algorithm; this algorithm is "naive" because it makes an assumption that
given n input elements, , with the further assumption that n is
dyadic (that is,  for some positive integer, k), and we can run the
algorithm in parallel over n processors (or n threads). Obviously, this will
impose strong limits on the cardinality n of sets that we may process.
However, given these conditions are satisfied, we have a nice result in that
its computational time complexity is only O(log n). We can see this from
the pseudocode of the algorithm. Here, we'll indicate the input values with 

 and the output values as :

input: x0, ..., xn-1
initialize:
for k=0 to n-1:
    yk := xk
begin:
parfor i=0 to n-1 :
    for j=0 to log2(n):

        if i >= 2j :

            yi := yi  yi - 2j

            else:

            continue
        end if
    end for
end parfor
end
output: y0, ..., yn-1

Now, we can clearly see that this will take O(log n) asymptotic time, as the
outer loop is parallelized over the parfor and the inner loop takes log2(n). It
should be easy to see after a few minutes of thought that the yi values will
yield our desired output.

Now let's begin our implementation; here, our binary operator will simply
be addition. Since this example is illustrative, this kernel will be strictly
over 1,024 threads.



Let's just set up the header and dive right into writing our kernel:

import pycuda.autoinit
import pycuda.driver as drv
import numpy as np
from pycuda import gpuarray
from pycuda.compiler import SourceModule
from time import time

naive_ker = SourceModule("""
__global__ void naive_prefix(double *vec, double *out)
{
     __shared__ double sum_buf[1024]; 
     int tid = threadIdx.x; 
     sum_buf[tid] = vec[tid];

So, let's look at what we have: we represent our input elements as a GPU
array of doubles, that is double *vec, and represent the output values with
double *out. We declare a shared memory sum_buf array that we'll use for the
calculation of our output. Now, let's look at the implementation of the
algorithm itself:

 int iter = 1;
 for (int i=0; i < 10; i++)
 {
     __syncthreads();
     if (tid >= iter )
     {
         sum_buf[tid] = sum_buf[tid] + sum_buf[tid - iter]; 
     } 
     iter *= 2;
 }
 __syncthreads();

Of course, there is no parfor, which is implicit over the tid variable, which
indicates the thread number. We are also able to omit the use of log2 and 2i

by starting with a variable that is initialized to 1, and then iteratively
multiplying by 2 every iteration of i. (Note that if we want to be even more
technical, we can do this with the bitwise shift operators .) We bound the
iterations of i by 10, since 210 = 1024. Now we'll close off our new kernel
as follows:

 __syncthreads();
 out[tid] = sum_buf[tid];
 __syncthreads();
 
}



""")
naive_gpu = naive_ker.get_function("naive_prefix")
 

Let's now look at the test code following the kernel:

if __name__ == '__main__':
 testvec = np.random.randn(1024).astype(np.float64)
 testvec_gpu = gpuarray.to_gpu(testvec)
 
 outvec_gpu = gpuarray.empty_like(testvec_gpu)
 naive_gpu( testvec_gpu , outvec_gpu, block=(1024,1,1), grid=(1,1,1))
 
 total_sum = sum( testvec)
 total_sum_gpu = outvec_gpu[-1].get()
 
 print "Does our kernel work correctly? : {}".format(np.allclose(total_sum_gpu , 
total_sum) )

We're only going to concern ourselves with the final sum in the output,
which we retrieve with outvec_gpu[-1].get(), recalling that the "-1" index
gives the last member of an array in Python. This will be the sum of every
element in vec; the partial sums are in the prior values of outvec_gpu. (This
example can be seen in the naive_prefix.py file in the GitHub repository.)

By its nature, the parallel prefix algorithm has to run over n threads, corresponding to
a size-n array, where n is dyadic (again, this means that n is some power of 2).
However, we can extend this algorithm to an arbitrary non-dyadic size assuming that
our operator has a identity element (or equivalently, neutral element)—that is to say,
that there is some value e so that for any x value, we have— .  In the
case that our operator is + , the identity element is 0; in the case that it is , it is 1; all
we do then is just pad the elements  with a series of e values so that we
have the a dyadic cardinality of the new set .



Inclusive versus exclusive prefix
Let's stop for a moment and make a very subtle, but very important
distinction. So far, we have been concerned with taking inputs of the form 

 , and as output producing an array of sums of the form 
. Prefix algorithms that produce output as

such are called inclusive; in the case of an inclusive prefix algorithm, the
corresponding element at each index is included in the summation in the
same index of the output array. This is in contrast to prefix algorithms that
are exclusive. An exclusive prefix algorithm differs in that it similarly
takes n input values of the form  and produces the length-n
output array . 

This is important because some efficient variations of the prefix algorithm
are exclusive by their nature. We'll see an example of one in the next sub-
section.

Note that the exclusive algorithm yields nearly the same output as the inclusive
algorithm, only it is right-shifted and omits the final value. We can therefore trivially
obtain the equivalent output from either algorithm, provided we keep a copy of 

.



A work-efficient parallel prefix
algorithm
Before we continue with our new algorithm, we'll look at the naive
algorithm from two perspectives. In an ideal case, the computational time
complexity is O(log n), but this is only when we have a sufficient number
of processors for our data set; when the cardinality (number of elements) of
our dataset, n, is much larger than the number of processors, we have that
this becomes an O(n log n) time algorithm.

Let's define a new concept with relation to our binary operator —the
work performed by a parallel algorithm here is the number of invocations
of this operator across all threads for the duration of the execution.
Similarly, the span is the number of invocations a thread makes in the
duration of execution of the kernel; while the span of the whole algorithm
is the same as the longest span among each individual thread, which will
tell us the total execution time.

We seek to specifically reduce the amount of work performed by the
algorithm across all threads, rather than focus merely span. In the case of
the naive prefix, the additional work that is required costs a more time when
the number of available processors falls short; this extra work will just spill
over into the limited number of processors available.

We'll present a new algorithm that is work efficient, and hence more
suitable for a limited number of processors. This consists of two separate
two distinct parts—the up-sweep (or reduce) phase and the down-sweep
phase. We should also note the algorithm we'll see is an exclusive prefix
algorithm.

The up-sweep phase is similar to a single reduce operation to produce the
value that is given by the reduce algorithm, that is  ; in this
case we retain the partial sums ( ) that are



required the achieve the end result. The down-sweep phase will then
operate on these partial sums and give us the final result. Let's look at some
pseudocode, starting with the up-sweep phase. (The next subsection will
then dive into the implementation from the pseudocode immediately.)



Work-efficient parallel prefix (up-
sweep phase)
This is the pseudocode for the up-sweep. (Notice the parfor over the
j variable, which means that this block of code can be parallelized over
threads indexed by j):

input: x0, ..., xn-1
initialize:
    for i = 0 to n - 1:
        yi := xi
begin:
for k=0 to log2(n) - 1:

    parfor j=0 to n - 1: 

        if j is divisible by 2k+1:

            yj+2k+1-1 = yj+2k-1  yj +2k+1 -1
            else:

            continue
end
output: y0, ..., yn-1
 



Work-efficient parallel prefix
(down-sweep phase)
Now let's continue with the down-sweep, which will operate on the output
of the up-sweep:

input: x0, ..., xn-1
initialize:
    for i = 0 to n - 2:
        yi := xi
    yn-1 := 0

begin:
for k = log2(n) - 1 to 0:

    parfor j = 0 to n - 1: 

        if j is divisible by 2k+1:
            temp := yj+2k-1
            yj+2k-1 := yj+2k+1-1

            yj+2k+1-1 := yj+2k+1-1  temp

        else:
            continue
end
output: y0 , y1 , ..., yn-1



Work-efficient parallel prefix —
implementation 
As a capstone for this chapter, we'll write an implementation of this
algorithm that can operate on arrays of arbitrarily large size over 1,024.
This will mean that this will operate over grids as well as blocks; that being
such, we'll have to use the host for synchronization; furthermore, this will
require that we implement two separate kernels for up-sweep and down-
sweep phases that will act as the parfor loops in both phases, as well as
Python functions that will act as the outer for loop for the up- and down-
sweeps.

Let's begin with an up-sweep kernel. Since we'll be iteratively re-launching
this kernel from the host, we'll also need a parameter that indicates current
iteration (k). We'll use two arrays for the computation to avoid race
conditions—x (for the current iteration) and x_old (for the prior iteration).
We declare the kernel as follows:

up_ker = SourceModule("""
__global__ void up_ker(double *x, double *x_old, int k)
{

Now let's set the tid variable, which will be the current thread's
identification among all threads in all blocks in the grid. We use the same
trick as in our original grid-level implementation of Conway's Game of Life
that we saw earlier:

int tid =  blockIdx.x*blockDim.x + threadIdx.x;

We'll now use C bit-wise shift operators to generate 2k and 2k+1 directly
from k. We now set j to be tid times _2k1—this will enable us to remove the
"if j is divisible by 2k+1", as in the pseudocode, enabling us to only launch
as many threads as we'll need:

 int _2k = 1 << k;
 int _2k1 = 1 << (k+1);



 int j = tid* _2k1;

We can easily generate dyadic (power-of-2) integers in CUDA C with the left bit-wise
shift operator (<<). Recall that the integer 1 (that is 20) is represented as 0001, 2 (21) is
represented as 0010, 4 (22 ) is represented as 0100, and so on. We can therefore
compute 2k with the 1 << k operation.

We can now run the up-sweep phase with a single line, noting that j is
indeed divisible by 2k+1 by its construction:

 x[j + _2k1 - 1] = x_old[j + _2k -1 ] + x_old[j + _2k1 - 1];
}
""")

We're done writing our kernel! But this is not a full implementation of the
up-sweep, of course. We have to do the rest in Python. Let's get our kernel
and begin the implementation. This mostly speaks for itself as it follows the
pseudocode exactly; we should recall that we are updating x_old_gpu by
copying from x_gpu using [:], which will preserve the memory allocation
and merely copy the new data over rather than re-allocate. Also note how
we set our block and grid sizes depending on how many threads we have to
launch—we try to keep our block sizes as multiples of size 32 (which is our
rule-of-thumb in this text, we go into the details why we use 32 specifically
in Chapter 11, Performance Optimization in CUDA). We should put from
__future__ import division at the beginning of our file, since we'll use Python
3-style division in calculating our block and kernel sizes.

One issue to mention is that we are assuming that x is of dyadic length 32 or
greater—this can be modified trivially if you wish to have this operate on
arrays of other sizes by padding our arrays with zeros, however:

up_gpu = up_ker.get_function("up_ker")

def up_sweep(x):
    x = np.float64(x)
    x_gpu = gpuarray.to_gpu(np.float64(x) )
    x_old_gpu = x_gpu.copy()
    for k in range( int(np.log2(x.size) ) ) : 
        num_threads = int(np.ceil( x.size / 2**(k+1)))
        grid_size = int(np.ceil(num_threads / 32))
        
        if grid_size > 1:
            block_size = 32



        else:
            block_size = num_threads
            
        up_gpu(x_gpu, x_old_gpu, np.int32(k) , block=(block_size,1,1), grid=
(grid_size,1,1))
        x_old_gpu[:] = x_gpu[:]
        
    x_out = x_gpu.get()
    return(x_out)

Now we'll embark on writing the down-sweep. Again, let's start with the
kernel, which will have the functionality of the inner parfor loop of the
pseudocode. It follows similarly as before—again, we'll use two arrays, so
using a temp variable as in the pseudocode is unnecessary here, and again we
use bit-shift operators to obtain the values of 2k and 2k+1. We calculate
j similarly to before:

down_ker = SourceModule("""
__global__ void down_ker(double *y, double *y_old, int k)
{
 int j = blockIdx.x*blockDim.x + threadIdx.x;
 
 int _2k = 1 << k;
 int _2k1 = 1 << (k+1);

 
 int j = tid*_2k1;

 y[j + _2k - 1 ] = y_old[j + _2k1 - 1];
 y[j + _2k1 - 1] = y_old[j + _2k1 - 1] + y_old[j + _2k - 1];
}
""")

down_gpu = down_ker.get_function("down_ker")

We now can write our Python function that will iteratively launch the
kernel, which corresponds to the outer for loop of the down-sweep phase.
This is similar to the Python function for the up-sweep phase. One
important distinction from looking at the pseudocode is that we have to
iterate from the largest value in the outer for loop to the smallest; we can
just use Python's reversed function to do this. Now we can implement the
down-sweep phase:

def down_sweep(y):
    y = np.float64(y)
    y[-1] = 0
    y_gpu = gpuarray.to_gpu(y)
    y_old_gpu = y_gpu.copy()
    for k in reversed(range(int(np.log2(y.size)))):



        num_threads = int(np.ceil( y.size / 2**(k+1)))
        grid_size = int(np.ceil(num_threads / 32))
        
        if grid_size > 1:
            block_size = 32
        else:
            block_size = num_threads
            
        down_gpu(y_gpu, y_old_gpu, np.int32(k), block=(block_size,1,1), grid=
(grid_size,1,1))
        y_old_gpu[:] = y_gpu[:]
    y_out = y_gpu.get()
    return(y_out)

Having implemented both the up-sweep and down-sweep phases, our last
task is trivial to complete:

def efficient_prefix(x):
        return(down_sweep(up_sweep(x)))

We have now fully implemented a host-synchronized version of the work-
efficient parallel prefix algorithm! (This implementation is available in the
work-efficient_prefix.py file in the repository, along with some test code.)



Summary
We started with an implementation of Conway's Game of Life, which gave
us an idea of how the many threads of a CUDA kernel are organized in a
block-grid tensor-type structure. We then delved into block-level
synchronization by way of the CUDA function, __syncthreads(), as well as
block-level thread intercommunication by using shared memory; we also
saw that single blocks have a limited number of threads that we can operate
over, so we'll have to be careful in using these features when we create
kernels that will use more than one block across a larger grid.

We gave an overview of the theory of parallel prefix algorithms, and we
ended by implementing a naive parallel prefix algorithm as a single kernel
that could operate on arrays limited by a size of 1,024 (which was
synchronized with ___syncthreads and performed both the for and parfor loops
internally), and with a work-efficient parallel prefix algorithm that was
implemented across two kernels and three Python functions could operate
on arrays of arbitrary size, with the kernels acting as the inner parfor loops
of the algorithm, and with the Python functions effectively operating as the
outer for loops and synchronizing the kernel launches.



Questions
1. Change the random vector in simple_scalar_multiply_kernel.py so that it is

of a length of 10,000, and modify the i index in the definition of the
kernel so that it can be used over multiple blocks in the form of a grid.
See if you can now launch this kernel over 10,000 threads by setting
block and grid parameters to something like block=(100,1,1) and grid=
(100,1,1).

2. In the previous question, we launched a kernel that makes use of
10,000 threads simultaneously; as of 2018, there is no NVIDIA GPU
with more than 5,000 cores. Why does this still work and give the
expected results?

3. The naive parallel prefix algorithm has time complexity O(log n) given
that we have n or more processors for a dataset of size n. Suppose that
we use a naive parallel prefix algorithm on a GTX 1050 GPU with 640
cores. What does the asymptotic time complexity become in the case
that n >> 640?

4. Modify naive_prefix.py to operate on arrays of arbitrary size (possibly
non-dyadic), only bounded by 1,024.

5. The __syncthreads() CUDA device function only synchronizes threads
across a single block. How can we synchronize across all threads in all
blocks across a grid?

6. You can convince yourself that the second prefix sum algorithm really
is more work-efficient than the naive prefix sum algorithm with this
exercise. Suppose that we have a dataset of size 32. What is the exact
number of "addition" operations required by the first and
second algorithm in this case?

7. In the implementation of the work-efficient parallel prefix we use a
Python function to iterate our kernels and synchronize the results. Why
can't we just put a for loop inside the kernels with careful use of
__syncthreads() instead?

8. Why does it make more sense to implement the naive parallel prefix
within a single kernel that handles its own synchronization within
CUDA C, than it makes more sense to implement the work-efficient



parallel prefix using both kernels and Python functions and have the
host handle the synchronization?



Streams, Events, Contexts, and
Concurrency
In the prior chapters, we saw that there are two primary operations we
perform from the host when interacting with the GPU: 

Copying memory data to and from the GPU
Launching kernel functions

We know that within a single kernel, there is one level of concurrency
among its many threads; however, there is another level of
concurrency over multiple kernels and GPU memory operations that are
also available to us. This means that we can launch multiple memory and
kernel operations at once, without waiting for each operation to finish.
However, on the other hand, we will have to be somewhat organized to
ensure that all inter-dependent operations are synchronized; this means that
we shouldn't launch a particular kernel until its input data is fully copied to
the device memory, or we shouldn't copy the output data of a launched
kernel to the host until the kernel has finished execution. 

To this end, we have what are known as CUDA streams—a stream is a
sequence of operations that are run in order on the GPU. By itself, a single
stream isn't of any use—the point is to gain concurrency over GPU
operations issued by the host by using multiple streams. This means that we
should interleave launches of GPU operations that correspond to different
streams, in order to exploit this notion.

We will be covering this notion of streams extensively in this chapter.
Additionally, we will look at events, which are a feature of streams that are
used to precisely time kernels and indicate to the host as to what operations
have been completed within a given stream.



Finally, we will briefly look at CUDA contexts. A context can be thought
of as analogous to a process in your operating system, in that the GPU
keeps each context's data and kernel code walled off and encapsulated away
from the other contexts currently existing on the GPU. We will see the
basics of this near the end of the chapter.

The following are the learning outcomes for this chapter:

Understanding the concepts of device and stream synchronization
Learning how to effectively use streams to organize concurrent GPU
operations
Learning how to effectively use CUDA events
Understanding CUDA contexts
Learning how to explicitly synchronize within a given context
Learning how to explicitly create and destroy a CUDA context
Learning how to use contexts to allow for GPU usage among multiple
processes and threads on the host



Technical requirements
A Linux or Windows 10 PC with a modern NVIDIA GPU (2016—onward)
is required for this chapter, with all necessary GPU drivers and the CUDA
Toolkit (9.0–onward) installed. A suitable Python 2.7 installation (such as
Anaconda Python 2.7) with the PyCUDA module is also required.

This chapter's code is also available on GitHub:

https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA

For more information about the prerequisites, check the Preface of this book, and for
the software and hardware requirements, check the README in https://github.com/PacktPubli
shing/Hands-On-GPU-Programming-with-Python-and-CUDA.

https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA
https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA


CUDA device synchronization
Before we can use CUDA streams, we need to understand the notion of
device synchronization. This is an operation where the host blocks any
further execution until all operations issued to the GPU (memory transfers
and kernel executions) have completed. This is required to ensure that
operations dependent on prior operations are not executed out-of-order—for
example, to ensure that a CUDA kernel launch is completed before the host
tries to read its output.

In CUDA C, device synchronization is performed with
the cudaDeviceSynchronize function. This function effectively blocks further
execution on the host until all GPU operations have
completed. cudaDeviceSynchronize is so fundamental that it is usually one of the
very first topics covered in most books on CUDA C—we haven't seen this
yet, because PyCUDA has been invisibly calling this for us automatically as
needed. Let's take a look at an example of CUDA C code to see how this is
done manually:

// Copy an array of floats from the host to the device.
cudaMemcpy(device_array, host_array, size_of_array*sizeof(float), 
cudaMemcpyHostToDevice);
// Block execution until memory transfer to device is complete.
cudaDeviceSynchronize();
// Launch CUDA kernel.
Some_CUDA_Kernel <<< block_size, grid_size >>> (device_array, size_of_array);
// Block execution until GPU kernel function returns.
cudaDeviceSynchronize();
// Copy output of kernel to host.
cudaMemcpy(host_array,  device_array, size_of_array*sizeof(float), 
cudaMemcpyDeviceToHost);
// Block execution until memory transfer to host is complete.
cudaDeviceSynchronize();

In this block of code, we see that we have to synchronize with the device
directly after every single GPU operation. If we only have a need to call a
single CUDA kernel at a time, as seen here, this is fine. But if we want to
concurrently launch multiple independent kernels and memory operations
operating on different arrays of data, it would be inefficient to synchronize



across the entire device. In this case, we should synchronize across multiple
streams. We'll see how to do this right now.



Using the PyCUDA stream class
We will start with a simple PyCUDA program; all this will do is generate a
series of random GPU arrays, process each array with a simple kernel, and
copy the arrays back to the host. We will then modify this to use streams.
Keep in mind this program will have no point at all, beyond illustrating how
to use streams and some basic performance gains you can get. (This program
can be seen in the multi-kernel.py file, under the 5 directory in the GitHub
repository.)

Of course, we'll start by importing the appropriate Python modules, as well
as the time function:

import pycuda.autoinit
import pycuda.driver as drv
from pycuda import gpuarray
from pycuda.compiler import SourceModule
import numpy as np
from time import time

We now will specify how many arrays we wish to process—here, each array
will be processed by a different kernel launch. We also specify the length of
the random arrays we will generate, as follows:

num_arrays = 200
array_len = 1024**2

We now have a kernel that operates on each array; all this will do is iterate
over each point in the array, and multiply and divide it by 2 for 50 times,
ultimately leaving the array intact. We want to restrict the number of threads
that each kernel launch will use, which will help us gain concurrency among
many kernel launches on the GPU so that we will have each thread iterate
over different parts of the array with a for loop. (Again, remember that this
kernel function will be completely useless for anything other than for
learning about streams and synchronization!) If each kernel launch uses too
many threads, it will be harder to gain concurrency later:

ker = SourceModule(""" 
__global__ void mult_ker(float * array, int array_len)



{
     int thd = blockIdx.x*blockDim.x + threadIdx.x;
     int num_iters = array_len / blockDim.x;

     for(int j=0; j < num_iters; j++)
     {
         int i = j * blockDim.x + thd;

         for(int k = 0; k < 50; k++)
         {
              array[i] *= 2.0;
              array[i] /= 2.0;
         }
     }
}
""")

mult_ker = ker.get_function('mult_ker')

Now, we will generate some random data array, copy these arrays to the
GPU, iteratively launch our kernel over each array across 64 threads, and
then copy the output data back to the host and assert that the same with
NumPy's allclose function. We will time the duration of all operations
from start to finish by using Python's time function, as follows:

data = []
data_gpu = []
gpu_out = []

# generate random arrays.
for _ in range(num_arrays):
    data.append(np.random.randn(array_len).astype('float32'))

t_start = time()

# copy arrays to GPU.
for k in range(num_arrays):
    data_gpu.append(gpuarray.to_gpu(data[k]))

# process arrays.
for k in range(num_arrays):
    mult_ker(data_gpu[k], np.int32(array_len), block=(64,1,1), grid=(1,1,1))

# copy arrays from GPU.
for k in range(num_arrays):
    gpu_out.append(data_gpu[k].get())

t_end = time()

for k in range(num_arrays):
    assert (np.allclose(gpu_out[k], data[k]))

print 'Total time: %f' % (t_end - t_start)

We are now prepared to run this program. I will run it right now:



So, it took almost three seconds for this program to complete. We will make
a few simple modifications so that our program can use streams, and
then see if we can get any performance gains (this can be seen in the multi-
kernel_streams.py file in the repository).

First, we note that for each kernel launch we have a separate array of data
that it processes, and these are stored in Python lists. We will have to create a
separate stream object for each individual array/kernel launch pair, so let's
first add an empty list, entitled streams, that will hold our stream objects:

data = []
data_gpu = []
gpu_out = []
streams = []

We can now generate a series of streams that we will use to organize the
kernel launches. We can get a stream object from the pycuda.driver submodule
with the Stream class. Since we've imported this submodule and aliased it as
drv, we can fill up our list with new stream objects, as follows:

for _ in range(num_arrays):
    streams.append(drv.Stream())

Now, we will have to first modify our memory operations that transfer data
to the GPU. Consider the following steps for it:

1. Look for the first loop that copies the arrays to the GPU with the
gpuarray.to_gpu function. We will want to switch to the asynchronous and
stream-friendly version of this function, gpu_array.to_gpu_async, instead.
(We must now also specify which stream each memory operation
should use with the stream parameter):

for k in range(num_arrays):
    data_gpu.append(gpuarray.to_gpu_async(data[k], stream=streams[k]))

2. We can now launch our kernels. This is exactly as before, only we must
specify what stream to use by using the stream parameter:



for k in range(num_arrays):
    mult_ker(data_gpu[k], np.int32(array_len), block=(64,1,1), grid=
(1,1,1), stream=streams[k])

3. Finally, we need to pull our data off the GPU. We can do this by
switching the gpuarray get function to get_async, and again using the stream
parameter, as follows:

for k in range(num_arrays):
    gpu_out.append(data_gpu[k].get_async(stream=streams[k]))

We are now ready to run our stream-friendly modified program:

In this case, we have a triple-fold performance gain, which is not too bad
considering the very few numbers of modifications we had to make. But
before we move on, let's try to get a deeper understanding as to why this
works.

Let's consider the case of two CUDA kernel launches. We will also perform
GPU memory operations corresponding to each kernel before and after we
launch our kernels, for a total of six operations. We can visualize the
operations happening on the GPU with respect to time with a graph as such
—moving to the right on the x-axis corresponds to time duration, while the
y-axis corresponds to operations being executed on the GPU at a particular
time. This is depicted with the following diagram:



It's not too hard to visualize why streams work so well in performance
increase—since operations in a single stream are blocked until only all
necessary prior operations are competed, we will gain concurrency among



distinct GPU operations and make full use of our device. This can be seen by
the large overlap of concurrent operations. We can visualize stream-based
concurrency over time as follows:



Concurrent Conway's game of life
using CUDA streams
We will now see a more interesting application—we will modify the LIFE
(Conway's Game of Life) simulation from the last chapter, so that we will
have four independent windows of animation displayed concurrently. (It is
suggested you look at this example from the last chapter, if you haven't yet.)

Let's get a copy of the old LIFE simulation from the last chapter in the
repository, which should be under conway_gpu.py in the 4 directory. We will
now modify this into our new CUDA-stream based concurrent LIFE
simulation. (This new streams-based simulation that we will see in a moment
is also available in the conway_gpu_streams.py file in this chapter's directory, 5.)

Go to the main function at the end of the file. We will set a new variable that
indicates how many concurrent animations we will display at once with
num_concurrent (where N indicates the height/width of the simulation lattice, as
before). We will set it to 4 here, but you can feel free to try other values:

if __name__ == '__main__':

    N = 128
    num_concurrent = 4

We will now need a collection of num_concurrent stream objects, and will also
need to allocate a collection of input and output lattices on the GPU. We'll of
course just store these in lists and initialize the lattices as before. We will set
up some empty lists and fill each with the appropriate objects over a loop, as
such (notice how we set up a new initial state lattice on each iteration, send it
to the GPU, and concatenate it to lattices_gpu):

streams = []
lattices_gpu = []
newLattices_gpu = []

for k in range(num_concurrent):
    streams.append(drv.Stream())
    lattice = np.int32( np.random.choice([1,0], N*N, p=[0.25, 0.75]).reshape(N, N) 



)
    lattices_gpu.append(gpuarray.to_gpu(lattice)) 
    newLattices_gpu.append(gpuarray.empty_like(lattices_gpu[k])) 

Since we're only doing this loop once during the startup of our program and the virtually
all of the computational work will be in the animation loop, we really don't have to
worry about actually using the streams we just immediately generated.

We will now set up the environment with Matplotlib using the subplots
function; notice how we can set up multiple animation plots by setting the
ncols parameter. We will have another list structure that will correspond to
the images that are required for the animation updates in imgs. Notice how we
can now set this up with get_async and the appropriate corresponding stream:

fig, ax = plt.subplots(nrows=1, ncols=num_concurrent)
imgs = []
 
for k in range(num_concurrent):
    imgs.append( ax[k].imshow(lattices_gpu[k].get_async(stream=streams[k]), 
interpolation='nearest') )
 

The last thing to change in the main function is the penultimate line starting
with ani = animation.FuncAnimation. Let's modify the arguments to the update_gpu
function to reflect the new lists we are using and add two more arguments,
one to pass our streams list, plus a parameter to indicate how many concurrent
animations there should be:

ani = animation.FuncAnimation(fig, update_gpu, fargs=(imgs, newLattices_gpu, 
lattices_gpu, N, streams, num_concurrent) , interval=0, frames=1000, 
save_count=1000)    

We now duly make the required modifications to the update_gpu function to
take these extra parameters. Scroll up a bit in the file and modify the
parameters as follows:

def update_gpu(frameNum, imgs, newLattices_gpu, lattices_gpu, N, streams,

num_concurrent):

We now need to modify this function to iterate num_concurrent times and set
each element of imgs as before, before finally returning the whole imgs list:

for k in range(num_concurrent):
    conway_ker( newLattices_gpu[k], lattices_gpu[k], grid=(N/32,N/32,1), block=
(32,32,1), stream=streams[k] )
     imgs[k].set_data(newLattices_gpu[k].get_async(stream=streams[k]) )
     lattices_gpu[k].set_async(newLattices_gpu[k], stream=streams[k])



 
 return imgs

Notice the changes we made—each kernel is launched in the appropriate
stream, while get has been switched to a get_async synchronized with the same
stream.

Finally, the last line in the loop copies GPU data from one device array to
another without any re-allocation. Before, we could use the shorthand slicing
operator [:] to directly copy the elements between the arrays without re-
allocating any memory on the GPU; in this case, the slicing operator
notation acts as an alias for the PyCUDA set function for GPU arrays. (set,
of course, is the function that copies one GPU array to another of the same
size, without any re-allocation.) Luckily, there is indeed a stream-
synchronized also version of this function, set_async, but we need to use this
specifically to call this function, explicitly specifying the array to copy and
the stream to use. 

We're now finished and ready to run this. Go to a Terminal and enter python
conway_gpu_streams.py at the command line to enjoy the show:



Events
Events are objects that exist on the GPU, whose purpose is to act as
milestones or progress markers for a stream of operations. Events are
generally used to provide measure time duration on the device side to
precisely time operations; the measurements we have been doing so far have
been with host-based Python profilers and standard Python library functions
such as time. Additionally, events they can also be used to provide a status
update for the host as to the state of a stream and what operations it has
already completed, as well as for explicit stream-based synchronization.

Let's start with an example that uses no explicit streams and uses events to
measure only one single kernel launch. (If we don't explicitly use streams in
our code, CUDA actually invisibly defines a default stream that all
operations will be placed into).

Here, we will use the same useless multiply/divide loop kernel and header as
we did at the beginning of the chapter, and modify most of the following
contents. We want a single kernel instance to run a long time for this
example, so we will generate a huge array of random numbers for the kernel
to process, as follows:

array_len = 100*1024**2
data = np.random.randn(array_len).astype('float32')
data_gpu = gpuarray.to_gpu(data)

We now construct our events using the pycuda.driver.Event constructor (where,
of course, pycuda.driver has been aliased as drv by our prior import statement).

We will create two event objects here, one for the start of the kernel launch,
and the other for the end of the kernel launch, (We will always
need two event objects to measure any single GPU operation, as we will see
soon):

start_event = drv.Event()
end_event = drv.Event()



Now, we are about ready to launch our kernel, but first, we have to mark
the start_event instance's place in the stream of execution with the event
record function. We launch the kernel and then mark the place of end_event in
the stream of execution, and also with record:

start_event.record()
mult_ker(data_gpu, np.int32(array_len), block=(64,1,1), grid=(1,1,1))
end_event.record()

Events have a binary value that indicates whether they were reached or not
yet, which is given by the function query. Let's print a status update for both
events, immediately after the kernel launch:

print 'Has the kernel started yet? {}'.format(start_event.query())
 print 'Has the kernel ended yet? {}'.format(end_event.query())

Let's run this right now and see what happens:

Our goal here is to ultimately measure the time duration of our kernel
execution, but the kernel hasn't even apparently launched yet. Kernels in
PyCUDA have launched asynchronously (whether they exist in a specific
stream or not), so we have to have to ensure that our host code is properly
synchronized with the GPU.

Since end_event comes last, we can block further host code execution until the
kernel completes by this event object's synchronize function; this will ensure
that the kernel has completed before any further lines of host code are
executed. Let's add a line a line of code to do this in the appropriate place:

end_event.synchronize()
 
print 'Has the kernel started yet?  {}'.format(start_event.query())

print 'Has the kernel ended yet? {}'.format(end_event.query())

Finally, we are ready to measure the execution time of the kernel; we do this
with the event object's time_till or time_since operations to compare to another



event object to get the time between these two events in milliseconds. Let's
use the time_till operation of start_event on end_event:

print 'Kernel execution time in milliseconds: %f ' % 
start_event.time_till(end_event)

Time duration can be measured between two events that have already
occurred on the GPU with the time_till and time_since functions. Note that
these functions always return a value in terms of milliseconds!

Let's try running our program again now:

(This example is also available in the simple_event_example.py file in the
repository.)



Events and streams
We will now see how to use event objects with respect to streams; this will
give us a highly intricate level of control over the flow of our various GPU
operations, allowing us to know exactly how far each individual stream has
progressed via the query function, and even allowing us to synchronize
particular streams with the host while ignoring the other streams. 

First, though, we have to realize this—each stream has to have its own
dedicated collection of event objects; multiple streams cannot share an event
object. Let's see what this means exactly by modifying the prior
example, multi_kernel_streams.py. After the kernel definition, let's add two
additional empty lists—start_events and end_events. We will fill these lists up
with event objects, which will correspond to each stream that we have. This
will allow us to time one GPU operation in each stream, since every GPU
operation requires two events:

data = []
data_gpu = []
gpu_out = []
streams = []
start_events = []
end_events = []

for _ in range(num_arrays):
    streams.append(drv.Stream())
    start_events.append(drv.Event())
    end_events.append(drv.Event())

Now, we can time each kernel launch individually by modifying the second
loop to use the record of the event at the beginning and end of the launch.
Notice that here, since there are multiple streams, we have to input the
appropriate stream as a parameter to each event object's record function.
Also, notice that we can capture the end events in a second loop; this will
still allow us to capture kernel execution duration perfectly, without any
delay in launching the subsequent kernels. Now consider the following code:

for k in range(num_arrays):
    start_events[k].record(streams[k])
    mult_ker(data_gpu[k], np.int32(array_len), block=(64,1,1), grid=(1,1,1), 
stream=streams[k])



for k in range(num_arrays):
    end_events[k].record(streams[k])

Now we're going to extract the duration of each individual kernel launch.
Let's add a new empty list after the iterative assert check, and fill it with the
duration by way of the time_till function:

kernel_times = []
for k in range(num_arrays):
   kernel_times.append(start_events[k].time_till(end_events[k]))

Let's now add two print statements at the very end, to tell us the mean and
standard deviation of the kernel execution times:

print 'Mean kernel duration (milliseconds): %f' % np.mean(kernel_times)
print 'Mean kernel standard deviation (milliseconds): %f' % np.std(kernel_times)

We can now run this:

(This example is also available as multi-kernel_events.py in the repository.)

We see that there is a relatively low degree of standard deviation in kernel
duration, which is good, considering each kernel processes the same amount
of data over the same block and grid size—if there were a high degree of
deviation, then that would mean that we were making highly uneven usage
of the GPU in our kernel executions, and we would have to re-tune
parameters to gain a greater level of concurrency.



Contexts
A CUDA context is usually described as being analogous to a process in an
operating system. Let's review what this means—a process is an instance of
a single program running on a computer; all programs outside of the
operating system kernel run in a process. Each process has its own set of
instructions, variables, and allocated memory, and is, generally speaking,
blind to the actions and memory of other processes. When a process ends,
the operating system kernel performs a cleanup, ensuring that all memory
that the process allocated has been de-allocated, and closing any files,
network connections, or other resources the process has made use of.
(Curious Linux users can view the processes running on their computer
with the command-line top command, while Windows users can view them
with the Windows Task Manager).

Similar to a process, a context is associated with a single host program that
is using the GPU. A context holds in memory all CUDA kernels and
allocated memory that is making use of and is blind to the kernels and
memory of other currently existing contexts. When a context is destroyed
(at the end of a GPU based program, for example), the GPU performs a
cleanup of all code and allocated memory within the context, freeing
resources up for other current and future contexts. The programs that we
have been writing so far have all existed within a single context, so these
operations and concepts have been invisible to us. 

Let's also remember that a single program starts as a single process, but it
can fork itself to run across multiple processes or threads. Analogously, a
single CUDA host program can generate and use multiple CUDA contexts
on the GPU. Usually, we will create a new context when we want to gain
host-side concurrency when we fork new processes or threads of a host
process. (It should be emphasized, however, that there is no exact one-to-
one relation between host processes and CUDA contexts).



As in many other areas of life, we will start with a simple example. We will
first see how to access a program's default context and synchronize across
it.



Synchronizing the current context
We're going to see how to explicitly synchronize our device within a
context from within Python as in CUDA C; this is actually one of the most
fundamental skills to know in CUDA C, and is covered in the first or
second chapters in most other books on the topic. So far, we have been able
to avoid this topic, since PyCUDA has performed most synchronizations for
us automatically with pycuda.gpuarray functions such as to_gpu or
get; otherwise, synchronization was handled by streams in the case of
the to_gpu_async or get_async functions, as we saw at the beginning of this
chapter.

We will be humble and start by modifying the program we wrote in Chapter
3, Getting Started with PyCUDA, which generates an image of the
Mandelbrot set using explicit context synchronization. (This is available
here as the file gpu_mandelbrot0.py under the 3 directory in the repository.)

We won't get any performance gains over our original Mandelbrot program here; the
only point of this exercise is just to help us understand CUDA contexts and GPU
synchronization.

Looking at the header, we, of course, see the import pycuda.autoinit line. We
can access the current context object with pycuda.autoinit.context, and we can
synchronize in our current context by calling
the pycuda.autoinit.context.synchronize() function.

Now let's modify the gpu_mandelbrot function to handle explicit
synchronization. The first GPU-related line we see is this:

mandelbrot_lattice_gpu = gpuarray.to_gpu(mandelbrot_lattice)

We can now change this to be explicitly synchronized. We can copy to the
GPU asynchronously with to_gpu_async, and then synchronize as follows:

mandelbrot_lattice_gpu = gpuarray.to_gpu_async(mandelbrot_lattice)
pycuda.autoinit.context.synchronize()



We then see the next line allocates memory on the GPU with the
gpuarray.empty function. Memory allocation in CUDA is, by the nature of the
GPU architecture, automatically synchronized; there is no
asynchronous memory allocation equivalent here. Hence, we keep this line
as it was before.

Memory allocation in CUDA is always synchronized!

We now see the next two lines—our Mandelbrot kernel is launched with an
invocation to mandel_ker, and we copy the contents of our Mandelbrot gpuarray
object with an invocation to get. We synchronize after the kernel launch,
switch get to get_async, and finally synchronize one last line:

mandel_ker( mandelbrot_lattice_gpu, mandelbrot_graph_gpu, np.int32(max_iters), 
np.float32(upper_bound))
pycuda.autoinit.context.synchronize()
mandelbrot_graph = mandelbrot_graph_gpu.get_async()
pycuda.autoinit.context.synchronize()

We can now run this, and it will produce a Mandelbrot image to disk,
exactly as in Chapter 3, Getting Started with PyCUDA.

(This example is also available as gpu_mandelbrot_context_sync.py in the
repository.)



Manual context creation
So far, we have been importing pycuda.autoinit at the beginning of all of our
PyCUDA programs; this effectively creates a context at the beginning of
our program and has it destroyed at the end. 

Let's try doing this manually. We will make a small program that just copies
a small array to the GPU, copies it back to the host, prints the array, and
exits.

We start with the imports:

import numpy as np
from pycuda import gpuarray
import pycuda.driver as drv

First, we initialize CUDA with the pycuda.driver.init function, which is here
aliased as drv:

drv.init()

Now we choose which GPU we wish to work with; this is necessary for the
cases where one has more than one GPU. We can select a specific GPU
with  pycuda.driver.Device; if you only have one GPU, as I do, you can access
it with pycuda.driver.Device(0), as follows:

dev = drv.Device(0)

We can now create a new context on this device with make_context, as
follows:

ctx = dev.make_context()

Now that we have a new context, this will automatically become the default
context. Let's copy an array into the GPU, copy it back to the host, and print
it:



x = gpuarray.to_gpu(np.float32([1,2,3]))
print x.get()

Now we are done. We can destroy the context by calling the pop function:

ctx.pop()

That's it! We should always remember to destroy contexts that we explicitly
created with pop before our program exists.

(This example can be seen in the simple_context_create.py file under this
chapter's directory in the repository.)



Host-side multiprocessing and
multithreading
Of course, we may seek to gain concurrency on the host side by using
multiple processes or threads on the host's CPU. Let's make the distinction
right now between a host-side operating system process and thread with a
quick overview.

Every host-side program that exists outside the operating system kernel is
executed as a process, and can also exist in multiple processes. A process
has its own address space, as it runs concurrently with, and independently
of, all other processes. A process is, generally speaking, blind to the actions
of other processes, although multiple processes can communicate through
sockets or pipes. In Linux and Unix, new processes are spawned with the
fork system call.

In contrast, a host-side thread exists within a single process, and multiple
threads can also exist within a single process. Multiple threads in a single
process run concurrently. All threads in the same process share the same
address space within the process and have access to the same shared
variables and data. Generally, resource locks are used for accessing data
among multiple threads, so as to avoid race conditions. In compiled
languages such as C, C++, or Fortran, multiple process threads are usually
managed with the Pthreads or OpenMP APIs.

Threads are much more lightweight than processes, and it is far faster for an
operating system kernel to switch tasks between multiple threads in a single
process, than to switch tasks between multiple processes. Normally, an
operating system kernel will automatically execute different threads and
processes on different CPU cores to establish true concurrency.

A peculiarity of Python is that while it supports multi-threading through the
threading module, all threads will execute on the same CPU core. This is due



to technicalities of Python being an interpreted scripting language, and is
related to Python's Global Identifier Lock (GIL). To achieve true multi-core
concurrency on the host through Python, we, unfortunately, must spawn
multiple processes with the multiprocessing module. (Unfortunately, the
multiprocessing module is currently not fully functional under Windows,
due to how Windows handles processes. Windows users will sadly have to
stick to single-core multithreading here if they want to have any form of
host-side concurrency.)

We will now see how to use both threads in Python to use GPU based
operations; Linux users should note that this can be easily extended to
processes by switching references of threading to multiprocessing, and
references to Thread to Process, as both modules look and act similarly. By the
nature of PyCUDA, however, we will have to create a new CUDA context
for every thread or process that we will use that will make use of the GPU.
Let's see how to do this right now.



Multiple contexts for host-side
concurrency
Let's first briefly review how to create a single host thread in Python that can
return a value to the host with a simple example. (This example can also be
seen in the single_thread_example.py file under 5 in the repository.) We will do
this by using the Thread class in the threading module to create a subclass of
Thread, as follows:

import threading
class PointlessExampleThread(threading.Thread):

We now set up our constructor. We call the parent class's constructor and set
up an empty variable within the object that will be the return value from the
thread:

def __init__(self):
    threading.Thread.__init__(self)
    self.return_value = None

We now set up the run function within our thread class, which is what will
be executed when the thread is launched. We'll just have it print a line and
set the return value:

def run(self):
    print 'Hello from the thread you just spawned!'
    self.return_value = 123

We finally have to set up the join function. This will allow us to receive a
return value from the thread:

def join(self):
    threading.Thread.join(self)
    return self.return_value

Now we are done setting up our thread class. Let's start an instance of this
class as the NewThread object, spawn the new thread by calling the start
method, and then block execution and get the output from the host thread by
calling join:



NewThread = PointlessExampleThread()
NewThread.start()
thread_output = NewThread.join()
print 'The thread completed and returned this value: %s' % thread_output

Now let's run this:

Now, we can expand this idea among multiple concurrent threads on the host
to launch concurrent CUDA operations by way of multiple contexts and
threading. We will now look at one last example. Let's re-use the pointless
multiply/divide kernel from the beginning of this chapter and launch it
within each thread that we spawn.

First, let's look at the imports. Since we are making explicit contexts,
remember to remove pycuda.autoinit and add an import threading at the end:

import pycuda
import pycuda.driver as drv
from pycuda import gpuarray
from pycuda.compiler import SourceModule
import numpy as np
from time import time
import threading 

We will use the same array size as before, but this time we will have a direct
correspondence between the number of the threads and the number of the
arrays. Generally, we don't want to spawn more than 20 or so threads on the
host, so we will only go for 10 arrays. So, consider now the following code:

num_arrays = 10
array_len = 1024**2

Now, we will store our old kernel as a string object; since this can only be
compiled within a context, we will have to compile this in each thread
individually:

kernel_code = """ 
__global__ void mult_ker(float * array, int array_len)
{
     int thd = blockIdx.x*blockDim.x + threadIdx.x;
     int num_iters = array_len / blockDim.x;



    for(int j=0; j < num_iters; j++)
     {
     int i = j * blockDim.x + thd;
     for(int k = 0; k < 50; k++)
     {
         array[i] *= 2.0;
         array[i] /= 2.0;
     }
 }
}
"""

Now we can begin setting up our class. We will make another subclass of
threading.Thread as before, and set up the constructor to take one parameter as
the input array. We will initialize an output variable with None, as we did
before:

class KernelLauncherThread(threading.Thread):
    def __init__(self, input_array):
        threading.Thread.__init__(self)
        self.input_array = input_array
        self.output_array = None

We can now write the run function. We choose our device, create a context
on that device, compile our kernel, and extract the kernel function reference.
Notice the use of the self object:

def run(self):
    self.dev = drv.Device(0)
    self.context = self.dev.make_context()
    self.ker = SourceModule(kernel_code)
    self.mult_ker = self.ker.get_function('mult_ker')

We now copy the array to the GPU, launch the kernel, and copy the output
back to the host. We then destroy the context:

self.array_gpu = gpuarray.to_gpu(self.input_array)
self.mult_ker(self.array_gpu, np.int32(array_len), block=(64,1,1), grid=(1,1,1))
self.output_array = self.array_gpu.get()
self.context.pop()

Finally, we set up the join function. This will return output_array to the host:

 def join(self):
     threading.Thread.join(self)
     return self.output_array

We are now done with our subclass. We will set up some empty lists to hold
our random test data, thread objects, and thread output values, similar to



before. We will then generate some random arrays to process and set up a list
of kernel launcher threads that will operate on each corresponding array:

data = []
gpu_out = []
threads = []
for _ in range(num_arrays):
    data.append(np.random.randn(array_len).astype('float32'))
for k in range(num_arrays):
 threads.append(KernelLauncherThread(data[k]))

We will now launch each thread object, and extract its output into the gpu_out
list by using join:

for k in range(num_arrays):
    threads[k].start()
 
for k in range(num_arrays):
    gpu_out.append(threads[k].join())

Finally, we just do a simple assert on the output arrays to ensure they are the
same as the input:

for k in range(num_arrays):
    assert (np.allclose(gpu_out[k], data[k]))

This example can be seen in the multi-kernel_multi-thread.py file in the
repository.



Summary
We started this chapter by learning about device synchronization and the
importance of synchronization of operations on the GPU from the host; this
allows dependent operations to allow antecedent operations to finish before
proceeding. This concept has been hidden from us, as PyCUDA has been
handling synchronization for us automatically up to this point. We then
learned about CUDA streams, which allow for independent sequences of
operations to execute on the GPU simultaneously without synchronizing
across the entire GPU, which can give us a big performance boost; we then
learned about CUDA events, which allow us to time individual CUDA
kernels within a given stream, and to determine if a particular operation in a
stream has occurred. Next, we learned about contexts, which are analogous
to processes in a host operating system. We learned how to synchronize
across an entire CUDA context explicitly and then saw how to create and
destroy contexts. Finally, we saw how we can generate multiple contexts on
the GPU, to allow for GPU usage among multiple threads or processes on
the host.



Questions
1. In the launch parameters for the kernel in the first example, our kernels

were each launched over 64 threads. If we increase the number of
threads to and beyond the number of cores in our GPU, how does this
affect the performance of both the original to the stream version?

2. Consider the CUDA C example that was given at the very beginning
of this chapter, which illustrated the use of cudaDeviceSynchronize. Do you
think it is possible to get some level of concurrency among multiple
kernels without using streams and only using cudaDeviceSynchronize?

3. If you are a Linux user, modify the last example that was given to
operate over processes rather than threads.

4. Consider the multi-kernel_events.py program; we said it is good that there
was a low standard deviation of kernel execution durations. Why
would it be bad if there were a high standard deviation?

5. We only used 10 host-side threads in the last example. Name two
reasons why we have to use a relatively small number of threads or
processes for launching concurrent GPU operations on the host.



Debugging and Profiling Your
CUDA Code
In this chapter, we will finally learn how to debug and profile our GPU code
using several different methods and tools. While we can easily debug pure
Python code using IDEs such as Spyder and PyCharm, we can't use these
tools to debug the actual GPU code, remembering that the GPU code itself
is written in CUDA-C with PyCUDA providing an interface. The first and
easiest method for debugging a CUDA kernel is the usage of
printf statements, which we can actually call directly in the middle of a
CUDA kernel to print to the standard output. We will see how to use printf
in the context of CUDA and how to apply it effectively for debugging. 

Next, we will fill in some of the gaps in our CUDA-C programming so that
we can directly write CUDA programs within the NVIDIA Nsight IDE,
which will allow us to make test cases in CUDA-C for some of the code we
have been writing. We will take a look at how to compile CUDA-C
programs, both from the command line with nvcc and also with the Nsight
IDE. We will then see how to debug within Nsight and use Nsight to
understand the CUDA lockstep property. Finally, we will have an overview
of the NVIDIA command line and Visual Profilers for profiling our code.

The learning outcomes for this chapter include the following:

Using printf effectively as a debugging tool for CUDA kernels
Writing complete CUDA-C programs outside of Python, especially for
creating test cases for debugging
Compiling CUDA-C programs on the command line with the nvcc
compiler
Developing and debugging CUDA programs with the NVIDIA Nsight
IDE
Understanding the CUDA warp lockstep property and why we should
avoid branch divergence within a single CUDA warp



Learn to effectively use the NVIDIA command line and Visual
Profilers for GPU code



Technical requirements
A Linux or Windows 10 PC with a modern NVIDIA GPU (2016—onward)
is required for this chapter, with all necessary GPU drivers and the CUDA
Toolkit (9.0–onward) installed. A suitable Python 2.7 installation (such as
Anaconda Python 2.7) with the PyCUDA module is also required.

This chapter's code is also available on GitHub at https://github.com/PacktPubli
shing/Hands-On-GPU-Programming-with-Python-and-CUDA.

For more information about the prerequisites, check the Preface of this book, and for
the software and hardware requirements, check the README in https://github.com/PacktPubli
shing/Hands-On-GPU-Programming-with-Python-and-CUDA.

https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA
https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA


Using printf from within CUDA
kernels
It may come as a surprise, but we can actually print text to the standard
output from directly within a CUDA kernel; not only that, each individual
thread can print its own output. This will come in particularly handy when
we are debugging our kernels, as we may need to monitor the values of
particular variables or computations at particular points in our code and it
will also free us from the shackles of using a debugger to go through step by
step. Printing output from a CUDA kernel is done with none other than the
most fundamental function in all of C/C++ programming, the function that
most people will learn when they write their first Hello world program in
C: printf. Of course, printf is the standard function that prints a string to the
standard output, and is really the equivalent in the C programming language
of Python's print function. 

Let's now briefly review how to use printf before we see how to use it in
CUDA. The first thing to remember is that printf always takes a string as its
first parameter; so printing "Hello world!" in C is done with printf("Hello
world!\n");. (Of course, \n indicates "new line" or "return", which moves the
output in the Terminal to the next line.) printf can also take a variable
number of parameters in the case that we want to print any constants or
variables from directly within C: if we want to print the 123 integers to the
output, we do this with printf("%d", 123); (where %d indicates that an integer
follows the string.)

Similarly, we use %f, %e, or %g to print floating-point values (where %f is the
decimal notation, %e is the scientific notation, and %g is the shortest
representation whether decimal or scientific). We can even print several
values in a row, remembering to place these specifiers in the correct
order: printf("%d is a prime number, %f is close to pi, and %d is even.\n", 17, 3.14,
4); will print "17 is a prime number, 3.14 is close to pi, and 4 is even." on the
Terminal.



Now, nearly halfway through this book, we will finally embark on creating
our first parallel Hello world program in CUDA! We start by importing the
appropriate modules into Python and then write our kernel. We will start out
by printing the thread and grid identification of each individual thread (we
will only launch this in one-dimensional blocks and grids, so we only need
the x values):

ker = SourceModule('''
__global__ void hello_world_ker()
{
    printf("Hello world from thread %d, in block %d!\\n", threadIdx.x, blockIdx.x);

Let's stop for a second and note that we wrote \\n rather than \n. This is due
to the fact that the triple quote in Python itself will interpret \n as a "new
line", so we have to indicate that we mean this literally by using a double
backslash so as to pass the \n directly into the CUDA compiler.

We will now print some information about the block and grid dimensions,
but we want to ensure that it is printed after every thread has already finished
its initial printf command. We can do this by putting in __syncthreads(); to
ensure each individual thread will be synchronized after the first printf
function is executed.

Now, we only want to print the block and grid dimensions to the terminal
only once; if we just place printf statements here, every single thread will
print out the same information. We can do this by having only one specified
thread print to the output; let's go with the 0th thread of the 0th block, which
is the only thread that is guaranteed to exist no matter the block and grid
dimensionality we choose. We can do this with a C if statement:

 if(threadIdx.x == 0 && blockIdx.x == 0)
 {

We will now print the dimensionality of our block and grid and close up the
if statement, and that will be the end of our CUDA kernel:

 printf("-------------------------------------\\n");
 printf("This kernel was launched over a grid consisting of %d blocks,\\n", 
gridDim.x);
 printf("where each block has %d threads.\\n", blockDim.x);
 }



}
''')

We will now extract the kernel and then launch it over a grid consisting of
two blocks, where each block has five threads:

hello_ker = ker.get_function("hello_world_ker")
hello_ker( block=(5,1,1), grid=(2,1,1) )

Let's run this right now (this program is also available in hello-world_gpu.py
under 6 in the repository):



Using printf for debugging
Let's go over an example to see how we can approach debugging a CUDA
kernel with printf with an example before we move on. There is no exact
science to this method, but it is a skill that can be learned through
experience. We will start with a CUDA kernel that is for matrix-matrix
multiplication, but that has several bugs in it. (The reader is encouraged to
go through the code as we go along, which is available as the
broken_matrix_ker.py file in the 6 directories within the repository.)

Let's briefly review matrix-matrix multiplication before we continue.
Suppose we have two matrices , A and B, and we multiply these
together to get another matrix, C, of the same size as follows: . We
do this by iterating over all tuples  and setting the
value of  to the dot product of the ith row of A and the jth column of

B: .

In other words, we set each i, j element in the output matrix C as follows:   

Suppose we already wrote a kernel that is to perform matrix-matrix
multiplication, which takes in two arrays representing the input matrices, an
additional pre allocated float array that the output will be written to, and an
integer that indicates the height and width of each matrix (we will assume
that all matrices are the same size and square-shaped). These matrices are all
to be represented as one-dimensional float * arrays in a row-wise one-
dimensional layout. Furthermore, this will be implemented so that each
CUDA thread will handle a single row/column tuple in the output matrix.

We make a small test case and check it against the output of the matrix
multiplication in CUDA, and it fails as an assertion check on two 4 x 4



matrices, as follows:

test_a = np.float32( [xrange(1,5)] * 4 )
test_b = np.float32([xrange(14,10, -1)]*4 )
output_mat = np.matmul(test_a, test_b)

test_a_gpu = gpuarray.to_gpu(test_a)
test_b_gpu = gpuarray.to_gpu(test_b)
output_mat_gpu = gpuarray.empty_like(test_a_gpu)

matrix_ker(test_a_gpu, test_b_gpu, output_mat_gpu, np.int32(4), block=(2,2,1), 
grid=(2,2,1))

assert( np.allclose(output_mat_gpu.get(), output_mat) )

We will run this program right now, and unsurprisingly get the following
output:

Let's now look at the CUDA C code, which consists of a kernel and a device
function:

ker = SourceModule('''
// row-column dot-product for matrix multiplication
__device__ float rowcol_dot(float *matrix_a, float *matrix_b, int row, int col, int 
N)
{
 float val = 0;

 for (int k=0; k < N; k++)
 {
     val += matrix_a[ row + k*N ] * matrix_b[ col*N + k];
 }
 return(val);
}

// matrix multiplication kernel that is parallelized over row/column tuples.

__global__ void matrix_mult_ker(float * matrix_a, float * matrix_b, float * 
output_matrix, int N)
{
 int row = blockIdx.x + threadIdx.x;
 int col = blockIdx.y + threadIdx.y;
 
 output_matrix[col + row*N] = rowcol_dot(matrix_a, matrix_b, col, row, N);



}
''')

Our goal is to place printf invocations intelligently throughout our CUDA
code so that we can monitor a number of appropriate values and variables in
the kernel and device function; we should also be sure to print out the thread
and block numbers alongside these values at every printf invocation.

Let's start at the entry point of our kernel. We see two variables, row and col,
so we should check these right away. Let's put the following line right after
we set them (since this is parallelized over two dimensions, we should print
the x and y values of threadIdx and blockIdx):

printf("threadIdx.x,y: %d,%d blockIdx.x,y: %d,%d -- row is %d, col is %d.\\n", 
threadIdx.x, threadIdx.y, blockIdx.x, blockIdx.y, row, col);

Running the code again, we get this output:



There are two things that are immediately salient: that there are repeated
values for row and column tuples (every individual tuple should be
represented only once), and that the row and column values never exceed
two, when they both should reach three (since this unit test is using 4 x 4
matrices). This should indicate to us that we are calculating the row and
column values wrongly; indeed, we are forgetting to multiply the blockIdx
values by the blockDim values to find the objective row/column values. We fix
this as follows:

int row = blockIdx.x*blockDim.x + threadIdx.x;
int col = blockIdx.y*blockDim.y + threadIdx.y;



If we run the program again, though, we still get an assertion error. Let's
keep our original printf invocation in place, so we can monitor the values as
we continue. We see that there is an invocation to a device function in the
kernel, rowcol_dot, so we decide to look into there. Let's first ensure that the
variables are being passed into the device function correctly by putting this
printf invocation at the beginning:

printf("threadIdx.x,y: %d,%d blockIdx.x,y: %d,%d -- row is %d, col is %d, N is 
%d.\\n", threadIdx.x, threadIdx.y, blockIdx.x, blockIdx.y, row, col, N);

When we run our program, even more lines will come out, however, we will
see one that says—threadIdx.x,y: 0,0 blockIdx.x,y: 1,0 -- row is 2, col is 0. and
yet another that says—threadIdx.x,y: 0,0 blockIdx.x,y: 1,0 -- row is 0, col is 2,

N is 4. By the threadIdx and blockIdx values, we see that this is the same thread
in the same block, but with the row and col values reversed. Indeed, when we
look at the invocation of the rowcol_dot device function, we see that row and
col are indeed reversed from that in the declaration of the device function.
We fix this, but when we run the program again, we get yet another assertion
error.

Let's place another printf invocation in the device function, within the for
loop; this, of course, is the dot product that is to perform a dot product
between rows of matrix A with columns of matrix B. We will check the values
of the matrices we are multiplying, as well as k; we will also only look at the
values of the very first thread, or else we will get an incoherent mess of an
output:

if(threadIdx.x == 0 && threadIdx.y == 0 && blockIdx.x == 0 && blockIdx.y == 0)
            printf("Dot-product loop: k value is %d, matrix_a value is %f, matrix_b 
is %f.\\n", k, matrix_a[ row + k*N ], matrix_b[ col*N + k]);
 

Let's look at the values of the A and B matrices that are set up for our unit
tests before we continue:



We see that both matrices vary when we switch between columns but are
constant when we change between rows. Therefore, by the nature of matrix
multiplication, the values of matrix A should vary across k in our for loop,
while the values of B should remain constant. Let's run the program again
and check the pertinent output:

So, it appears that we are not accessing the elements of the matrices in a
correct way; remembering that these matrices are stored in a row-wise
format, we modify the indices so that their values are accessed in the proper
manner:

val += matrix_a[ row*N + k ] * matrix_b[ col + k*N];

Running the program again will yield no assertion errors. Congratulations,
you just debugged a CUDA kernel using the only printf!



Filling in the gaps with CUDA-C
We will now go through the very basics of how to write a full-on CUDA-C
program. We'll start small and just translate the fixed version of the little
matrix multiplication test program we just debugged in the last section to a
pure CUDA-C program, which we will then compile from the command line
with NVIDIA's nvcc compiler into a native Windows or Linux executable file
(we will see how to use the Nsight IDE in the next section, so we will just be
doing this with only a text editor and the command line for now). Again, the
reader is encouraged to look at the code we are translating from Python as
we go along, which is available as the matrix_ker.py file in the repository.

Now, let's open our favorite text editor and create a new file entitled
matrix_ker.cu. The extension will indicate that this is a CUDA-C program,
which can be compiled with the nvcc compiler.

CUDA-C program and library source code filenames always use the .cu file extension. 

Let's start at the beginning—as Python uses the import keyword at the
beginning of a program for libraries, we recall the C language uses #include.
We will need to include a few import libraries before we continue.

Let's start with these:

#include <cuda_runtime.h>
#include <stdio.h>
#include <stdlib.h>

Let's briefly think about what we need these for: cuda_runtime.h is the header
file that has the declarations of all of the particular CUDA datatypes,
functions, and structures that we will need for our program. We will need to
include this for any pure CUDA-C program that we write. stdio.h, of course,
gives us all of the standard I/O functions for the host such as printf, and we
need stdlib.h for using the malloc and free dynamic memory allocation
functions on the host.



Remember to always put #include <cuda_runtime.h> at the beginning of every pure CUDA-C
program!

Now, before we continue, we remember that we will ultimately have to
check the output of our kernel with a correct known output, as we did with
NumPy's allclose function. Unfortunately, we don't have a standard or easy-
to-use numerical math library in C as Python has with NumPy. More often
than not, it's just easier to write your own equivalent function if it's
something simple, as in this case. This means that we will now explicitly
have to make our own equivalent to NumPy's allclose. We will do so as such:
we will use the #define macro in C to set up a value called _EPSILON, which will
act as a constant to indicate the minimum value between the output and
expected output to be considered the same, and we will also set up a macro
called _ABS, which will tell us the absolute difference between two numbers.
We do so as follows:

#define _EPSILON 0.001
#define _ABS(x) ( x > 0.0f ? x : -x )

We can now create our own version of allclose. This will take in two float
pointers and an integer value, len. We loop through both arrays and check
them: if any points differ by more than _EPSILON, we return -1, otherwise we
return 0 to indicate that the two arrays do indeed match.

We note one thing: since we are using CUDA-C, we precede the definition
of the function with __host__, to indicate that this function is intended to be
run on the CPU rather than on the GPU:

__host__ int allclose(float *A, float *B, int len)
{

  int returnval = 0;
  
  for (int i = 0; i < len; i++)
  {
    if ( _ABS(A[i] - B[i]) > _EPSILON )
    {
      returnval = -1;
      break;
    }
  }
  
  return(returnval);
}



We now can cut and paste the device and kernel functions exactly as they
appear in our Python version here:

__device__ float rowcol_dot(float *matrix_a, float *matrix_b, int row, int col, int 
N)
{
  float val = 0;
  
  for (int k=0; k < N; k++)
  {
        val += matrix_a[ row*N + k ] * matrix_b[ col + k*N];
  }
  
  return(val);
}

__global__ void matrix_mult_ker(float * matrix_a, float * matrix_b, float * 
output_matrix, int N)
{

    int row = blockIdx.x*blockDim.x + threadIdx.x;
    int col = blockIdx.y*blockDim.y + threadIdx.y;

  output_matrix[col + row*N] = rowcol_dot(matrix_a, matrix_b, row, col, N);
}

Again, in contrast with __host__, notice that the CUDA device function is
preceded by __device__, while the CUDA kernel is preceded by __global__.  

Now, as in any C program, we will need to write the main function, which
will run on the host, where we will set up our test case and from which we
explicitly launch our CUDA kernel onto GPU. Again, in contrast to vanilla
C, we will have explicitly to specify that this is also to be run on the CPU
with __host__:

__host__ int main()
{

The first thing we will have to do is select and initialize our GPU. We do so
with cudaSetDevice as follows:

cudaSetDevice(0);

cudaSetDevice(0) will select the default GPU. If you have multiple GPUs installed in your
system, you can select and use them instead with cudaSetDevice(1), cudaSetDevice(2), and so
on.

We will now set up N as in Python to indicate the height/width of our matrix.
Since our test case will consist only of 4 x 4 matrices, we set it to 4. Since we



will be working with dynamically allocated arrays and pointers, we will also
have to set up a value that will indicate the number of bytes our test matrices
will require. The matrices will consist of N x N floats, and we can determine
the number of bytes required by a float with the sizeof keyword in C:

int N = 4;
int num_bytes = sizeof(float)*N*N;

We now set up our test matrices as such; these will correspond exactly to the
test_a and test_b matrices that we saw in our Python test program (notice how
we use the h_ prefix to indicate that these arrays are stored on the host, rather
than on the device):

 float h_A[] = { 1.0, 2.0, 3.0, 4.0, \
                 1.0, 2.0, 3.0, 4.0, \
                 1.0, 2.0, 3.0, 4.0, \
                 1.0, 2.0, 3.0, 4.0 };
 
 float h_B[] = { 14.0, 13.0, 12.0, 11.0, \
                 14.0, 13.0, 12.0, 11.0, \
                 14.0, 13.0, 12.0, 11.0, \
                 14.0, 13.0, 12.0, 11.0 };

We now set up another array, which will indicate the expected output of the
matrix multiplication of the prior test matrices. We will have to calculate this
explicitly and put these values into our C code. Ultimately, we will compare
this to the GPU output at the end of the program, but let's just set it up and
get it out of the way:

float h_AxB[] = { 140.0, 130.0, 120.0, 110.0, \
                 140.0, 130.0, 120.0, 110.0, \
                 140.0, 130.0, 120.0, 110.0, \
                 140.0, 130.0, 120.0, 110.0 };

We now declare some pointers for arrays that will live on the GPU, and for
that we will copy the values of h_A and h_B and pointer to the GPU's output.
Notice how we just use standard float pointers for this. Also, notice the
prefix d_— this is another standard CUDA-C convention that indicates that
these will exist on the device:

float * d_A;
float * d_B;
float * d_output;



Now, we will allocate some memory on the device for d_A and d_B with
cudaMalloc, which is almost the same as malloc in C; this is what PyCUDA
gpuarray functions such as empty or to_gpu have been calling us invisibly to
allocate memory arrays on the GPU throughout this book:

cudaMalloc((float **) &d_A, num_bytes);
cudaMalloc((float **) &d_B, num_bytes);

Let's think a bit about how this works: in C functions, we can get the address
of a variable by preceding it with an ampersand (&); if you have an integer, x,
we can get its address with &x. &x will be a pointer to an integer, so its type
will be int *. We can use this to set values of parameters into a C function,
rather than use only pure return values.

Since cudaMalloc sets the pointer through a parameter rather than with the
return value (in contrast to the regular malloc), we have to use the ampersand
operator, which will be a pointer to a pointer, as it is a pointer to a float
pointer as here (float **). We have to typecast this value explicitly with the
parenthesis since cudaMalloc can allocate arrays of any type. Finally, in the
second parameter, we have to indicate how many bytes to allocate on the
GPU; we already set up num_bytes previously to be the number of bytes we
will need to hold a 4 x 4 matrix consisting of floats, so we plug this in and
continue.

We can now copy the values from h_A and h_B to d_A and d_B respectively with
two invocations of the function cudaMemcpy, as follows:

cudaMemcpy(d_A, h_A, num_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, num_bytes, cudaMemcpyHostToDevice);

cudaMemcpy always takes a destination pointer as the first argument, a source pointer as
the second, the number of bytes to copy as the third argument, and a final parameter.
The last parameter will indicate if we are copying from the host to the GPU
with cudaMemcpyHostToDevice , from the GPU to the host with cudaMemcpyDeviceToHost, or
between two arrays on the GPU with cudaMemcpyDeviceToDevice.  

We will now allocate an array to hold the output of our matrix multiplication
on the GPU with another invocation of cudaMalloc:

cudaMalloc((float **) &d_output, num_bytes);



Finally, we will have to have some memory set up on the host that will store
the output of the GPU when we want to check the output of our kernel. Let's
set up a regular C float pointer and allocate memory with malloc as we would
normally:

float * h_output;
h_output = (float *) malloc(num_bytes);

Now, we are almost ready to launch our kernel. CUDA uses a data structure
called dim3 to indicate block and grid sizes for kernel launches; we will set
these up as such, since we want a grid with a dimension of 2 x 2 and blocks
that are also of a dimension of 2 x 2:

dim3 block(2,2,1);
dim3 grid(2,2,1);

We are now ready to launch our kernel; we use the triple-triangle brackets to
indicate to the CUDA-C compiler the block and grid sizes that the kernel
should be launched over:

matrix_mult_ker <<< grid, block >>> (d_A, d_B, d_output, N);

Now, of course, before we can copy the output of the kernel back to the host,
we have to ensure that the kernel has finished executing. We do this by
calling cudaDeviceSynchronize, which will block the host from issuing any more
commands to the GPU until the kernel has finished execution:

cudaDeviceSynchronize();

We now can copy the output of our kernel to the array we've allocated on the
host:

cudaMemcpy(h_output, d_output, num_bytes, cudaMemcpyDeviceToHost);

Again, we synchronize:

cudaDeviceSynchronize();

Before we check the output, we realize that we no longer need any of the
arrays we allocated on the GPU. We free this memory by calling cudaFree on
each array:



cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_output);

We're done with the GPU, so we call cudaDeviceReset:

cudaDeviceReset();

Now, we finally check the output we copied onto the host with the allclose
function we wrote at the beginning of this chapter. If the actual output
doesn't match the expected output, we print an error and return -1, otherwise,
we print that it does match and we return 0. We then put a closing bracket on
our program's main function:

if (allclose(h_AxB, h_output, N*N) < 0)
 {
     printf("Error! Output of kernel does not match expected output.\n");
     free(h_output);
     return(-1);
 }
 else
 {
     printf("Success! Output of kernel matches expected output.\n");
     free(h_output);
     return(0);
 }
}

Notice that we make one final invocation to the standard C free function since we have
allocated memory to h_output , in both cases. 

We now save our file, and compile it into a Windows or Linux executable
file from the command line with nvcc matrix_ker.cu -o matrix_ker. This should
output a binary executable file, matrix_ker.exe (in Windows) or matrix_ker (in
Linux). Let's try compiling and running it right now:

Congratulations, you've just created your first pure CUDA-C program! (This
example is available as matrix_ker.cu in the repository, under 7.)



Using the Nsight IDE for CUDA-C
development and debugging
Let's now learn how to use the Nsight IDE for developing CUDA-C
programs. We will see how to import the program we just wrote, and
compile and debug it from within Nsight. Note that there are differences
between the Windows and Linux versions of Nsight, since it is effectively a
plugin of the Visual Studio IDE under Windows and in the Eclipse IDE
under Linux. We will cover both in the following two subsections; feel free
to skip whatever operating system does not apply to you here.



Using Nsight with Visual Studio in
Windows
Open up Visual Studio, and click on File, then choose New | Project.... A
window will pop up where you set the type of project: choose the
NVIDIA drop-down item, and then choose CUDA 9.2:

Give the project some appropriate name and then click OK. A project should
appear in the solution explorer window with a simple premade CUDA test
program, consisting of one source file, kernel.cu, which consists of a simple
parallel add kernel with test code. If you want to see whether this compiles
and runs, click the green right-pointing arrow at the top marked Local
Windows Debugger. A Terminal should pop up with some text output from
the kernel and then close immediately.

If you have problems with a Windows Terminal-based application closing after you run it
from Visual Studio, try adding getchar(); to the end of the main function, which will keep
the Terminal open until you press a key. (Alternatively, you can also use a debugger
breakpoint at the end of the program.)



Now, let's add the CUDA-C program we just wrote. In the Solution Explorer
window, right-click  kernel.cu, and click Remove on kernel.cu. Now, right-
click on the project name, and choose Add, and then choose Existing item.
We will now be able to select an existing file, so find where the path is to
matrix_ker.cu and add it to the project. Click on the green arrow marked Local
Windows Debugger at the top of the IDE and the program should compile
and run, again in a Windows Terminal. So, that's it—we can set up and
compile a complete CUDA program in Visual Studio now, just from those
few steps. 

Let's now see how to debug our CUDA kernel. Let's start by adding one
breakpoint to our code at the entry point of the kernel matrix_mult_ker, where
we set the value of row and col. We can add this breakpoint by clicking on the
gray column left of the line numbers on the window; a red dot should appear
there for every breakpoint we add. (You can ignore any red squiggly lines
that the Visual Studio editor may place under your code; this is due to the
fact that CUDA is not a native language to Visual Studio):

We can now start debugging. From the top menu, choose the Nsight drop-
down menu and choose Start CUDA Debugging. There may be two options
here, Start CUDA Debugging (Next-Gen) and Start CUDA Debugging
(Legacy). It doesn't matter which one, but you may have issues with Next-
Gen depending on your GPU; in that case, choose Legacy.

Your program should start up, and the debugger should halt at the breakpoint
in our kernel that we just set. Let's press F10 to step over the line, and now



see if the row variable gets set correctly. Let's look at the Locals window in
the Variable Explorer:

We can see that we are currently in the very first thread in the very first
block in the grid by checking the values of threadIdx and blockIdx; row is set to
0, which does indeed correspond to the correct value. Now, let's check the
value of row for some different thread. To do this, we have to switch the
thread focus in the IDE; we do this by clicking the Nsight drop-down menu
above, then choosing Windows|CUDA Debug Focus.... A new menu should
appear allowing you to choose a new thread and block. Change thread from
0, 0, 0 to 1, 0, 0 in the menu, and click OK:



When you check the variables again, you should see the correct value is set
for row for this thread:



In a nutshell, that is how you debug with Nsight in Visual Studio. We now
have the basics of how to debug a CUDA program from Nsight/Visual
Studio in Windows, and we can use all of the regular conventions as we
would for debugging a regular Windows program as with any other
IDE (setting breakpoints, starting the debugger, continue/resume, step over,
step in, and step out). Namely, the main difference is you have to know how
to switch between CUDA threads and blocks to check variables, otherwise,
it's pretty much the same.



Using Nsight with Eclipse in Linux
We will now see how to use Nsight in Linux. You can open Nsight from
either your desktop by selecting it or you can run it from a command line
with the nsight command. The Nsight IDE will open. From the top of the
IDE, click on File, then choose New... from the drop-down menu, and from
there choose New CUDA C/C++ Project. A new window will appear, and
from here choose CUDA Runtime Project. Give the project some
appropriate name, and then click Next. You'll be prompted to give further
settings options, but the defaults will work fine for our purposes for now.
(Be sure to note where the source folder and project paths will be located in
the third and fourth screens here.) You'll get to a final screen, where you can
press Finish to create the project:



Finally, you'll end up at a project view with your new project and some
placeholder code open; as of CUDA 9.2, this will consist of a reciprocal



kernel example.

We can now import our code. Either you can just use the editor in Nsight to
delete all of the code in the default source file and cut and paste it in, or you
can manually delete the file from the project's source directory, manually
copy the matrix_ker.cu file into the source directory, and then choose to refresh
the source directory view in Nsight by selecting it and then pressing F5. You
can now build the project with Ctrl + B, and run it with F11. The output of
our program should appear within the IDE itself within the
Console subwindow, as follows:

We can now set a breakpoint within our CUDA code; let's set it at the entry
point of our kernel where the row value is set. We set the cursor onto that
row in the Eclipse editor, and then press Ctrl + Shift + B to set it. 

We can now begin debugging by pressing F11 (or clicking the bug icon).
The program should be paused at the very beginning of the main function, so
press F8 to resume to the first breakpoint. You should see the first line in our
CUDA kernel highlighted with an arrow pointing to it in the IDE; let's step
over the current line by pressing F6, which will ensure that the row has been
set.

Now, we can easily switch between different threads and blocks in our
CUDA grid to check the current values that they hold as follows: from the
top of the IDE, click on the Window drop-down menu, then click Show
view, and then choose CUDA. A window with the currently running kernel
should open, and from here you can see a list of all of the blocks that this
kernel is running over.

Click on the first one and from here you will be able to see all of the
individual threads that are running within the block:



Now, we can look at the variable corresponding to the very first thread in the
very first block by clicking on the Variables tab—here, row should be 0, as
expected:



Now, we can check the values for a different thread by again going to the
CUDA tab, choosing the appropriate thread, and switching back. Let's stay
in the same block, but choose thread (1, 0, 0) this time, and check the value
of row again:

We see that the value of row is now 1, as we expect. 



We now have the basics of how to debug a CUDA program from
Nsight/Eclipse in Linux, and we can use all of the regular conventions as
you would for debugging a regular Linux program as with any other
IDE (setting breakpoints, starting the debugger, continue/resume, step over,
step in, and step out). Namely, the main difference here is we have to know
how to switch between CUDA threads and blocks to check variables,
otherwise, it's pretty much the same.



Using Nsight to understand the
warp lockstep property in CUDA
We will now use Nsight to step through some code to help us better
understand some of the CUDA GPU architecture, and how branching
within a kernel is handled. This will give us some insight about how to write
more efficient CUDA kernels. By branching, we mean how the GPU handles
control flow statements such as if, else, or switch within a CUDA kernel. In
particular, we are interested in how branch divergence is handled within a
kernel, which is what happens when one thread in a kernel satisfies the
conditions to be an if statement, while another doesn't and is an else
statement: they are divergent because they are executing different pieces of
code.

Let's write a small CUDA-C program as an experiment: we will start with a
small kernel that prints one output if its threadIdx.x value is even and another
if it is odd. We then write a main function that will launch this kernel over one
single block consisting of 32 different threads:

#include <cuda_runtime.h>
#include <stdio.h>

__global__ void divergence_test_ker()
{
    if( threadIdx.x % 2 == 0)
        printf("threadIdx.x %d : This is an even thread.\n", threadIdx.x);
    else
        printf("threadIdx.x %d : This is an odd thread.\n", threadIdx.x);
}

__host__ int main()
{
    cudaSetDevice(0);
    divergence_test_ker<<<1, 32>>>();
    cudaDeviceSynchronize();
    cudaDeviceReset();
}

(This code is also available as divergence_test.cu in the repository.)



If we compile and run this from the command line, we might naively expect
there to be an interleaved sequence of strings from even and odd threads; or
maybe they will be randomly interleaved—since all of the threads run
concurrently and branch about the same time, this would make sense.

Instead, every single time we run this, we always get this output:





All of the strings corresponding to even threads are printed first, while all of
the odd strings are printed second. Perhaps the Nsight debugger can shed
some light on this; let's import this little program into an Nsight project as
we did in the last section, putting a breakpoint at the first if statement in our
kernel. We will then do a step over, so that the debugger stops where the first
printf statement is. Since the default thread in Nsight is (0,0,0), this should
have satisfied the first if statement so it will be stuck there until the
debugger continues.

Let's switch over to an odd thread, say (1,0,0), and see where it is in our
program now:

Very strange! Thread (1,0,0) is also at the same place in execution as thread
(0,0,0). Indeed, if we check every single other odd thread here, it will be
stuck in the same place—at a printf statement that all of the odd threads
should have skipped right past.

What gives? This is known as the warp lockstep property. A warp in the
CUDA architecture is a unit of 32 "lanes" within which our GPU executes
kernels and grids over, where each lane will execute a single thread. A major
limitation of warps is that all threads executing on a single warp must step
through the same exact code in lockstep; this means that not every thread
does indeed run the same code, but just ignores steps that are not applicable
to it. (This is called lockstep because it's like a group of soldiers marching
lockstep in unison—whether they want to march, or not!)

The lockstep property implies that if one single thread running on a warp
diverges from all 31 other threads in a single if statement, all 31 other
threads have their execution delayed until this single anomalous thread
finishes and returns from its solitary if divergence. This is a property that



you should always keep in mind when writing kernels, and why branch
divergence should be minimized as much as possible as a general rule in
CUDA programming.



Using the NVIDIA nvprof profiler
and Visual Profiler
We will end with a brief overview of the command-line Nvidia nvprof
profiler. In contrast to the Nsight IDE, we can freely use any Python code
that we have written—we won't be compelled here to write full-on, pure
CUDA-C test function code.

We can do a basic profiling of a binary executable program with the nvprof
program command; we can likewise profile a Python script by using the python
command as the first argument, and the script as the second as follows: nvprof
python program.py. Let's profile the simple matrix-multiplication CUDA-C
executable program that we wrote earlier, with nvprof matrix_ker:

We see that this is very similar to the output of the Python cProfiler module
that we first used to analyze a Mandelbrot algorithm way back in Chapter 1,
Why GPU Programming?—only now, this exclusively tells us only about all
of the CUDA operations that were executed. So, we can use this when we
specifically want to optimize on the GPU, rather than concern ourselves with
any of the Python or other commands that executed on the host. (We can
further analyze each individual CUDA kernel operation with block and grid
size launch parameters if we add the command-line option, --print-gpu-trace.)



Let's look at one more trick to help us visualize the execution time of all of
the operations of a program; we will use nvprof to dump a file that can then
be read by the NVIDIA Visual Profiler, which will show this to us
graphically. Let's do this using an example from the last chapter, multi-
kernel_streams.py (this is available in the repository under 5). Let's recall that
this was one of our introductory examples to the idea of CUDA streams,
which allow us to execute and organize multiple GPU operations
concurrently. Let's dump the output to a file with the .nvvp file suffix with the
-o command-line option as follows: nvprof -o m.nvvp python multi-
kernel_streams.py. We can now load this file into the NVIDIA Visual Profiler
with the nvvp m.nvvp command.

We should see a timeline across all CUDA streams as such (remembering
that the name of the kernel used in this program is called mult_ker):

Not only can we see all kernel launches, but also memory allocations,
memory copies, and other operations. This can be useful for getting an
intuitive and visual understanding of how your program is using your GPU
over time.



Summary
We started out in this chapter by seeing how printf can be used within a
CUDA kernel to output data from individual threads; we saw in particular
how useful this can be for debugging code. We then covered some of the
gaps in our knowledge in CUDA-C, so that we can write full test programs
that we can compile into proper executable binary files: there is a lot of
overhead here that was hidden from us before that we have to be meticulous
about. Next, we saw how to create and compile a project in the Nsight IDE
and how to use it for debugging. We saw how to stop at any breakpoint we
set in a CUDA kernel and switch between individual threads to see the
different local variables. We also used the Nsight debugger to learn about
the warp lockstep property and why it is important to avoid branch
divergence in CUDA kernels. Finally, we had a very brief overview of the
NVIDIA command-line nvprof profiler and Visual Profiler for analyzing our
GPU code.



Questions
1. In the first CUDA-C program that we wrote, we didn't use a

cudaDeviceSynchronize command after the calls we made to allocate
memory arrays on the GPU with cudaMalloc. Why was this not
necessary? (Hint: Review the last chapter.)

2. Suppose we have a single kernel that is launched over a grid consisting
of two blocks, where each block has 32 threads. Suppose all of the
threads in the first block execute an if statement, while all of the
threads in the second block execute the corresponding else statement.
Will all of the threads in the second block have to "lockstep" through
the commands in the if statement as the threads in the first block are
actually executing them?

3. What if we executed a similar piece of code, only over a grid
consisting of one single block executed over 64 threads, where the first
32 threads execute an if and the second 32 execute an else statement?

4. What can the nvprof profiler measure for us that Python's cProfiler
cannot?

5. Name some contexts where we might prefer to use printf to debug a
CUDA kernel and other contexts where it might be easier to use
Nsight to debug a CUDA kernel.

6. What is the purpose of the cudaSetDevice command in CUDA-C?
7. Why do we have to use cudaDeviceSynchronize after every kernel launch or

memory copy in CUDA-C?



Using the CUDA Libraries with
Scikit-CUDA
In this chapter, we will be taking a tour of three of the standard CUDA
libraries intended for streamlined numerical and scientific computation. The
first that we will look at is cuBLAS, which is NVIDIA's implementation of
the Basic Linear Algebra Subprograms (BLAS) specification for CUDA.
(cuBLAS is NVIDIA's answer to various optimized, CPU-based
implementations of BLAS, such as the free/open source OpenBLAS or
Intel's proprietary Math Kernel Library.) The next library that we will look
at is cuFFT, which can perform virtually every variation of the fast
Fourier transform (FFT) on the GPU. We'll look at how we can use
cuFFT for filtering in image processing in particular. We will then look
at cuSolver, which can perform more involved linear algebra operations
than those featured in cuBLAS, such as singular value decomposition
(SVD) or Cholesky factorization.

So far, we have been primarily dealing with one single Python module that
acted as our gateway to CUDA—PyCUDA. While PyCUDA is a very
powerful and versatile Python library, its main purpose is to provide a
gateway to program, compile, and launch CUDA kernels, rather than
provide an interface to the CUDA libraries. To this end, fortunately, there is
a free Python module available that provides a user-friendly wrapper
interface to these libraries. This is called Scikit-CUDA.

While you don't have to know PyCUDA or even understand GPU
programming to appreciate Scikit-CUDA, it is conveniently compatible
with PyCUDA; Scikit-CUDA, for instance, can operate easily with
PyCUDA's gpuarray class, and this allows you to easily pass data between
our own CUDA kernel routines and Scikit-CUDA. Additionally, most
routines will also work with PyCUDA's stream class, which will allow us to
properly synchronize our own custom CUDA kernels with Scikit-CUDA's
wrappers.



Please note that, besides these three listed libraries, Scikit-CUDA also provides
wrappers for the proprietary CULA library, as well as for the open source MAGMA
library. Both have a lot of overlap with the functionality provided by the official
NVIDIA libraries. Since these libraries are not installed by default with a standard
CUDA installation, we will opt to not cover them in this chapter. Interested readers can
learn more about CULA and MAGMA at http://www.culatools.com and http://icl.utk.edu/magma/,
respectively. 
It is suggested that readers take a look at the official documentation for Scikit-CUDA,
which is available here: https://media.readthedocs.org/pdf/scikit-cuda/latest/scikit-cuda.pdf.

The learning outcomes for this chapter are as follows:

To learn how to install Scikit-CUDA
To understand the basic purposes and differences between the standard
CUDA libraries
To learn how to use low-level cuBLAS functions for basic linear
algebra
To learn how to use the SGEMM and DGEMM operations to measure
the performance of a GPU in FLOPS
To learn how to use cuFFT to perform 1D or 2D FFT operations on the
GPU
To learn how to create a 2D convolutional filter using the FFT, and
apply it to simple image processing
To understand how to perform a Singular Value Decomposition (SVD)
with cuSolver
To learn how to use cuSolver's SVD algorithm to perform basic
principal component analysis

http://www.culatools.com/
http://icl.utk.edu/magma/
https://media.readthedocs.org/pdf/scikit-cuda/latest/scikit-cuda.pdf


Technical requirements
A Linux or Windows 10 PC with a modern NVIDIA GPU (2016—onward)
is required for this chapter, with all of the necessary GPU drivers and the
CUDA Toolkit (9.0–onward) installed. A suitable Python 2.7 installation
(such as Anaconda Python 2.7) that includes the PyCUDA module is also
required.

This chapter's code is also available on GitHub, and can be found at https://
github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA.

For more information about the prerequisites, check out the preface of this book. For
more information about the software and hardware requirements, check out the
README file at https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA.

https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA
https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA


Installing Scikit-CUDA
It is suggested that you install the latest stable version of Scikit-CUDA
directly from GitHub: https://github.com/lebedov/scikit-cuda. 

Unzip the package into a directory, and then open up the command line here
and install the module by typing python setup.py install into the command
line. You may then run the unit tests to ensure that a correct installation has
been performed with python setup.py test. (This method is suggested for both
Windows and Linux users.) Alternatively, Scikit-CUDA can be installed
directly from the PyPI repository with pip install scikit-cuda.

https://github.com/lebedov/scikit-cuda


Basic linear algebra with cuBLAS
We will start this chapter by learning how to use Scikit-CUDA's cuBLAS
wrappers. Let's spend a moment discussing BLAS. BLAS (Basic Linear
Algebra Subroutines) is a specification for a basic linear algebra library that
was first standardized in the 1970s. BLAS functions are broken down into
several categories, which are referred to as levels. 

Level 1 BLAS functions consist of operations purely on vectors—vector-
vector addition and scaling (also known as ax+y operations, or AXPY), dot
products, and norms. Level 2 BLAS functions consist of general matrix-
vector operations (GEMV), such as matrix multiplication of a vector, while
level 3 BLAS functions consist of "general matrix-matrix" (GEMM)
operations, such as matrix-matrix multiplication. Originally, these libraries
were written entirely in FORTRAN in the 1970s, so you should take into
account that there are some seemingly archaic holdovers in usage and
naming that may seem cumbersome to new users today.

cuBLAS is NVIDIA's own implementation of the BLAS specification,
which is of course optimized to make full use of the GPU's parallelism.
Scikit-CUDA provides wrappers for cuBLAS that are compatible with
PyCUDA gpuarray objects, as well as with PyCUDA streams. This means
that we can couple and interface these functions with our own custom
CUDA-C kernels by way of PyCUDA, as well as synchronize these
operations over multiple streams.



Level-1 AXPY with cuBLAS
Let's start with a basic level-1 ax + y (or AXPY) operation with cuBLAS.
Let's stop for a moment and review a bit of linear algebra and think about
what this means. Here, a is considered to be a scalar; that is, a real number,
such as -10, 0, 1.345, or 100. x and y are considered to be vectors in some
vector space, . This means that x and y are n-tuples of real numbers, so in
the case of , these could be values such as [1,2,3] or [-0.345, 8.15,
-15.867]. ax means the scaling of x by a, so if a is 10 and x is the first prior
value, then ax is each individual value of x multiplied by a; that is, [10, 20,
30]. Finally, the sum ax + y means that we add each individual value in each
slot of both vectors to produce a new vector, which would be as follows
(assuming that y is the second vector given)—[9.655, 28.15, 14.133]. 

Let's do this in cuBLAS now. First, let's import the appropriate modules:

import pycuda.autoinit
from pycuda import gpuarray
import numpy as np

Now let's import cuBLAS:

from skcuda import cublas

We can now set up our vector arrays and copy them to the GPU. Note that
we are using 32-bit (single precision) floating point numbers:

a = np.float32(10)
x = np.float32([1,2,3])
y = np.float32([-.345,8.15,-15.867])
x_gpu = gpuarray.to_gpu(x)
y_gpu = gpuarray.to_gpu(y)

We now have to create a cuBLAS context. This is similar in nature to
CUDA contexts, which we discussed in Chapter 5, Streams, Events, Contexts,
and Concurrency, only this time it is used explicitly for managing cuBLAS
sessions. The cublasCreate function creates a cuBLAS context and gives a



handle to it as its output. We will need to hold onto this handle for as long
as we intend to use cuBLAS in this session:

cublas_context_h = cublas.cublasCreate()

We can now use the cublasSaxpy function. The S stands for single precision,
which is what we will need since we are working with 32-bit floating point
arrays:

cublas.cublasSaxpy(cublas_context_h, x_gpu.size, a, x_gpu.gpudata, 1, 
y_gpu.gpudata, 1)

Let's discuss what we just did. Also, let's keep in mind that this is a direct
wrapper to a low-level C function, so the input may seem more like a C
function than a true Python function. In short, this performed an "AXPY"
operation, ultimately putting the output data into the y_gpu array. Let's go
through each input parameter one by one.

The first input is always the CUDA context handle. We then have to specify
the size of the vectors, since this function will be ultimately operating on C
pointers; we can do this by using the size parameter of a gpuarray. Having
typecasted our scalar already to a NumPy float32 variable, we can pass the
a variable right over as the scalar parameter. We then hand the underlying C
pointer of the x_gpu array to this function using the gpudata parameter. Then
we specify the stride of the first array as 1: the stride specifies how many
steps we should take between each input value. (In contrast, if you were
using a vector from a column in a row-wise matrix, you would set the stride
to the width of the matrix.) We then put in the pointer to the y_gpu array, and
set its stride to 1 as well.

We are done with our computation; now we have to explicitly destroy our
cuBLAS context:

cublas.cublasDestroy(cublas_context)

We can now verify whether this is close with NumPy's allclose function,
like so:

print 'This is close to the NumPy approximation: %s' % np.allclose(a*x + y , 
y_gpu.get())



Again, notice that the final output was put into the y_gpu array, which was
also an input.

Always remember that BLAS and CuBLAS functions act in-place to save time and
memory from a new allocation call. This means that an input array will also be used as
an output!

We just saw how to perform an AXPY operation using the cublasSaxpy function.

Let's discuss the prominent upper case S. Like we mentioned previously,
this stands for single precision that is, 32-bit real floating point values
(float32). If we want to operate on arrays of 64-bit real floating point values,
(float64 in NumPy and PyCUDA), then we would use
the cublasDaxpy function; for 64-bit single precision complex values
(complex64), we would use cublasCaxpy, while for 128-bit double precision
complex values (complex128), we would use cublasZaxpy.

We can tell what type of data a BLAS or CuBLAS function operates on by checking the
letter preceding the rest of the function name. Functions that use single precision reals
are always preceded with S, double precision reals with D, single precision complex
with C, and double precision complex with Z.



Other level-1 cuBLAS functions
Let's look at a few other level-1 functions. We won't go over their operation
in depth, but the steps are similar to the ones we just covered: create a
cuBLAS context, call the function with the appropriate array pointers
(which is accessed with the gpudata parameter from a PyCUDA gpuarray), and
set the strides accordingly. Another thing to keep in mind is that if the
output of a function is a single value as opposed to an array (for example, a
dot product function), the function will directly output this value to the host
rather than within an array of memory that has to be pulled off the GPU.
(We will only cover the single precision real versions here, but the
corresponding versions for other datatypes can be used by replacing the S
with the appropriate letter.)

We can perform a dot product between two single precision real gpuarrays,
v_gpu, and w_gpu. Again, the 1s are there to ensure that we are using stride-1
in this calculation! Again, recall that a dot product is the sum of the point-
wise multiple of two vectors:

dot_output = cublas.cublasSdot(cublas_context_h, v_gpu.size, v_gpu.gpudata, 1, 
w_gpu.gpudata, 1)

We can also perform the L2-norm of a vector like so (recall that for a
vector, x, this is its L2-norm, or length, which is calculated with the 

 formula):

l2_output = cublas.cublasSnrm2(cublas_context_h, v_gpu.size, v_gpu.gpudata, 1)



Level-2 GEMV in cuBLAS
Let's look at how to do a GEMV matrix-vector multiplication. This is defined
as the following operation for an m x n matrix A, an n-dimensional vector x,
a m-dimensional vector y, and for the scalars alpha and beta:

  

Now let's look at how the function is laid out before we continue: 

cublasSgemv(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy)  

Let's go through these inputs one-by-one:

handle refers to the cuBLAS context handle. 
trans refers to the structure of the matrix—we can specify whether we
want to use the original matrix, a direct transpose, or a conjugate
transpose (for complex matrices). This is important to keep in mind
because this function will expect that the matrix A is stored in column-
major format. 
m and n are the number of rows and columns of the matrix A that we
want to use. 
alpha is the floating-point value for α.
A is the m x n matrix A.
lda indicates the leading dimension of the matrix, where the total size
of the matrix is actually lda x n. This is important in the column-major
format because if lda is larger than m, this can cause problems for
cuBLAS when it tries to access the values of A since its underlying
structure of this matrix is a one-dimensional array. 
We then have x and its stride, incx; x is the underlying C pointer of the
vector being multiplied by A. Remember, x will have to be of size
n; that is, the number of columns of A. 
beta, which is the floating-point value for β.
Finally, we have y and its stride incy as the last parameters. We should
remember that y should be of size m, or the number of rows of A.



Let's test this by generating a 10 x 100 matrix of random values A, and a
vector x of 100 random values. We'll initialize y as a matrix of 10 zeros. We
will set alpha to 1 and beta to 0, just to get a direct matrix multiplication
with no scaling:

m = 10
n = 100
alpha = 1
beta = 0
A = np.random.rand(m,n).astype('float32')
x = np.random.rand(n).astype('float32')
y = np.zeros(m).astype('float32')

We will now have to get A into column-major (or column-wise) format.
NumPy stores matrices as row-major (or row-wise) by default, meaning
that the underlying one-dimensional array that is used to store a matrix
iterates through all of the values of the first row, then all of the values of the
second row, and so on. You should remember that a transpose operation
swaps the columns of a matrix with its rows. However, the result will be
that the new one-dimensional array underlying the transposed matrix will
represent the original matrix in a column-major format. We can make a
copy of the transposed matrix of A with A.T.copy() like so, and copy this as
well as x and y to the GPU:

A_columnwise = A.T.copy()
A_gpu = gpuarray.to_gpu(A_columnwise) 
x_gpu = gpuarray.to_gpu(x)
y_gpu = gpuarray.to_gpu(y)

Since we now have the column-wise matrix stored properly on the GPU, we
can set the trans variable to not take the transpose by using the _CUBLAS_OP
dictionary:

trans = cublas._CUBLAS_OP['N']

Since the size of the matrix is exactly the same as the number of rows that
we want to use, we now set lda as m. The strides for the x and y vectors are,
again, 1. We now have all of the values we need set up, and can now create
our CuBLAS context and store its handle, like so:

lda = m 
incx = 1



incy = 1
handle = cublas.cublasCreate()

We can now launch our function. Remember that A, x, and y are actually
PyCUDA gpuarray objects, so we have to use the gpudata parameter to input
into this function. Other than doing this, this is pretty straightforward:

cublas.cublasSgemv(handle, trans, m, n, alpha, A_gpu.gpudata, lda, x_gpu.gpudata, 
incx, beta, y_gpu.gpudata, incy)

We can now destroy our cuBLAS context and check the return value to
ensure that it is correct:

cublas.cublasDestroy(handle)
print 'cuBLAS returned the correct value: %s' % np.allclose(np.dot(A,x), 
y_gpu.get())



Level-3 GEMM in cuBLAS for
measuring GPU performance
We will now look at how to perform a general matrix-matrix
multiplication (GEMM) with CuBLAS. We will actually try to make
something a little more utilitarian than the last few examples we saw in
cuBLAS—we will use this as a performance metric for our GPU to
determine the number of Floating Point Operations Per Second (FLOPS)
it can perform, which will be two separate values: the case of single
precision, and that of double precision. Using GEMM is a standard
technique for evaluating the performance of computing hardware in
FLOPS, as it gives a much better understanding of sheer computational
power than using pure clock speed in MHz or GHz.

If you need a brief review, recall that we covered matrix-matrix multiplication in depth
in the last chapter. If you forgot how this works, it's strongly suggested that you review
this chapter before you move on to this section. 

First, let's see how a GEMM operation is defined: 

  

This means that we perform a matrix multiplication of A and B, scale the
result by alpha, and then add this to the C matrix that we have scaled by
beta, placing the final result in C.

Let's think about how many floating point operations are executed to get the
final result of a real-valued GEMM operation, assuming that A is an m x k
(where m is rows and k is columns) matrix, B is a k x n matrix, and C is
an m x n matrix. First, let's figure out how many operations are required for
computing AB. Let's take a single column of A and multiply it by B: this
will amount to k multiplies and k - 1 adds for each of the m rows in A,
which means that this is km + (k-1)m total operations over m rows. There
are n columns in B, so computing AB will total to kmn + (k-1)mn = 2kmn -



mn operations. Now, we use alpha to scale AB, which will be mn
operations, since that is the size of the matrix AB; similarly, scaling C by
beta is another mn operation. Finally, we add these two resulting matrices,
which is yet another mn operation. This means that we will have a total of
2kmn - mn + 3mn = 2kmn + 2mn = 2mn(k+1) floating point operations in a
given GEMM operation.

Now the only thing we have to do is run a timed GEMM operation, taking
note of the different sizes of the matrices, and divide 2kmn + 2mn by the
total time duration to calculate the FLOPS of our GPU. The resulting
number will be very large, so we will represent this in terms of GFLOPS –
 that is, how many billions (109) of operations that can be computed per
second. We can compute this by multiplying the FLOPS value by 10-9.

Now we are ready to start coding this up. Let's start with our import
statements, as well as the time function:

import pycuda.autoinit
from pycuda import gpuarray
import numpy as np
from skcuda import cublas
from time import time

Now we will set the m, n, and k variables for our matrix sizes. We want our
matrices to be relatively big so that the time duration is sufficiently large so
as to avoid divide by 0 errors. The following values should be sufficient for
any GPU released up to mid-2018 or earlier; users with newer cards may
consider increasing these values:

m = 5000
n = 10000
k = 10000

We will now write a function that computes the GFLOPS for both single
and double precision. We will set the input value to 'D' if we wish to use
double precision, or 'S' otherwise:

def compute_gflops(precision='S'):

if precision=='S':
    float_type = 'float32'
elif precision=='D':



    float_type = 'float64'
else:
    return -1

Now let's generate some random matrices that are of the appropriate
precision that we will use for timing. The GEMM operations act similarly
to the GEMV operation we saw before, so we will have to transpose these
before we copy them to the GPU. (Since we are just doing timing, this step
isn't necessary, but it's good practice to remember this.)

We will set up some other necessary variables for GEMM, whose purpose
should be self-explanatory at this point (transa, lda, ldb, and so on):

A = np.random.randn(m, k).astype(float_type)
B = np.random.randn(k, n).astype(float_type)
C = np.random.randn(m, n).astype(float_type)
A_cm = A.T.copy()
B_cm = B.T.copy()
C_cm = C.T.copy()
A_gpu = gpuarray.to_gpu(A_cm)
B_gpu = gpuarray.to_gpu(B_cm)
C_gpu = gpuarray.to_gpu(C_cm)
alpha = np.random.randn()
beta = np.random.randn()
transa = cublas._CUBLAS_OP['N']
transb = cublas._CUBLAS_OP['N']
lda = m
ldb = k
ldc = m

We can now start the timer! First, we will create a cuBLAS context:

t = time()
handle = cublas.cublasCreate()

We will now launch GEMM. Keep in mind that there are two versions for
the real case: cublasSgemm for single precision and cublasDgemm for double
precision. We can execute the appropriate function using a little Python
trick: we will write a string with cublas%sgemm with the appropriate
parameters, and then replace the %s with D or S by appending % precision to
the string. We will then execute this string as Python code with the
exec function, like so:

exec('cublas.cublas%sgemm(handle, transa, transb, m, n, k, alpha, A_gpu.gpudata, 
lda, B_gpu.gpudata, ldb, beta, C_gpu.gpudata, ldc)' % precision)



We can now destroy the cuBLAS context and get the final time for our
computation:

cublas.cublasDestroy(handle)
t = time() - t

Then we need to compute the GFLOPS using the equation we derived and
return it as the output of this function:

gflops = 2*m*n*(k+1)*(10**-9) / t 
return gflops

Now we can set up our main function. We will output the GFLOPS in both
the single and double precision cases:

if __name__ == '__main__':
    print 'Single-precision performance: %s GFLOPS' % compute_gflops('S')
    print 'Double-precision performance: %s GFLOPS' % compute_gflops('D')

Now let's do a little homework before we run this program—go to https://ww
w.techpowerup.com and search for your GPU, and then take note of two things
—the single precision floating point performance and the double precision
floating point performance. I am using a GTX 1050 right now, and it's
listing claims that it has 1,862 GFLOPS performance in single precision,
and 58.20 GFLOPS performance in double precision. Let's run this program
right now and see if this aligns with the truth:

Lo and behold, it does!

This program is also available as the cublas_gemm_flops.py file under the directory in this
book's repository.

https://www.techpowerup.com/


Fast Fourier transforms with
cuFFT
Now let's look at how we can do some basic fast Fourier transforms
(FFT) with cuFFT.  First, let's briefly review what exactly a Fourier
transform is. If you have taken an advanced Calculus or Analysis class, you
might have seen the Fourier transform defined as an integral formula, like
so:

What this does is take f as a time domain function over x. This gives us a
corresponding frequency domain function over "ξ".  This turns out to be an
incredibly useful tool that touches virtually all branches of science and
engineering.

Let's remember that the integral can be thought of as a sum; likewise, there
is a corresponding discrete, finite version of the Fourier Transform called
the discrete Fourier transform (DFT). This operates on vectors of a finite
length and allows them to be analyzed or modified in the frequency domain.
The DFT of an n-dimensional vector x is defined as follows:

In other words, we can multiply a vector, x, by the complex N x N matrix 

 



(here, k corresponds to row number, while n corresponds to column
number) to find its DFT. We should also note the inverse formula that lets
us retrieve x from its DFT (replace y with the DFT of x here, and the output
will be the original x):

Normally, computing a matrix-vector operation is of computational
complexity O(N2) for a vector of length N. However, due to symmetries in
the DFT matrix, this can always be reduced to O(N log N) by using an FFT.
Let's look at how we can use an FFT with CuBLAS, and then we will move
on to a more interesting example.



A simple 1D FFT
Let's start by looking at how we can use cuBLAS to compute a simple 1D
FFT. First, we will briefly discuss the cuFFT interface in Scikit-CUDA.

There are two submodules here that we can access the cuFFT library with,
cufft and fft. cufft consists of a collection of low-level wrappers for the
cuFFT library, while fft provides a more user-friendly interface; we will be
working solely with fft in this chapter.

Let's start with the appropriate imports, remembering to include the Scikit-
CUDA fft submodule:

import pycuda.autoinit
from pycuda import gpuarray
import numpy as np
from skcuda import fft

We now will set up some random array and copy it to the GPU. We will
also set up an empty GPU array that will be used to store the FFT (notice
that we are using a real float32 array as an input, but the output will be a
complex64 array, since the Fourier transform is always complex-valued):

x = np.asarray(np.random.rand(1000), dtype=np.float32 )
x_gpu = gpuarray.to_gpu(x)
x_hat = gpuarray.empty_like(x_gpu, dtype=np.complex64)

We will now set up a cuFFT plan for the forward FFT transform. This is an
object that cuFFT uses to determine the shape, as well as the input and
output data types of the transform:

plan = fft.Plan(x_gpu.shape,np.float32,np.complex64)

We will also set up a plan for the inverse FFT plan object. Notice that this
time we go from complex64 to real float32:

inverse_plan = fft.Plan(x.shape, in_dtype=np.complex64, out_dtype=np.float32)



Now, we must take the forward FFT from x_gpu into x_hat, and the inverse
FFT from x_hat back into x_gpu. Notice that we set scale=True in the inverse
FFT; we do this to indicate to cuFFT to scale the inverse FFT by 1/N:

fft.fft(x_gpu, x_hat, plan)
fft.ifft(x_hat, x_gpu, inverse_plan, scale=True)

We now will check x_hat against a NumPy FFT of x, and x_gpu against x
itself:

y = np.fft.fft(x)
print 'cuFFT matches NumPy FFT: %s' % np.allclose(x_hat.get(), y, atol=1e-6)
print 'cuFFT inverse matches original: %s' % np.allclose(x_gpu.get(), x, atol=1e-
6)

If you run this, you will see that x_hat does not match y, yet, inexplicably,
x_gpu matches x. How is this possible? Well, let's remember that x is real; if
you look at how the Discrete Fourier Transform is computed, you can prove
mathematically that the outputs of a real vector will repeat as their complex
conjugates after N/2. While the NumPy FFT fully computes these values
anyway, cuFFT saves time by only computing the first half of the outputs
when it sees that the input is real, and it sets the remaining outputs to 0. You
should verify that this is the case by checking the preceding variables.

Thus, if we change the first print statement in the preceding code to only
compare the first N/2 outputs between CuFFT and NumPy, then this will
return true:

print 'cuFFT matches NumPy FFT: %s' % np.allclose(x_hat.get()[0:N//2], y[0:N//2], 
atol=1e-6)



Using an FFT for convolution
We will now look at how we can use an FFT to perform convolution. Let's
review what exactly convolution is, first: given two one-dimensional
vectors, x and y, their convolution is defined as follows:

This is of interest to us because if x is some long, continuous signal, and y
only has a small amount of localized non-zero values, then y will act as a
filter on x; this has many applications in itself. First, we can use a filter to
smooth the signal x (as is common in digital signal processing and image
processing). We can also use it to collect samples of the signal x so as to
represent the signal or compress it (as is common in the field of data
compression or compressive sensing), or use filters to collect features for
signal or image recognition in machine learning. This idea forms the basis
for convolutional neural networks).

Of course, computers cannot handle infinitely long vectors (at least, not
yet), so we will be considering circular convolution. In circular
convolution, we are dealing with two length n-vectors whose indices below
0 or above n-1 will wrap around to the other end; that is to say, x[-1] = x[n-
1], x[-2] = x[n-2], x[n] = x[0], x[n+1] = x[1], and so on. We define circular
convolution of x and y like so:

It turns out that we can perform a circular convolution using an FFT quite
easily; we can do this by performing an FFT on x and y, point-wise-
multiplying the outputs, and then performing an inverse FFT on the final



results. This result is known as the convolution theorem, which can also be
expressed as follows:

We will be doing this over two dimensions, since we wish to apply the
result to signal processing. While we have only seen the math for FFTs and
convolution along one dimension, two-dimensional convolution and FFTs
work very similarly to their one-dimensional counterparts, only with some
more complex indexing. We will opt to skip over this, however, so that we
can get directly into the application.



Using cuFFT for 2D convolution 
Now we are going to make a small program that performs Gaussian
filtering on an image using cuFFT-based two-dimensional convolution.
Gaussian filtering is an operation that smooths a rough image using what is
known as a Gaussian filter. This is named as such because it is based on the
Gaussian (normal) distribution in statistics. This is how the Gaussian filter
is defined over two dimensions with a standard deviation of σ:

When we convolve a discrete image with a filter, we sometimes refer to the
filter as a convolution kernel. Oftentimes, image processing engineers will
just call this a plain kernel, but since we don't want to confuse these with
CUDA kernels, we will always use the full term, convolution kernel. We
will be using a discrete version of the Gaussian filter as our convolution
kernel here.

Let's start with the appropriate imports; notice that we will use the Scikit-
CUDA submodule linalg here. This will provide a higher-level interface for
us than cuBLAS. Since we're working with images here, we will also
import Matplotlib's pyplot submodule. Also note that we will use Python 3-
style division here, from the first line; this means that if we divide two
integers with the / operator, then the return value will be a float without
typecasting (we perform integer division with the // operator):

from __future__ import division
import pycuda.autoinit
from pycuda import gpuarray
import numpy as np
from skcuda import fft
from skcuda import linalg
from matplotlib import pyplot as plt



Let's jump right in and start writing the convolution function. This will take
in two NumPy arrays of the same size, x and y. We will typecast these to
complex64 arrays, and then return -1 if they are not of the same size:

def cufft_conv(x , y):
    x = x.astype(np.complex64)
    y = y.astype(np.complex64)

    if (x.shape != y.shape):
        return -1

We will now set up our FFT plan and inverse FFT plan objects:

plan = fft.Plan(x.shape, np.complex64, np.complex64)
inverse_plan = fft.Plan(x.shape, np.complex64, np.complex64)

Now we can copy our arrays to the GPU. We will also set up some empty
arrays of the appropriate sizes to hold the FFTs of these arrays, plus one
additional array that will hold the output of the final convolution, out_gpu:

 x_gpu = gpuarray.to_gpu(x)
 y_gpu = gpuarray.to_gpu(y)
 
 x_fft = gpuarray.empty_like(x_gpu, dtype=np.complex64)
 y_fft = gpuarray.empty_like(y_gpu, dtype=np.complex64)
 out_gpu = gpuarray.empty_like(x_gpu, dtype=np.complex64)

We now can perform our FFTs:

fft.fft(x_gpu, x_fft, plan)
fft.fft(y_gpu, y_fft, plan)

We will now perform pointwise (Hadamard) multiplication between x_fft
and y_fft with the linalg.multiply function. We will set overwrite=True so as to
write the final value into y_fft:

linalg.multiply(x_fft, y_fft, overwrite=True)

Now we will call the inverse FFT, outputting the final result into out_gpu. We
transfer this value to the host and return it:

fft.ifft(y_fft, out_gpu, inverse_plan, scale=True)
conv_out = out_gpu.get()
return conv_out



We are not done yet. Our convolution kernel will be much smaller than our
input image, so we will have to adjust the sizes of our two 2D arrays (both
the convolution kernel and the image) so that they are equal and perform
the pointwise multiplication between them. Not only should we ensure that
they are equal, but we also need to ensure that we perform zero padding on
the arrays and that we appropriately center the convolution kernel. Zero
padding means that we add a buffer of zeros on the sides of the images so as
to prevent a wrap-around error. If we are using an FFT to perform our
convolution, remember that it is a circular convolution, so the edges will
literally always wrap-around. When we are done with our convolution, we
can remove the buffer from the outside of the image to get the final output
image.

Let's create a new function called conv_2d that takes in a convolution
kernel, ker, and an image, img. The padded image size will be (2*ker.shape[0] +
img.shape[0], 2*ker.shape[1] + img.shape[1]). Let's set up the padded convolution
kernel first. We will create a 2D array of zeros of this size, and then set the
upper-left submatrix as our convolution kernel, like so:

def conv_2d(ker, img):

    padded_ker = np.zeros( (img.shape[0] + 2*ker.shape[0], img.shape[1] + 
2*ker.shape[1] )).astype(np.float32)
    padded_ker[:ker.shape[0], :ker.shape[1]] = ker

We will now have to shift our convolution kernel so that its center is
precisely at the coordinate (0,0). We can do this with the NumPy roll
command:

padded_ker = np.roll(padded_ker, shift=-ker.shape[0]//2, axis=0)
padded_ker = np.roll(padded_ker, shift=-ker.shape[1]//2, axis=1)

Now we need to pad the input image:

padded_img = np.zeros_like(padded_ker).astype(np.float32)
padded_img[ker.shape[0]:-ker.shape[0], ker.shape[1]:-ker.shape[1]] = img

Now we have two arrays of the same size that are appropriately formatted.
We can now use our cufft_conv function that we just wrote here:

out_ = cufft_conv(padded_ker, padded_img)



We now can remove the zero buffer outside of our image. We then return
the result:

output = out_[ker.shape[0]:-ker.shape[0], ker.shape[1]:-ker.shape[1]]

return output

We are not yet done. Let's write some small functions to set up our
Gaussian filter, and then we can move on to applying this to an image. We
can write the basic filter itself with a single line using a lambda function:

gaussian_filter = lambda x, y, sigma : (1 / np.sqrt(2*np.pi*(sigma**2)) )*np.exp( 
-(x**2 + y**2) / (2 * (sigma**2) ))

We can now write a function that uses this filter to output a discrete
convolution kernel. The convolution kernel will be of height and length
2*sigma + 1, which is fairly standard:

Notice that we normalize the values of our Gaussian kernel by summing its values into
total_ and dividing it.

def gaussian_ker(sigma):
    ker_ = np.zeros((2*sigma+1, 2*sigma+1))
    for i in range(2*sigma + 1):
        for j in range(2*sigma + 1):
            ker_[i,j] = gaussian_filter(i - sigma, j - sigma, sigma)
    total_ = np.sum(ker_.ravel())
    ker_ = ker_ / total_
    return ker_

We are now ready to test this on an image! As our test case, we will use
Gaussian filtering to blur a color JPEG image of this book's editor, Akshada
Iyer. (This image is available under the Chapter07 directory in the GitHub
repository with the file name akshada.jpg.) We will use Matplotlib's imread
function to read the image; this is stored as an array of unsigned 8-bit
integers ranging from 0 to 255 by default. We will typecast this to an array
of floats and normalize it so that all of the values will range from 0 to 1. 

Note to the readers of the print edition of this text: although the print edition of this text
is in greyscale, this a color image.

We will then set up an empty array of zeros that will store the blurred
image:

if __name__ == '__main__':
    akshada = np.float32(plt.imread('akshada.jpg')) / 255



    akshada_blurred = np.zeros_like(akshada)

Let's set up our convolution kernel. Here, a standard deviation of 15 should
be enough:

ker = gaussian_ker(15)

We can now blur the image. Since this is a color image, we will have to
apply Gaussian filtering to each color layer (red, green, and blue)
individually; this is indexed by the third dimension in the image arrays:

for k in range(3):
    akshada_blurred[:,:,k] = conv_2d(ker, akshada[:,:,k])

Now let's look at the Before and After images side-by-side by using some
Matplotlib tricks:

fig, (ax0, ax1) = plt.subplots(1,2)
fig.suptitle('Gaussian Filtering', fontsize=20)
ax0.set_title('Before')
ax0.axis('off')
ax0.imshow(akshada)
ax1.set_title('After')
ax1.axis('off')
ax1.imshow(akshada_blurred)
plt.tight_layout()
plt.subplots_adjust(top=.85)
plt.show()

We can now run the program and observe the effects of Gaussian filtering:



This program is available in the Chapter07 directory in a file called conv_2d.py in the
repository for this book.



Using cuSolver from Scikit-CUDA
We will now look at how we can use cuSolver from Scikit-CUDA's linalg
submodule. Again, this provides a high-level interface for both cuBLAS
and cuSolver, so we don't have to get caught up in the small details.

As we noted in the introduction, cuSolver is a library that's used for
performing more advanced linear algebra operations than cuBLAS, such as
the Singular Value Decomposition, LU/QR/Cholesky factorization, and
eigenvalue computations. Since cuSolver, like cuBLAS and cuFFT, is
another vast library, we will only take the time to look at one of the most
fundamental operations in data science and machine learning—SVD.

Please refer to NVIDIA's official documentation on cuSOLVER if you would like further
information on this library: https://docs.NVIDIA.com/cuda/cusolver/index.html. 

https://docs.nvidia.com/cuda/cusolver/index.html


Singular value decomposition
(SVD)
SVD takes any m x n matrix A, and then returns three matrices in return—
U, Σ, and V. Here, U is an m x m unitary matrix, Σ is an m x n diagonal
matrix, and V is an n x n unitary matrix. By unitary, we mean that a matrix's
columns form an orthonormal basis; by diagonal, we mean that all values in
the matrix are zero, except for possibly the values along its diagonal.

The significance of the SVD is that this decomposes A into these matrices
so that we have A = UΣVT ; moreover, the values along the diagonal of Σ
will all be positive or zero, and are known as the singular values. We will
see some applications of this soon, but you should keep in mind that the
computational complexity of SVD is of the order O(mn2)—for large
matrices, it is definitely a good idea to use a GPU, since this algorithm is
parallelizable.

We'll now look at how we can compute the SVD of a matrix. Let's make the
appropriate import statements:

import pycuda.autoinit
from pycuda import gpuarray
import numpy as np
from skcuda import linalg

We will now generate a relatively large random matrix and transfer it to the
GPU:

a = np.random.rand(1000,5000).astype(np.float32)
a_gpu = gpuarray.to_gpu(a)

We can now execute the SVD. This will have three outputs corresponding
to the matrices that we just described. The first parameter will be the matrix
array we just copied to the GPU. Then we need to specify that we want to
use cuSolver as our backend for this operation:



U_d, s_d, V_d = linalg.svd(a_gpu,  lib='cusolver')

Now let's copy these arrays from the GPU to the host:

U = U_d.get()
s = s_d.get()
V = V_d.get()

s is actually stored as a one-dimensional array; we will have to create a zero
matrix of size 1000 x 5000 and copy these values along the diagonal. We
can do this with the NumPy diag function, coupled with some array slicing:

S = np.zeros((1000,5000))
S[:1000,:1000] = np.diag(s)

We can now matrix-multiply these values on the host with the NumPy dot
function to verify that they match up to our original array:

print 'Can we reconstruct a from its SVD decomposition? : %s' % np.allclose(a, 
np.dot(U, np.dot(S, V)), atol=1e-5)

Since we are using only float32s and our matrix is relatively large, a bit of
numerical error was introduced; we had to set the "tolerance" level (atol) a
little higher than usual here, but it's still small enough to verify that the two
arrays are sufficiently close.



Using SVD for Principal
Component Analysis (PCA)
Principal Component Analysis (PCA) is a tool that's used primarily for
dimensionality reduction. We can use this to look at a dataset and find which
dimensions and linear subspaces are the most salient. While there are several
ways to implement this, we will show you how to perform PCA using SVD.

We'll do this as follows—we will work with a dataset that exists in 10
dimensions. We will start by creating two vectors that are heavily weighted
in the front, and 0 otherwise:

vals = [ np.float32([10,0,0,0,0,0,0,0,0,0]) , np.float32([0,10,0,0,0,0,0,0,0,0]) ]

We will then add 9,000 additional vectors: 6,000 of these will be the same as
the first two vectors, only with a little added random white noise, and the
remaining 3,000 will just be random white noise:

for i in range(3000):
    vals.append(vals[0] + 0.001*np.random.randn(10))
    vals.append(vals[1] + 0.001*np.random.randn(10))
    vals.append(0.001*np.random.randn(10))

We will now typecast the vals list to a float32 NumPy array. We take the
mean over the rows and subtract this value from each row. (This is a
necessary step for PCA.) We then transpose this matrix, since
cuSolver requires that input matrices have fewer or equal rows compared to
the columns:

vals = np.float32(vals)
vals = vals - np.mean(vals, axis=0)
v_gpu = gpuarray.to_gpu(vals.T.copy())

We will now run cuSolver, just like we did previously, and copy the output
values off of the GPU:

U_d, s_d, V_d = linalg.svd(v_gpu, lib='cusolver')

u = U_d.get()



s = s_d.get()
v = V_d.get()

Now we are ready to begin our investigative work. Let's open up IPython
and take a closer look at u and s. First, let's look at s; its values are actually
the square roots of the principal values, so we will square them and then
take a look:

You will notice that the first two principal values are of the order 105, while
the remaining components are of the order 10-3. This tells us there is only
really a two-dimensional subspace that is even relevant to this data at all,
which shouldn't be surprising. These are the first and second values, which
will correspond to the first and second principal components that is, the
corresponding vectors. Let's take a look at these vectors, which will be
stored in U:

You will notice that these two vectors are very heavily weighted in the first
two entries, which are of the order 10-1; the remaining entries are all of the
order 10-6 or lower, and are comparably irrelevant. This is what we should
have expected, considering how biased we made our data in the first two
entries. That, in a nutshell, is the idea behind PCA.



Summary
We started this chapter by looking at how to use the wrappers for the
cuBLAS library from Scikit-CUDA; we have to keep many details in mind
here, such as when to use column-major storage, or if an input array will be
overwritten in-place. We then look at how to perform one- and two-
dimensional FFTs with cuFFT from Scikit-CUDA, and how to create a
simple convolutional filter. We then showed you how to apply this for a
simple Gaussian blurring effect on an image. Finally, we looked at how to
perform a singular value decomposition (SVD) on the GPU with cuSolver,
which is normally a very computationally onerous operation, but which
parallelizes fairly well onto the GPU. We ended this chapter by looking at
how to use the SVD for basic PCA.



Questions
1.  Suppose you get a job translating some old legacy FORTRAN BLAS

code to CUDA. You open a file and see a function called SBLAH, and
another called ZBLEH. Can you tell what datatypes these two
functions use without looking them up?

2. Can you alter the cuBLAS level-2 GEMV example to work by directly
copying the matrix A to the GPU, without taking the transpose on the
host to set it column-wise?

3. Use cuBLAS 32-bit real dot-product (cublasSdot) to implement matrix-
vector multiplication using one row-wise matrix and one stride-1
vector.

4. Implement matrix-matrix multiplication using cublasSdot.
5. Can you implement a method to precisely measure the GEMM

operations in the performance measurement example? 
6. In the example of the 1D FFT, try typecasting x as a complex64 array, and

then switching the FFT and inverse FFT plans to be complex64 valued in
both directions. Then confirm whether np.allclose(x, x_gpu.get()) is true
without checking the first half of the array. Why do you think this
works now?

7. Notice that there is a dark edge around the blurred image in the
convolution example. Why is this in the blurred image but not in the
original? Can you think of a method that you can use to mitigate this?



The CUDA Device Function
Libraries and Thrust
In the last chapter, looking at a fairly broad overview of the libraries that are
available in CUDA through the Scikit-CUDA wrapper module. We will
now look at a few other libraries that we will have to use directly from
within CUDA C proper, without the assistance of wrappers like those in
Scikit-CUDA. We will start by looking at two standard libraries that consist
of device functions that we may invoke from any CUDA C kernel cuRAND
and the CUDA Math API. By the end of learning how to use these libraries,
we will know how to use these libraries in the context of Monte Carlo
integration. Monte Carlo integration is a well-known randomized method
that provides estimates for the values of definite integrals from calculus. We
will first look at a basic example of how to implement a simple Monte
Carlo method with cuRAND to do a basic estimate of the value of Pi (as in
the well-known constant, π=3.14159...), and then we'll embark on a more
ambitious project where we will construct a Python class that can perform
definite integration on any arbitrary mathematical function, and use the
Math API for creating such functions. We'll also look at how to effectively
use some ideas from metaprogramming in our design of this class.

 We will then take another look at writing some pure CUDA programs with
the help of the Thrust C++ library. Thrust is a library that provides C++
template containers, similar to those in the C++ Standard Template Library
(STL). This will enable us to manipulate CUDA C arrays from C++ in a
more natural way that is closer to PyCUDA's gpuarray and the STL's vector
container. This will save us from having to constantly use pointers, such as
mallocs and frees, that plagued us before in CUDA C.

In this chapter, we will look at the following topics:

Understanding the purpose that a seed has in generating lists of
pseudo-random numbers



Using cuRAND device functions for generating random numbers in a
CUDA kernel
Understanding the concept of Monte Carlo integration
Using dictionary-based string formatting in Python for
metaprogramming
Using the CUDA Math API device function library
Understanding what a functor is
Using the Thrust vector container when programming in pure CUDA
C



Technical requirements
A Linux or Windows 10 PC with a modern NVIDIA GPU (2016—onward)
is required for this chapter, with all of the necessary GPU drivers and the
CUDA Toolkit (9.0–onward) installed. A suitable Python 2.7 installation
(such as Anaconda Python 2.7) with the PyCUDA module is also required.

This chapter's code is also available on GitHub, and can be found at https://
github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA.

For more information about the prerequisites for this chapter, check the preface of this
book. For the software and hardware requirements, check out the README at https://git
hub.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA.

https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA
https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA


The cuRAND device function
library
Let's start with cuRAND. This is a standard CUDA library that is used for
generating pseudo-random values within a CUDA kernel on a thread-by-
thread basis, which is initialized and invoked by calling device functions
from each individual thread within a kernel. Let's emphasize again that this
is a pseudo-random sequence of values—since the digital hardware is
always deterministic and never random or arbitrary, we use algorithms to
generate a sequence of apparently random values from an initial seed value.
Usually, we can set the seed value to a truly random value (such as the
clock time in milliseconds), which will yield us with a nicely arbitrary
sequence of random values. These generated random values have no
correlation with prior or future values in the sequence generated by the
same seed, although there can be correlations and repeats when you
combine values generated from different seeds. For this reason, you have to
be careful that the values you wish to be mutually random are generated by
the same seed.

Let's start by looking at the function prototype for curand_init, which we will
initialize with an appropriate seed:

__device__ void curand_init ( unsigned long long seed, unsigned long long 
sequence, unsigned long long offset, curandState_t *state)

Here, all of the inputs are unsigned long, which in C is an unsigned (non-
negative valued) 64-bit integer. First, we can see the seed, which is, of
course, the seed value. Generally speaking, you'll set this with the clock
value or some variation. We then see a value called sequence and as we stated
previously, values generated by cuRAND will only be truly mathematically
mutually random if they are generated by the same seed value. So, if we
have multiple threads using the same seed value, we use sequence to indicate
which sub-sequence of random numbers of length 2190 for the current thread
to use, while we use offset to indicate at which point to start within this sub-



sequence; this will generate values in each thread that are all
mathematically mutually random with no correlation. Finally, the last
parameter is for a pointer to a curandState_t object; this keeps track of where
we are in the sequence of pseudo-random numbers.

After you initialize a class object, you will then generate random values
from the appropriate random distribution by calling the appropriate device
function. The two most common distributions are uniform and normal
(Gaussian). A uniform distribution (curand_uniform, in cuRAND) is a function
that outputs values that are all equally probable over a given range: that is
to say, for a uniform distribution over 0 to 1, there is a 10% chance that a
value will fall between 0 and 0.1, or between 0.9 to 1, or between any two
points that are spaced .1 away from each other. The normal distribution
(curand_normal, in cuRAND) has values that are centered at a particular mean,
which will be distributed according to the well-known bell-shaped curve
that is defined by the distribution's standard deviation. (The default mean of
curand_normal is 0 and the standard deviation is 1 in cuRAND, so this will
have to be shifted and scaled manually for other values.) Another well-
known distribution supported by cuRAND is the Poisson distribution
(curand_poisson), which is used for modeling the occurrences of random
events over time.

We will be primarily looking at how to use cuRAND in the context of
uniform distributions in the next section, due to their applicability to Monte
Carlo integration. Readers interested in learning how to use more features
in cuRAND are encouraged to look at the official documentation from
NVIDIA.



Estimating π with Monte Carlo
First, we will apply our new knowledge of cuRAND to perform an estimate
of the well-known mathematical constant π, or Pi, which is, of course, the
never-ending irrational number 3.14159265358979...

To get an estimate, though, we need to take a moment to think about what
this means. Let's think about a circle. Remember that the radius of a circle
is the length from the center of the circle to any point in the circle; usually,
this is designated with R. The diameter is defined as D = 2R, and the
circumference C is the length around the circle. Pi is then defined as π = C /
D . We can use Euclidean geometry to find a formula for the area of the
circle, which turns out being A = πR2 . Now, let's think about a circle with
radius R being circumscribed in a square with all sides of length 2R:

So, of course, we know that the area of the square is (2R)2 = 4R2. Let's
consider R=1, so that we have known that the area of the circle is exactly π,
while the area of the square is exactly 4. Let's make a further assumption
and state that both the circle and square are centered at (0,0) in the
Cartesian plane. Now, let's take a completely random value within the
square, (x,y), and see if it falls within the circle. How can we do this? By
applying the Pythagorean formula: we do this by checking whether x2 + y2

is less than or equal to 1. Let's designate the total number of random points
we choose with iters, and the number of hits with hits.



Let's do a little bit more thinking about this: the probability of picking a
point within the circle should be proportionate to the area of the circle
divided by the area of the rectangle; here, this is π / 4. However, if we
choose a very large value of random points, notice that we will get the
following approximation:

This is exactly how we will estimate π! The number of iterations we will
have to do will be very high before we can come up with a decent estimate
of Pi, but notice how nicely parallelizable this is: we can check the "hits" in
different threads, splitting the total number of iterations among different
threads. At the end of the day, we can just sum up the total number of hits
among all of the threads to get our estimate.

We can now begin to write a program to make our Monte Carlo estimate.
Let's first import the usual Python modules that we will need for a
PyCUDA program, with one addition from SymPy:

SymPy is used for perfect symbolic computations that are to be made in Python so that
when we have very large integers, we can use the Rational function to make a much
more accurate floating-point estimate of a division.

import pycuda.autoinit
import pycuda.driver as drv
from pycuda import gpuarray
from pycuda.compiler import SourceModule
import numpy as np
from sympy import Rational

Now, we have to do something a little different than normal when we build
our kernel: we need to set the option no_extern_c=True in SourceModule. This
modifies how the code is compiled so that our code can properly link with
C++ code, as required by the cuRAND library. We then begin writing our
kernel and include the appropriate header:

ker = SourceModule(no_extern_c=True, source='''
#include <curand_kernel.h>



Now, let's include a macro for the Pythagorean distance. Since we are just
checking if this value is equal to or below 1, we can, therefore, omit the
square root. We will be using a lot of unsigned 64-bit integers, so let's make
another macro to save us from typing unsigned long long over and over:

#define _PYTHAG(a,b) (a*a + b*b)
#define ULL unsigned long long

We can now set up our kernel. By the nature of PyCUDA, this will have to
be compiled to the interface as a bonafide C function rather than as a C++
function. We do this with an extern "C" block:

extern "C" {

We can now define our kernel. We will have two parameters: one for iters,
which is the total number of iterations for each thread, and another for an
array that will hold the total number of hits for each thread. We will need a
curandState object for this:

__global__ void estimate_pi(ULL iters, ULL * hits)
{
    curandState cr_state;

Let's hold the global thread ID in an integer called tid:

int tid = blockIdx.x * blockDim.x + threadIdx.x;

clock() is a device function that outputs the current time down to the
millisecond. We can add tid to the output of clock() to get a unique seed for
each thread. We don't need to use different subsequences or offsets, so let's
set them both to 0. We will also carefully typecast everything here to 64-bit
unsigned integers:

curand_init( (ULL) clock() + (ULL) tid, (ULL) 0, (ULL) 0, &cr_state);

Let's set up the x and y values to hold a random point in the rectangle:

float x, y;

We will then iterate iters times to see how many hits in the circle we get.
We generate these with curand_uniform(&cr_state). Notice that we can generate



them over 0 to 1, rather than from -1 to 1, since the squaring of these in the
_PYTHAG macro will remove any negative values:

for(ULL i=0; i < iters; i++)
 {
     x = curand_uniform(&cr_state);
     y = curand_uniform(&cr_state);

     if(_PYTHAG(x,y) <= 1.0f)
         hits[tid]++;
 }

We can now end and close off our kernel, as well as the extern "C" block
with another final } bracket:

return;
}
}
''')

Now, let's get the Python wrapper function to our kernel with get_function.
We will also set up the block and grid sizes: 32 threads per block, and 512
blocks per grid. Let's calculate the total number of threads and set up an
array on the GPU to hold all of the hits (initialized to 0s, of course):

pi_ker = ker.get_function("estimate_pi")
threads_per_block = 32
blocks_per_grid = 512
total_threads = threads_per_block * blocks_per_grid
hits_d = gpuarray.zeros((total_threads,),dtype=np.uint64)

Let's set up the total number of iterations per thread to 224:

iters = 2**24

We can now launch the kernel as usual:

pi_ker(np.uint64(iters), hits_d, grid=(blocks_per_grid,1,1), block=
(threads_per_block,1,1))

Now, let's sum over the number of hits in the array, which gives us the total
number of hits. Let's also calculate the total number of iterations among all
of the threads in the array:

total_hits = np.sum( hits_d.get() )
total = np.uint64(total_threads) * np.uint64(iters)



We can now make our estimate with Rational, like so:

est_pi_symbolic =  Rational(4)*Rational(int(total_hits), int(total) )

We can now convert this into a floating point value:

est_pi = np.float(est_pi_symbolic.evalf())

Let's check our estimate against NumPy's constant value, numpy.pi:

print "Our Monte Carlo estimate of Pi is : %s" % est_pi
print "NumPy's Pi constant is: %s " % np.pi
print "Our estimate passes NumPy's 'allclose' : %s" % np.allclose(est_pi, np.pi)

We are now done. Let's run this from IPython and check it
out (This program is also available as the monte_carlo_pi.py file under Chapter08
in this book's repository.):



The CUDA Math API
Now, we will take a look at the CUDA Math API. This is a library that
consists of device functions similar to those in the standard C math.h library
that can be called from individual threads in a kernel. One difference here is
that single and double valued floating-point operations are overloaded, so if
we use sin(x) where x is a float, the sin function will yield a 32-bit float as
the output, while if x were a 64-bit double, then the output of sin would also
be a 64-bit value (Usually, this is the proper name for a 32-bit function, but
it has an f at the end, such as sinf). There are also additional
instrinsic functions. Intrinsic functions are less accurate but faster math
functions that are built into the NVIDIA CUDA hardware; generally, they
have similar names to the original function, except that they are preceded
with two underscores—therefore, the intrinsic, 32-bit sin function is __sinf.



A brief review of definite
integration
Now, we're going to use some object-oriented programming in Python to set
up a class that we can use to evaluate definite integrals of functions using a
Monte Carlo method. Let's stop for a moment and talk about what we mean:
suppose we have a mathematical function (as in the type you might see in a
calculus class) that we call f(x). When we graph this out on the Cartesian
plane between points a and b, it may look something like this:

Now, let's review exactly what definite integration means—let's denote the
first gray area in this graph as I, the second gray area as II, and the third
gray area as III. Notice that the second gray area here is below zero. The
definite integral of f here, from a to b, will be the value I - II + III, and we

will denote this mathematically as  . In general, the definite
integral from a to b is just the sum of all of the total "positive" area bounded
by the f function and x-axis with y > 0 between a and b, minus all of the
"negative" area bounded by the f function and the x-axis with y < 0 between
a and b.

There are many ways to calculate or estimate the definite integral of a
function between two points. One that you may have seen in a calculus
class is to find a closed-form solution: find the anti-derivative of f, F, and
calculate F(b) - F(a). In many areas, though, we won't be able to find an
exact anti-derivative, and we will have to determine the definite integral



numerically. This is exactly the idea behind Monte Carlo integration: we
evaluate f at many, many random points between a and b, and then use
those to make an estimate of the definite integral.



Computing definite integrals with
the Monte Carlo method
We are now going to use the CUDA Math API for representing an arbitrary
mathematical function, f, while using the cuRAND library to implement the
Monte Carlo integral. We will do this with metaprogramming: we will use
Python to generate the code for a device function from a code template,
which will plug into an appropriate Monte Carlo kernel for integration. 

The idea here is that it will look and act similarly to some of the metaprogramming
tools we've seen with PyCUDA, such as ElementwiseKernel.

Let's start by importing the appropriate modules into our new project:

import pycuda.autoinit
import pycuda.driver as drv
from pycuda import gpuarray
from pycuda.compiler import SourceModule
import numpy as np

We're going to use a trick in Python called dictionary based string
formatting. Let's go over this for a minute before we continue. Suppose we
are writing a chunk of CUDA C code, and we are unsure of whether we
want a particular collection of variables to be float or double; perhaps it
looks like this: code_string="float x, y; float * z;". We might actually want to
format the code so that we can switch between floats and doubles on the fly.
Let's change all references from float in the string to %(precision)s—
code_string="%(precision)s x, y; %(precision)s * z;". We can now set up an
appropriate dictionary that will swap %(presision)s with double, which
is, code_dict = {'precision' : 'double'}, and get the new double string with
code_double = code_string % code_dict. Let's take a look:



Now, let's think for a moment about how we want our new Monte Carlo
integrator to work. We will also have it take a string that is a math equation
that is written using the CUDA Math API to define the function we want to
integrate. We can then fit this string into the code using the dictionary trick
we just learned, and use this to integrate arbitrary functions. We will also
use the template to switch between float and double precision, as per the
user's discretion.

We can now begin our CUDA C code:

MonteCarloKernelTemplate = '''
#include <curand_kernel.h>

We will keep the unsigned 64-bit integer macro from before, ULL. Let's
define some new macros for a reciprocal of x (_R), and for squaring (_P2):

#define ULL unsigned long long
#define _R(z) ( 1.0f / (z) )
#define _P2(z) ( (z) * (z) )

Now, let's define a device function that our equation string will plug into.
We will use the math_function value when we have to swap the text from a
dictionary. We will have another value called p, for precision (which will
either be a float or double). We'll call this device function f. We'll put an
inline in the declaration of the function, which will save us a little time from
branching when this is called from the kernel:

__device__ inline %(p)s f(%(p)s x)
{
    %(p)s y;
    %(math_function)s;
    return y;
}



Now, let's think about how this will work— We declare a 32 or 64-bit
floating point value called y, call math_function, and then return
y. math_function, which will only make sense if it's some code that acts on the
input parameter x and sets some value to y, such as y = sin(x). Let's keep this
in mind and continue.

We will now begin writing our Monte Carlo integration kernel. Let's
remember that we have to make our CUDA kernel visible from plain C with
the extern "C" keyword. We will then set up our kernel.

First, we will indicate how many random samples each thread in the kernel
should take with iters; we then indicate the lower bound of integration (b)
with lo and the upper bound (a) with hi, and pass in an array, ys_out, to store
the collection of partial integrals for each thread (we will later sum over
ys_out to get the value of the complete definite integral from lo to hi on the
host side). Again, notice how we are referring to the precision as p:

extern "C" {
__global__ void monte_carlo(int iters, %(p)s lo, %(p)s hi, %(p)s * ys_out)
{

 We will need a curandState object for generating random values. We will
also need to find the global thread ID and the total number of threads. Since
we are working with a one-dimensional mathematical function, it makes
sense to set up our block and grid parameters in one dimension, x, as well:

curandState cr_state;
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int num_threads = blockDim.x * gridDim.x;

We will now calculate the amount of area there is between lo and hi that a
single thread will process. We'll do this by dividing up the entire length of
the integration (which will be hi - lo) by the total number of threads.:

Again, note how we are using templating tricks so that this value can be multi-
precision.

%(p)s t_width = (hi - lo) / ( %(p)s ) num_threads;

Recall that we have a parameter called iters; this indicates how many
random values each thread will sample. We need to know what the density



of the samples is in a little bit; that is, the average number of samples per
unit distance. We calculate it like so, remembering to typecast the integer
iters into a floating-point value:

%(p)s density = ( ( %(p)s ) iters ) / t_width;

Recall that we are dividing the area we are integrating over by the number
of threads. This means that each thread will have its own start and end
point. Since we are dividing up the lengths fairly for each thread, we
calculate this like so:

%(p)s t_lo = t_width*tid + lo;
 %(p)s t_hi = t_lo + t_width;

We can now initialize cuRAND like we did previously, making sure that
each thread is generating random values from its own individual seed:

curand_init( (ULL)  clock() + (ULL) tid, (ULL) 0, (ULL) 0, &cr_state);

Before we start sampling, we will need to set up some additional floating
point values. y will hold the final value for the integral estimate from t_lo to
t_hi, and y_sum will hold the sum of all of the sampled values. We will also
use the rand_val variable to hold the raw random value we generate, and x to
store the scaled random value from the area that we will be sampling from:

%(p)s y, y_sum = 0.0f;
%(p)s rand_val, x;

Now, let's loop to the sample values from our function, adding the values
into y_sum. The one salient thing to notice is the %(p_curand)s at the end of
curand_uniform—the 32-bit floating point version of this function is
curand_uniform, while the 64-bit version is curand_uniform_double. We will have
to swap this with either _double or an empty string later, depending on what
level of precision we go with here. Also, notice how we scale rand_val so
that x falls between t_lo and t_hi, remembering that random uniform
distributions in cuRAND only yields values between 0 and 1:

for (int i=0; i < iters; i++)
{
    rand_val = curand_uniform%(p_curand)s(&cr_state);
    x = t_lo + t_width * rand_val;



    y_sum += f(x);
}

We can now calculate the value of the subintegral from t_lo to t_hi by
dividing y_sum by density:

y = y_sum / density;

We output this value into the array and close off our CUDA kernel, as well
as the extern "C", with the final closing bracket. We're done writing CUDA
C, so we will close off this section with a triple-quote:

ys_out[tid] = y;
}
}
'''

We will now do something a little different—we're going to set up a class to
handle our definite integrals. Let's call it MonteCarloIntegrator. We will start, of
course, by writing the constructor, that is, the __init__ function. This is
where we will input the object reference, self. Let's set up the default value
for math_function to be 'y = sin(x)', with the default precision as 'd', for
double. We'll also set the default value for lo as 0 and hi as the NumPy
approximation of π . Finally, we'll have values for the number of random
samples each thread will take (samples_per_thread), and the grid size that we
will launch our kernel over (num_blocks).

Let's start this function by storing the text string math_function within the self
object for later use:

def __init__(self, math_function='y = sin(x)', precision='d', lo=0, hi=np.pi, 
samples_per_thread=10**5, num_blocks=100):
        
        self.math_function = math_function

Now, let's set up the values related to our choice of floating-point precision
that we will need for later, particularly for setting up our template
dictionary. We will also store the lo and hi values within the object. Let's
also be sure to raise exception errors if the user inputs an invalid datatype,
or if hi is actually smaller than lo:



         if precision in [None, 's', 'S', 'single', np.float32]:
             self.precision = 'float'
             self.numpy_precision = np.float32
             self.p_curand = ''
         elif precision in ['d','D', 'double', np.float64]:
             self.precision = 'double'
             self.numpy_precision = np.float64
             self.p_curand = '_double'
         else:
             raise Exception('precision is invalid datatype!')
 
     if (hi - lo <= 0):
         raise Exception('hi - lo <= 0!')
     else:
         self.hi = hi
         self.lo = lo

We can now set up our code template dictionary:

MonteCarloDict = {'p' : self.precision, 'p_curand' : self.p_curand, 
'math_function' : self.math_function}

We can now generate the actual final code using dictionary-based string
formatting, and compile. Let's also turn off warnings from the nvcc compiler
by setting options=['-w'] in SourceModule:

self.MonteCarloCode = MonteCarloKernelTemplate % MonteCarloDict

self.ker = SourceModule(no_extern_c=True , options=['-w'], 
source=self.MonteCarloCode)

We will now set up a function reference in our object to our compiled
kernel with get_function. Let's save the remaining two parameters within our
object before we continue:

self.f = self.ker.get_function('monte_carlo')
self.num_blocks = num_blocks
self.samples_per_thread = samples_per_thread

Now, while we will need different instantiations of MonteCarloIntegrator
objects to evaluate definite integrals of different mathematical functions or
floating point precision, we might want to evaluate the same integral over
different lo and hi bounds, change the number of threads/grid size, or alter
the number of samples we take at each thread. Thankfully, these are easy
alterations to make, and can all be made at runtime. 



We'll set up a specific function for evaluating the integral of a given object.
We will set the default values of these parameters to be those that we stored
during the call to the constructor:

def definite_integral(self, lo=None, hi=None, samples_per_thread=None, 
num_blocks=None):
    if lo is None or hi is None:
        lo = self.lo
        hi = self.hi
    if samples_per_thread is None:
        samples_per_thread = self.samples_per_thread
    if num_blocks is None:
        num_blocks = self.num_blocks
        grid = (num_blocks,1,1)
    else:
        grid = (num_blocks,1,1)

    block = (32,1,1)
    num_threads = 32*num_blocks

We can finish this function off by setting up an empty array to store the
partial sub-integrals and launching the kernel. We then need to sum over the
sub-integrals to get the final value, which we return:

self.ys = gpuarray.empty((num_threads,) , dtype=self.numpy_precision)

self.f(np.int32(samples_per_thread), self.numpy_precision(lo), 
self.numpy_precision(hi), self.ys, block=block, grid=grid)

self.nintegral = np.sum(self.ys.get() )
 
return np.sum(self.nintegral)

We are ready to try this out. Let's just set up a class with the default values
—this will integrate y = sin(x) from 0 to π. If you remember calculus, the
anti-derivative of sin(x) is -cos(x), so we can evaluate the definite integral
like so:

Therefore, we should get a numerical value close to 2. Let's see what we
get:





Writing some test cases
Now, we will finally get to see how to use the CUDA Math API to write
some test cases for our class by way of the math_function parameter. These will
be fairly straightforward if you have any experience with the C/C++
standard math library. Again, these functions are overloaded so that we don't
have to change the names of anything when we switch between single and
double precision.

We've already seen one example, namely y = sin(x). Let's try something a
little more ambitious:

We will integrate this function from a=11.733 to b=18.472, and then check
the output of our Monte Carlo integrator against the known value of this
integral from another source. Here, Mathematica indicates that the value of
this definite integral is 8.9999, so we will check against that. 

Now, let's think of how to represent this function: here, log refers to the
base-e logarithm (also known as ln), and this is just log(x) in the Math API.
We already set up a macro for squaring, so we can represent sin2(x)
as _P2(sin(x)). We can now represent the entire function with y =
log(x)*_P2(sin(x)).

Let's use the following equation, integrating from a=.9 to b=4:

Remembering that _R is the macro we set up for a reciprocal, we can write
the function with the Math API like so:

'y = _R( 1 + sinh(2*x)*_P2(log(x)) )' 



Before we move on, let's note that Mathematica tells us that the value of this
definite integral is .584977.

Let's check on one more function. Let's be a little ambitious and say that it's
this:

We can represent this as 'y = (cosh(x)*sin(x))/ sqrt( pow(x,3) + _P2(sin(x)))';
naturally sqrt is the square root in the denominator, and pow allows us to take
a value of arbitrary power. Of course, sin(x) is sin(x) and cosh(x) is cosh(x).
We integrate this from a=1.85 to b=4.81; Mathematica tells us that the true
value of this integral is -3.34553.

We are now ready to check some test cases and verify that our Monte Carlo
integral is working! Let's iterate over a list, whose first value is a string
indicating the function (using the Math API), the second value indicates the
lower bound of integration, the third indicates the upper bound of
integration, and the last value indicates the expected value that was
calculated with Mathematica:

if __name__ == '__main__':

    integral_tests = [('y =log(x)*_P2(sin(x))', 11.733 , 18.472, 8.9999), ('y = _R( 
1 + sinh(2*x)*_P2(log(x)) )', .9, 4, .584977), ('y = (cosh(x)*sin(x))/ sqrt( 
pow(x,3) + _P2(sin(x)))', 1.85, 4.81, -3.34553) ]

We can now iterate over this list and see how well our algorithm works
compared to Mathematica:

for f, lo, hi, expected in integral_tests:
    mci = MonteCarloIntegrator(math_function=f, precision='d', lo=lo, hi=hi)
    print 'The Monte Carlo numerical integration of the function\n \t f: x -> %s \n 
\t from x = %s to x = %s is : %s ' % (f, lo, hi, mci.definite_integral())
    print 'where the expected value is : %s\n' % expected

Let's run this right now:



This is also available as the monte_carlo_integrator.py file under the Chapter08 directory in
this book's repository.



The CUDA Thrust library
We will now look at the CUDA Thrust Library. This library's central feature
is a high-level vector container that is similar C++'s own vector container.
While this may sound trivial, this will allow us to program in CUDA C with
less reliance on pointers, mallocs, and frees. Like the C++ vector container,
Thrust's vector container handles the resizing and concatenation of elements
automatically, and with the magic of C++ destructors, freeing is also
handled automatically when a Thrust vector object goes out of scope.

Thrust actually provides two vector containers: one for the host-side, and
one for the device-side. The host-side Thrust vector is more or less identical
to the STL vector, with the main difference being that it can interact more
easily with the GPU. Let's write a little bit of code in proper CUDA C to get
a feel for how this works. 

Let's start with the include statements. We'll be using the headers for both
the host and device side vectors, and we'll also include the C++ iostream
library, which will allow us to perform basic I/O operations on the
Terminal:

#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <iostream>

Let's just use the standard C++ namespace (this is so that we don't have to
type in the std:: resolution operator when checking the output):

using namespace std;

We will now make our main function and set up an empty Thrust vector on
the host side. Again, these are C++ templates, so we have to choose the
datatype upon declaration with the < > brackets. We will set this up to be an
array of integers:

int main(void)
{



 thrust::host_vector<int> v;

Now, let's append some integers to the end of v by using push_back, exactly
how we would do so with a regular STL vector:

v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);

We will now iterate through all of the values in the vector, and output each
value:

The output here should be v[0] == 1 through v[3] == 4.

for (int i = 0; i < v.size(); i++)
    cout << "v[" << i << "] == " << v[i] << endl;

This may have seemed trivial so far. Let's set up a Thrust vector on the GPU
and then copy the contents from v:

thrust::device_vector<int> v_gpu = v;

Yes, that's all—only one line, and we're done. All of the content of v on the
host will now be copied to v_gpu on the device! (If this doesn't amaze you,
please take another look at Chapter 6, Debugging and Profiling Your CUDA
Code, and think about how many lines this would have taken us before.)

Let's try using push_back on our new GPU vector, and see if we can
concatenate another value to it:

v_gpu.push_back(5);

We will now check the contents of v_gpu, like so:

for (int i = 0; i < v_gpu.size(); i++)
    std::cout << "v_gpu[" << i << "] == " << v_gpu[i] << std::endl;

This part should output v_gpu[0] == 1 through v_gpu[4] == 5.

Again, thanks to the destructors of these objects, we don't have to do any
cleanup in the form of freeing any chunks of allocated memory. We can



now just return from the program, and we are done:

    return 0;
}



Using functors in Thrust
Let's see how we can use a concept known as functors in Thrust. In C++, a
functor is a class or struct object that looks and acts like a function; this lets
us use something that looks and acts like a function, but can hold some
parameters that don't have to be set every time it is used.

Let's start a new Thrust program with the appropriate include statements,
and use the standard namespace:

#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <iostream>
using namespace std;

Now, let's set up a basic functor. We will use a struct to represent this, rather
than class. This will be a weighted multiplication function, and we will store
the weight in a float called w. We will make a constructor that sets up the
weight with a default value of 1:

struct multiply_functor {
 float w;
 multiply_functor(float _w = 1) : w(_w) {}

We will now set up our functor with the operator() keyword; this will
indicate to the compiler to treat the following block of code as the
default function for objects of this type. Remember that this will be running
on the GPU as a device function, so we precede the whole thing with
__device__. We indicate the inputs with parentheses and output the
appropriate value, which is just a scaled multiple. Now, we can close off the
definition of our struct with };:

    __device__ float operator() (const float & x, const float & y) { 
        return w * x * y;
     }
};

Now, let's use this to make a basic dot product function; recall that this
requires a pointwise multiplication between two arrays, followed by a



reduce type sum. Let's start by declaring our function and creating a new
vector, z, that will hold the values of the point-wise multiplication:

float dot_product(thrust::device_vector<float> &v, thrust::device_vector<float> &w 
), thrust::device_vector<float> &z)
{
 thrust::device_vector<float> z(v.size());

We will now use Thrust's transform operation, which will act on the inputs of
v and w point-wise, and output into z. Notice how we input the functor into
the last slot of transform; by using the plain closed parentheses like so, it
will use the default value of the constructor (w = 1) so that this will act as a
normal, non-weighted/scaled dot product:

thrust::transform(v.begin(), v.end(), w.begin(), z.begin(), multiply_functor());

We can now sum over z with Thrust's reduce function. Let's just return the
value:

return thrust::reduce(z.begin(), z.end());
}

We're done. Now, let's write some test code—we'll just take the dot product
of the vectors [1,2,3] and [1,1,1], which will be easy for us to check. (This
will be 6.)

Let's just set up the first vector, v, using push_back:

int main(void)
{
    thrust::device_vector<float> v;
    v.push_back(1.0f);
    v.push_back(2.0f);
    v.push_back(3.0f);

We can now declare a vector, w, to be of size 3, and we can set its default
values to 1 using Thrust's fill function, like so:

thrust::device_vector<float> w(3);
thrust::fill(w.begin(), w.end(), 1.0f);

Let's do a check to make sure that our values are set correctly by outputting
their values to cout:



for (int i = 0; i < v.size(); i++)
 cout << "v[" << i << "] == " << v[i] << endl;

for (int i = 0; i < w.size(); i++)
 cout << "w[" << i << "] == " << w[i] << endl;

Now, we can check the output of our dot product, and then return from the
program:

cout << "dot_product(v , w) == " << dot_product(v,w) << endl;
return 0;
}

Let's compile this (from the command line in both Linux or Windows by
using nvcc thrust_dot_product.cu -o thrust_dot_product) and run it:

The code for this is also available in the thrust_dot_product.cu file in the Chapter08
directory in this book's repository.



Summary
In this chapter, we looked at how to initialize a stream of random numbers
in cuRAND by choosing the appropriate seed. Since computers are
deterministic devices, they can only generate lists of pseudo-random
numbers, so our seed should be something truly random; generally, adding a
thread ID to the clock time in milliseconds will work well enough for most
purposes.

We then looked at how we can use the uniform distribution from cuRAND
to do a basic estimate of Pi. Then we took on a more ambitious project of
creating a Python class that can compute definite integrals of arbitrary
functions; we used some ideas from metaprogramming coupled with the
CUDA Math API to define these arbitrary functions. Finally, we had a brief
overview of the CUDA Thrust library, which is generally used for writing
pure CUDA C programs outside of Python. Thrust most notably provides a
device_vector container that is similar to the standard C++ vector. This reduces
some of the cognitive overhead from using pointers in CUDA C.

Finally, we looked at a brief example of how to use Thrust with an
appropriate functor to do simple point-wise and reduce operations, in the form
of the implementation of a simple dot product function.



Questions
1.  Try rewriting the Monte Carlo integration examples (in the

__main__ function in monte_carlo_integrator.py) to use the CUDA instrinsic
functions. How does the accuracy compare to before?

2. We only used the uniform distribution in all of our cuRAND examples.
Can you name one possible use or application of using the normal
(Gaussian) random distribution in GPU programming?

3. Suppose that we use two different seeds to generate a list of 100
pseudo-random numbers. Should we ever concatenate these into a list
of 200 numbers?

4. In the last example, try adding __host__ before __device__ in the
definition of our operator() function in the multiply_functor struct. Now,
see if you can directly implement a host-side dot-product function
using this functor without any further modifications.

5. Take a look at the strided_range.cu file in the Thrust examples directory.
Can you think of how to use this to implement a general matrix-matrix
multiplication using Thrust?

6. What is the importance of the operator() function when defining a
functor?



Implementation of a Deep Neural
Network
We will now use our accumulated knowledge of GPU programming to
implement our very own deep neural network (DNN) with PyCUDA.
DNNs have attracted a lot of interest in the last decade, as they provide a
robust and elegant model for machine learning (ML). DNNs was also one
of the first applications (outside of rendering graphics) that were able to
show the true power of GPUs by leveraging their massive parallel
throughput, which ultimately helped NVIDIA rise to become a major player
in the field of artificial intelligence.

In the course of this book, we have mostly been covering individual topics
in a bubble on a chapter-by-chapter basis—here, we will build on many of
the subjects we have learned about thus far for our very own
implementation of a DNN. While there are several open source frameworks
for GPU-based DNNs currently available to the general public—for
example, Google's TensorFlow and Keras, Microsoft's CNTK, Facebook's
Caffe2, and PyTorch—it is very instructive to go through an
implementation of one from scratch, which will give us a greater insight
and appreciation of the underlying technologies required for DNNs. We
have a lot of material to cover here, so we'll cut right to the chase after a
brief introduction to some of the basic concepts.

In this chapter, we will be looking at the following:

Understanding what an artificial neuron (AN) is
Understanding how many ANs can be combined together in a deep
neural network (DNN)
Implementing a DNN from scratch in CUDA and Python
Understanding how cross-entropy loss can be used to evaluate the
output of a neural network
Implementing gradient descent to train an NN



Learning how to train and test an NN on a small dataset



Technical requirements
A Linux or Windows 10 PC with a modern NVIDIA GPU (2016—onward)
is required for this chapter, with all of the necessary GPU drivers and the
CUDA Toolkit (9.0–onward) installed. A suitable Python 2.7 installation
(such as Anaconda Python 2.7) with the PyCUDA module is also required.

This chapter's code is also available on GitHub at https://github.com/PacktPubli
shing/Hands-On-GPU-Programming-with-Python-and-CUDA.

For more information about the prerequisites for this chapter, check out the preface of
this book. For the software and hardware requirements, check out the README file in h
ttps://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA.

https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA
https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-Python-and-CUDA


Artificial neurons and
neural networks
Let's briefly go over some of the basics of machine learning (ML)
and neural networks (NNs). In Machine Learning, our goal is to take a
collection of data with a particular set of labeled classes or characteristics
and use these examples to train our system to predict the values of future
data. We call a program or function that predicts classes or labels of future
data based on prior training data a classifier.

There are many types of classifiers, but here we will be focusing on NNs.
The idea behind NNs is that they (allegedly) work in a way that is similar to
the human brain, in that they learn and classify data using a collection of
artificial neurons (ANs), all connected together to form a particular
structure. Let's step back for a moment, though, and look at what an
individual AN is. In mathematics, this is just an affine function from the
linear space Rn to R, like so:

We can see that this can be characterized as a dot product between a constant
weight vector w and an input vector x, with an additional bias constant b
added to the end. (Again, the only input into this function here is x; the other
values are constants!)

Now, individually a single AN is fairly useless (and stupid), as their
intelligence only emerges when acting in cooperation with a large number of
other ANs. Our first step is to stack a collection of m similar ANs on top of
each other so as to form what we will call a dense layer (DL). This is dense
because each neuron will process every single input value from x – each AN
will take in an array or vector value from Rn and output a single value in
R. Since there are m neurons, this means that we can say their output
collectively is in the space Rm. We will notice that if we stack the weights



for each neuron in our layer, so as to form an m x n matrix of weights, we
can then just calculate the output of each neuron with a matrix multiplication
followed by the addition of the appropriate biases:

Now, let's suppose that we want to build an NN classifier that can classify k
different classes; we can create a new additional dense layer that takes in the
m values from the prior dense layer, and outputs k values. Supposing that we
have the appropriate weight and bias values for each layer (which are
certainly not trivial to find), and that we also have the appropriate activation
function set up after each layer (which we will define later), this will act as a
classifier between our k distinct classes, giving us the probability of x falling
into each respective class based on the outputs of the final layer. Of course,
we're getting way ahead of ourselves here, but that is, in a nutshell, how an
NN works.

Now, it seems like we can just keep connecting dense layers to each other
into long chains to achieve classifications. This is what is known as a DNN.
When we have a layer that is not directly connected to the inputs or outputs,
that is known as a hidden layer. The strength of a DNN is that the additional
layers allow the NN to capture abstractions and subtleties of the data that a
shallow NN could not pick up on.



Implementing a dense layer of
artificial neurons
Now, let's implement the most important building block of an NN, the
dense layer. Let's start by declaring a CUDA kernel, like so:

__global__ void dense_eval(int num_outputs, int num_inputs, int relu, int sigmoid, 
float * w, float * b, float * x, float *y, int batch_size, int w_t, int b_t, float 
delta)

Let's go over the inputs, one by one. num_outputs, of course, indicates the total
number of outputs this layer has; this is exactly the number of neurons in
the layer. num_inputs tells us the size of the input data. Setting a positive value
for relu and sigmoid will indicate that we should use the corresponding
activation function on the output of this layer, which we will define later. w
and b are arrays containing the weights and biases of this layer, while x and y
will act as our inputs and outputs. Oftentimes, we wish to classify more
than one piece of data at a time. We can indicate this by setting batch_size to
be the number of points we wish to predict. Finally, w_t, b_t, and delta will be
used in the training process to determine the appropriate weights and biases
for this layer by means of gradient descent. (We will see more on gradient
descent in a later section.)

Now, let's start writing our kernel. We will parallelize the computations
over each output, so we will set an integer i to be the global thread ID to
this end, and have any unnecessary extra threads which happen to be
running this kernel to just not do anything with the appropriate if statement:

{
 int i = blockDim.x*blockIdx.x + threadIdx.x;

 if (i < num_outputs)
 {

Now, let's iterate over each data point in the batch with the appropriate for
loop:



for(int k=0; k < batch_size; k++)
 { 

We will multiply and accumulate the 32-bit floats from the weights and
inputs into a 64-bit double temp and then add the appropriate bias point. We
will then typecast this back to a 32-bit float and put the value in the output
array, and then close off the loop over k:

double temp = 0.0f;
 for (int j = 0; j < num_inputs; j++)
 {
   temp += ((double) w[(num_inputs)*i + j ] ) * ( (double) x[k*num_inputs + j]);
 }
 temp += (double) b[i];
 y[k * num_outputs + i] = (float) temp;  
}

Multiply and accumulate types of operations are generally subject to a great loss of
numerical precision. This can be mitigated by using a temporary variable of higher
precision to store values in the course of the operation, and then typecasting this
variable back to the original precision after the operation is completed.

To train an NN, we will ultimately have to calculate the derivative (from
calculus) of our NN with respect to each weight and bias within each
individual layer, which is with respect to a particular batch of inputs.
Remember that the derivative of a mathematical function f at the value x
can be estimated as f(x + δ) - f(x) / δ, where delta (δ) is some sufficiently
small positive value. We will use the input values w_t and b_t to indicate to
the kernel whether we want to calculate the derivative with respect to a
particular weight or bias; otherwise, we will set these input values to a
negative value to evaluate only for this layer. We will also set delta to be an
appropriately small value for the calculation of the derivative, and use this
to increment the value of the appropriate bias or weight:

if( w_t >= 0 && i == (w_t / num_inputs))
 {
 int j = w_t % num_inputs;
 for(int k=0; k < batch_size; k++)
  y[k*num_outputs + i] += delta*x[k*num_inputs+j];
}
if( b_t >= 0 && i == b_t )
 {
  for(int k=0; k < batch_size; k++)
  y[k*num_outputs + i] += delta;
 }



Now, we will add some code for what is known as the rectified linear unit
(or ReLU) and sigmoid activation functions. These are used for
processing the immediate output of a dense neural layer. ReLU just sets all
negative values to 0, while acting as an identity for positive inputs, while
sigmoid just computes the value of the sigmoid function on each value ( 1 / (1
+ e-x) ). ReLU (or any other activation function) is used between hidden
layers in an NN as a means to make the entire NN act as a nonlinear
function; otherwise, the entire NN would constitute a trivial (and
inefficiently computed) matrix operation. (While there are many other
nonlinear activation functions that can be used between layers, ReLU has
been found to be a particularly effective function for training.) Sigmoid is
used as a final layer in an NN intended for labeling, that is, one that may
assign multiple labels for a given input, as opposed to assigning an input to
a single class.

Let's go up a little bit in the file, before we even begin to define this CUDA
kernel, and define these operations as C macros. We will also remember to
put in the CUDA-C code we've just written while we are at it:

DenseEvalCode = '''
#define _RELU(x) ( ((x) > 0.0f) ? (x) : 0.0f )
#define _SIGMOID(x) ( 1.0f / (1.0f + expf(-(x)) ))

Now, we will use the kernel inputs relu and sigmoid to indicate whether we
should use these additional layers; we will take a positive input from these
to indicate that they should be used, respectively. We can add this, close off
our kernel, and compile it into a usable Python function:

if(relu > 0 || sigmoid > 0)
for(int k=0; k < batch_size; k++)
 { 
   float temp = y[k * num_outputs + i];
   if (relu > 0)
    temp = _RELU(temp);
   if (sigmoid > 0)
    temp = _SIGMOID(temp);
   y[k * num_outputs + i] = temp; 
  }
 }
 return;
}
'''
eval_mod = SourceModule(DenseEvalCode)
eval_ker = eval_mod.get_function('dense_eval')



Now, let's go to the beginning of the file and set up the appropriate import
statements. Notice that we will include the csv module, which will be used
for processing data inputs for testing and training:

from __future__ import division
import pycuda.autoinit
import pycuda.driver as drv
from pycuda import gpuarray
from pycuda.compiler import SourceModule
from pycuda.elementwise import ElementwiseKernel
import numpy as np
from Queue import Queue
import csv
import time

Now, let's continue setting up our dense layer; we will want to wrap this
within a Python class for ease of use, which will make our lives much easier
when we start connecting these dense layers together into a full-blown NN.
We'll call class DenseLayer and start by writing a constructor. Most of the
inputs and setup here should be self-explanatory: we should definitely add
an option to load weights and biases from a pre-trained network, and we'll
also include the option to specify a default delta value as well as a default
stream. (If no weights or biases are given, weights are initialized to random
values, while all biases are set to 0.) We will also specify whether to use
ReLU or sigmoid layers here, as well. Toward the end, notice how we set
up the block and grid sizes:

class DenseLayer:
    def __init__(self, num_inputs=None, num_outputs=None, weights=None, b=None, 
stream=None, relu=False, sigmoid=False, delta=None):
        self.stream = stream
 
        if delta is None:
            self.delta = np.float32(0.001)
        else:
            self.delta = np.float32(delta)

        if weights is None:
            weights = np.random.rand(num_outputs, num_inputs) - .5
            self.num_inputs = np.int32(num_inputs)
        self.num_outputs = np.int32(num_outputs) 
 
        if type(weights) != pycuda.gpuarray.GPUArray:
            self.weights = gpuarray.to_gpu_async(np.array(weights, 
            dtype=np.float32) , stream = self.stream)
        else:
            self.weights = weights
 
        if num_inputs is None or num_outputs is None:
            self.num_inputs = np.int32(self.weights.shape[1])



            self.num_outputs = np.int32(self.weights.shape[0])
 
        else:
            self.num_inputs = np.int32(num_inputs)
            self.num_outputs = np.int32(num_outputs)

        if b is None:
            b = gpuarray.zeros((self.num_outputs,),dtype=np.float32)
 
        if type(b) != pycuda.gpuarray.GPUArray:
            self.b = gpuarray.to_gpu_async(np.array(b, 
            dtype=np.float32) , stream = self.stream)
        else:
            self.b = b 
 
        self.relu = np.int32(relu)
        self.sigmoid = np.int32(sigmoid)
 
        self.block = (32,1,1)
        self.grid = (int(np.ceil(self.num_outputs / 32)), 1,1)

Now, we will set up a function in this class to evaluate inputs from this
layer; we will meticulously check the input (x) to determine if it is already
on the GPU (transferring it over to a gpuarray if not), and we will let the user
specify a preallocated gpuarray for output (y), manually allocating an output
array if one is not specified. We will also check the delta and w_t/b_t values
for the case of training, as well as batch_size. We will then run the kernel on
the x input with outputs going into y, and finally return y as the output value:

def eval_(self, x, y=None, batch_size=None, stream=None, delta=None, w_t = None, 
b_t = None):

if stream is None:
    stream = self.stream

if type(x) != pycuda.gpuarray.GPUArray:
    x = gpuarray.to_gpu_async(np.array(x,dtype=np.float32), stream=self.stream)
 
if batch_size is None:
    if len(x.shape) == 2:
        batch_size = np.int32(x.shape[0])
    else:
        batch_size = np.int32(1)
 
if delta is None:
    delta = self.delta

delta = np.float32(delta)
 
if w_t is None:
    w_t = np.int32(-1)
 
if b_t is None:
    b_t = np.int32(-1)
 



if y is None:
    if batch_size == 1:
        y = gpuarray.empty((self.num_outputs,), dtype=np.float32)
    else:
        y = gpuarray.empty((batch_size, self.num_outputs), dtype=np.float32)

    eval_ker(self.num_outputs, self.num_inputs, self.relu, self.sigmoid, 
self.weights, self.b, x, y, np.int32(batch_size), w_t, b_t, delta , 
block=self.block, grid=self.grid , stream=stream)
 
 return y

There we go. We have fully implemented a dense layer!



Implementation of the softmax
layer
We will now look at how we can implement a softmax layer. As we have
already discussed, a sigmoid layer is used for assigning labels to a class—
that is, if you want to have multiple nonexclusive characteristics that you
want to infer from an input, you should use a sigmoid layer. A softmax
layer is used when you only want to assign a single class to a sample by
inference—this is done by computing a probability for each possible class
(with probabilities over all classes, of course, summing to 100%). We can
then select the class with the highest probability to give the final
classification.

Now, let's see exactly what the softmax layer does—given a set of a
collection of N real numbers (c0, ..., cN-1) , we first compute the sum of the
exponential function on each number ( ), and then
calculate the exponential of each number divided by this sum to yield the
softmax:

Let's start with our implementation. We will start by writing two very short
CUDA kernels: one that takes the exponential of each input, and another
that takes the mean over all of the points:

SoftmaxExpCode='''
__global__ void softmax_exp( int num, float *x, float *y, int batch_size)
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;

 if (i < num)
 {
  for (int k=0; k < batch_size; k++)
  {
   y[num*k + i] = expf(x[num*k+i]);
  }
 }
}



'''
exp_mod = SourceModule(SoftmaxExpCode)
exp_ker = exp_mod.get_function('softmax_exp')

SoftmaxMeanCode='''
__global__ void softmax_mean( int num, float *x, float *y, int batch_size)
{
 int i = blockDim.x*blockIdx.x + threadIdx.x;
 
 if (i < batch_size)
 {
  float temp = 0.0f;

  for(int k=0; k < num; k++)
   temp += x[i*num + k];
 
 
  for(int k=0; k < num; k++)
   y[i*num+k] = x[i*num+k] / temp;
 }
 
 return;
}'''

mean_mod = SourceModule(SoftmaxMeanCode)
mean_ker = mean_mod.get_function('softmax_mean')

Now, let's write a Python wrapper class, like we did previously. First, we
will start with the constructor, and we will indicate the number of both
inputs and outputs with num. We can also specify a default stream, if we
wish:

class SoftmaxLayer:
    def __init__(self, num=None, stream=None):
     self.num = np.int32(num)
     self.stream = stream

Now, let's write eval_ function in a way that is similar to the dense layer:

def eval_(self, x, y=None, batch_size=None, stream=None):
 if stream is None:
 stream = self.stream
 
 if type(x) != pycuda.gpuarray.GPUArray:
  temp = np.array(x,dtype=np.float32)
  x = gpuarray.to_gpu_async( temp , stream=stream)
 
 if batch_size==None:
  if len(x.shape) == 2:
   batch_size = np.int32(x.shape[0])
  else:
   batch_size = np.int32(1)
 else:
  batch_size = np.int32(batch_size)
 
 if y is None:



  if batch_size == 1:
   y = gpuarray.empty((self.num,), dtype=np.float32)
 else:
  y = gpuarray.empty((batch_size, self.num), dtype=np.float32)

 exp_ker(self.num, x, y, batch_size, block=(32,1,1), grid=(int( np.ceil( self.num 
/ 32) ), 1, 1), stream=stream)
 
 mean_ker(self.num, y, y, batch_size, block=(32,1,1), grid=(int( np.ceil( 
batch_size / 32)), 1,1), stream=stream)
 
 return y



Implementation of Cross-Entropy
loss
Now, let's implement what is known as the cross-entropy loss function.
This is used to measure how accurate an NN is on a small subset of data
points during the training process; the bigger the value that is output by our
loss function, the more inaccurate our NN is at properly classifying the
given data. We do this by calculating a standard mean log-entropy
difference between the expected output and the actual output of the NN. For
numerical stability, we will limit the value of the output to 1:

MAX_ENTROPY = 1

def cross_entropy(predictions=None, ground_truth=None):
 
 if predictions is None or ground_truth is None:
  raise Exception("Error! Both predictions and ground truth must be float32 
arrays")
 
 p = np.array(predictions).copy()
 y = np.array(ground_truth).copy()
 
 if p.shape != y.shape:
  raise Exception("Error! Both predictions and ground_truth must have same 
shape.")
 
 if len(p.shape) != 2:
  raise Exception("Error! Both predictions and ground_truth must be 2D arrays.")
 
 total_entropy = 0
 
 for i in range(p.shape[0]):
  for j in range(p.shape[1]):
   if y[i,j] == 1: 
    total_entropy += min( np.abs( np.nan_to_num( np.log( p[i,j] ) ) ) , 
MAX_ENTROPY) 
   else: 
    total_entropy += min( np.abs( np.nan_to_num( np.log( 1 - p[i,j] ) ) ), 
MAX_ENTROPY)
 
 return total_entropy / p.size



Implementation of a sequential
network
Now, let's implement one final class that will combine multiple dense layer
and softmax layer objects into a single coherent feed-forward sequential
neural network. This will be implemented as another class, which will
subsume the other classes. Let's first start by writing the constructor—we
will be able to set the max batch size here, which will affect how much
memory is allocated for the use of this network – we'll store some allocated
memory used for weights and input/output for each layer in the list variable,
network_mem. We will also store the DenseLayer and SoftmaxLayer objects in the list
network, and information about each layer in the NN in network_summary.
Notice how we can also set up some training parameters here, including the
delta, how many streams to use for gradient descent (we'll see this later), as
well as the number of training epochs.

We can also see one other input at the beginning called layers. Here, we can
indicate the construction of the NN by describing each layer, which the
constructor will create by iterating through each element of layers and
calling the add_layer method, which we will implement next:

class SequentialNetwork:
 def __init__(self, layers=None, delta=None, stream = None, max_batch_size=32, 
max_streams=10, epochs = 10):

 self.network = []
 self.network_summary = []
 self.network_mem = []
 
 if stream is not None:
  self.stream = stream
 else:
  self.stream = drv.Stream()
 
 if delta is None:
  delta = 0.0001
 
 self.delta = delta
 self.max_batch_size=max_batch_size
 self.max_streams = max_streams
 self.epochs = epochs



 
 if layers is not None:
  for layer in layers:
   add_layer(self, layer)

Now, let's implement the add_layer method. We will use a dictionary data
type to pass all of the relevant information about the layer to the sequential
network—including the type of layer (dense, softmax, and so on), the
number of inputs/outputs, weights, and biases. This will append the
appropriate object and information to the object's network and
network_summary list variables, as well as appropriately allocate gpuarray objects
to the network_mem list:

def add_layer(self, layer):
 if layer['type'] == 'dense':
  if len(self.network) == 0:
   num_inputs = layer['num_inputs']
  else:
   num_inputs = self.network_summary[-1][2]
 
  num_outputs = layer['num_outputs']
  sigmoid = layer['sigmoid']
  relu = layer['relu']
  weights = layer['weights']
  b = layer['bias']
 
  self.network.append(DenseLayer(num_inputs=num_inputs, num_outputs=num_outputs, 
sigmoid=sigmoid, relu=relu, weights=weights, b=b))
  self.network_summary.append( ('dense', num_inputs, num_outputs))
 
  if self.max_batch_size > 1:
   if len(self.network_mem) == 0:
self.network_mem.append(gpuarray.empty((self.max_batch_size, 
self.network_summary[-1][1]), dtype=np.float32))
 self.network_mem.append(gpuarray.empty((self.max_batch_size, 
self.network_summary[-1][2] ), dtype=np.float32 ) ) 
 else:
 if len(self.network_mem) == 0:
 self.network_mem.append( gpuarray.empty( (self.network_summary[-1][1], ), 
dtype=np.float32 ) )
 self.network_mem.append( gpuarray.empty((self.network_summary[-1][2], ), 
dtype=np.float32 ) ) 
 
 elif layer['type'] == 'softmax':
 
  if len(self.network) == 0:
   raise Exception("Error! Softmax layer can't be first!")
 
  if self.network_summary[-1][0] != 'dense':
   raise Exception("Error! Need a dense layer before a softmax layer!")
 
 
  num = self.network_summary[-1][2]
  self.network.append(SoftmaxLayer(num=num))
  self.network_summary.append(('softmax', num, num))



 
  if self.max_batch_size > 1:
   self.network_mem.append(gpuarray.empty((self.max_batch_size, 
self.network_summary[-1][2] ), dtype=np.float32)) 
  else:
   self.network_mem.append( gpuarray.empty((self.network_summary[-1][2], ), 
dtype=np.float32))



Implementation of inference
methods
We will now add two methods for inference to our SequentialNetwork class—
that is, for predicting an output given for a particular input. The first method
we will just call predict, which will be used by the end user. In the course of
the training process, we will have to make predictions based on a partial
result from only some of the layers, and we will make another method to
this end called partial_predict.

Let's start by implementing predict.  This will take two inputs—a collection
of samples in the form of a one- or two-dimensional NumPy array, and
possibly a user-defined CUDA stream. We will start by doing some type-
checks and formatting on the samples (here, called x), remembering that the
samples will be stored row-wise:

def predict(self, x, stream=None):
 
 if stream is None:
  stream = self.stream
 
 if type(x) != np.ndarray:
  temp = np.array(x, dtype = np.float32)
  x = temp
 
 if(x.size == self.network_mem[0].size):
  self.network_mem[0].set_async(x, stream=stream)
 else:
 
  if x.size > self.network_mem[0].size:
   raise Exception("Error: batch size too large for input.")
 
  x0 = np.zeros((self.network_mem[0].size,), dtype=np.float32)
  x0[0:x.size] = x.ravel()
  self.network_mem[0].set_async(x0.reshape( self.network_mem[0].shape), 
stream=stream)
 
 if(len(x.shape) == 2):
  batch_size = x.shape[0]
 else:
  batch_size = 1



Now, let's perform the actual inference step. We just have to iterate through
our entire neural network, performing an eval_ on each layer:

for i in xrange(len(self.network)):
 self.network[i].eval_(x=self.network_mem[i], y= self.network_mem[i+1], 
batch_size=batch_size, stream=stream)

We will now pull the final output of the NN, the GPU, and return it to the
user. If the number of samples in x is actually smaller than the maximum
batch size, we will slice the output array appropriately before it is returned:

y = self.network_mem[-1].get_async(stream=stream)
 
if len(y.shape) == 2:
 y = y[0:batch_size, :]
 
return y

Now, with that done, let's implement partial_predict. Let's briefly discuss the
idea behind this. When we are in the training process, we will evaluate a
collection of samples, and then look at how a subtle change of adding
delta to each weight and bias individually will affect the outputs. To save
time, we can calculate the outputs of each layer and store them for a given
collection of samples, and then only recompute the output for the layer
where we change the weight, as well as for all subsequent layers. We'll see
the idea behind this in a little more depth soon, but for now, we can
implement this like so:

def partial_predict(self, layer_index=None, w_t=None, b_t=None, partial_mem=None, 
stream=None, batch_size=None, delta=None):
 
 self.network[layer_index].eval_(x=self.network_mem[layer_index], y = 
partial_mem[layer_index+1], batch_size=batch_size, stream = stream, w_t=w_t, 
b_t=b_t, delta=delta)
 
 for i in xrange(layer_index+1, len(self.network)):
  self.network[i].eval_(x=partial_mem[i], y =partial_mem[i+1], 
batch_size=batch_size, stream = stream)



Gradient descent
We will now make a full implementation of the training method for our NN
in the form of batch-stochastic gradient descent (BSGD). Let's think
about what this means, word by word. Batch means that this training
algorithm will operate on a collection of training samples at once, rather
than all of the samples simultaneously, while stochastic indicates that each
batch is chosen randomly. Gradient means that we will be using a gradient
from calculus—which, here, is the collection of derivatives for each weight
and bias on the loss function. Finally, descent means that we are trying to
reduce the loss function—we do this by iteratively making subtle changes
on the weights and biases by subtracting the Gradient. 

Remember from calculus that the gradient of a point always points in the direction of
the greatest increase, with its opposite direction being that of the greatest decrease.
Since we want a decrease, we subtract the gradient.

We will now implement BSGD as the bsgd method in our SequentialNetwork
class. Let's go over the input parameters of bsgd, one by one: 

training will be a two-dimensional NumPy array of training samples
labels will be the desired output of the final layer of the NN
corresponding to each training sample
delta will indicate how much we should increase a weight for the
calculation of derivatives by
max_streams will indicate the maximum number of concurrent CUDA
streams that BSGD will perform calculations over
batch_size will indicate how large we want the batches that we will
calculate the loss function on for each update of the weights
epochs will indicate how many times we shuffle the order of the current
set of samples, break into a collection of batches, and then perform
BSGD on
training_rate will indicate the rate at which we will update our weights
and biases with our gradient calculations



We'll start out this method as usual and perform some checks and
typecasting, set up the collection of CUDA stream objects into a Python
list, and allocate some additional needed GPU memory in another list:

def bsgd(self, training=None, labels=None, delta=None, max_streams = None, 
batch_size = None, epochs = 1, training_rate=0.01):
 
 training_rate = np.float32(training_rate)
 
 training = np.float32(training)
 labels = np.float32(labels)
 
 if( training.shape[0] != labels.shape[0] ):
  raise Exception("Number of training data points should be same as labels!")

 if max_streams is None:
  max_streams = self.max_streams
 
 if epochs is None:
 epochs = self.epochs
 
 if delta is None:
 delta = self.delta
 
 streams = []
 bgd_mem = []
 
 # create the streams needed for training
 for _ in xrange(max_streams):
  streams.append(drv.Stream())
  bgd_mem.append([])
 
 
 # allocate memory for each stream
 for i in xrange(len(bgd_mem)):
  for mem_bank in self.network_mem:
   bgd_mem[i].append( gpuarray.empty_like(mem_bank) )

Now, we can begin training. We will start by doing an iteration of the entire
BSGD for each epoch, performing a random shuffle of the entire dataset for
each epoch. We'll print some information to the terminal as well so that the
user will have some status updates in the training process:

num_points = training.shape[0]
 
if batch_size is None:
 batch_size = self.max_batch_size
 
index = range(training.shape[0])
 
for k in xrange(epochs): 
 
 print '-----------------------------------------------------------'
 print 'Starting training epoch: %s' % k
 print 'Batch size: %s , Total number of training samples: %s' % (batch_size, 



num_points)
 print '-----------------------------------------------------------'
 
 all_grad = []
 
 np.random.shuffle(index)

Now, we will make a loop that iterates over each batch in the shuffled
dataset. We start by calculating the entropy from the current batch, and we
will print this as well. If the user sees decreases in entropy, then they will
know that gradient descent is working here:

for r in xrange(int(np.floor(training.shape[0]/batch_size))):
 
 batch_index = index[r*batch_size:(r+1)*batch_size] 
 
 batch_training = training[batch_index, :]
 batch_labels = labels[batch_index, :]
 
 batch_predictions = self.predict(batch_training)
 
 cur_entropy = cross_entropy(predictions=batch_predictions, 
ground_truth=batch_labels)
 
 print 'entropy: %s' % cur_entropy

We will now iterate through each dense layer of our NN, calculating the
gradient for the entire set of weights and biases. We will store these
derivatives for the weights and biases in flattened (one-dimensional) arrays,
which will correspond to the w_t and b_t indices in our CUDA kernels,
which are also flattened. Since we will have multiple streams process
different outputs for different weights, we will use a Python Queue
container to store the set of weights and biases that are yet to be processed
for this batch: we can then just pop values off the top of this container to the
next available stream (we'll store these as tuples, with the first element
indicating whether this is a weight or bias, in particular):

for i in xrange(len(self.network)):
 
 if self.network_summary[i][0] != 'dense':
  continue
 
 all_weights = Queue()
 
 grad_w = np.zeros((self.network[i].weights.size,), dtype=np.float32)
 grad_b = np.zeros((self.network[i].b.size,), dtype=np.float32)
 
 for w in xrange( self.network[i].weights.size ):
  all_weights.put( ('w', np.int32(w) ) )
 



 for b in xrange( self.network[i].b.size ):
  all_weights.put(('b', np.int32(b) ) )

Now, we need to iterate over each and every weight and bias, which we can
do with a while loop that checks if the queue object we just set up is empty.
We will set up another queue, stream_weights, that will help us organize which
weights and biases each stream has processed. After setting up the weight
and bias inputs appropriately, we can now use partial_predict by using the
current stream and corresponding GPU memory arrays:

Notice that we already performed a predict for this batch of samples to calculate the
entropy, so we are now able to perform partial_predict on this batch, provided we are
careful about which memory and layers we use.

while not all_weights.empty():
 
 stream_weights = Queue()
 
 for j in xrange(max_streams):
 
  if all_weights.empty():
    break
 
  wb = all_weights.get()
 
  if wb[0] == 'w':
   w_t = wb[1]
   b_t = None
  elif wb[0] == 'b':
   b_t = wb[1]
   w_t = None
 
  stream_weights.put( wb )
 
  self.partial_predict(layer_index=i, w_t=w_t, b_t=b_t, partial_mem=bgd_mem[j], 
stream=streams[j], batch_size=batch_size, delta=delta)

We have only computed the prediction of the output for alterations of a
small set of weights and biases. We will have to compute the entropy for
each, and then store the value of the derivative in the flattened arrays:

for j in xrange(max_streams):
 
 if stream_weights.empty():
  break
 
 wb = stream_weights.get()
 
 w_predictions = bgd_mem[j][-1].get_async(stream=streams[j])
 
 w_entropy = cross_entropy(predictions=w_predictions[ :batch_size,:], 
ground_truth=batch_labels)
 



 
 
 if wb[0] == 'w':
  w_t = wb[1]
  grad_w[w_t] = -(w_entropy - cur_entropy) / delta
 
 elif wb[0] == 'b':
  b_t = wb[1]
  grad_b[b_t] = -(w_entropy - cur_entropy) / delta

We have now finished the while loop. Once we reach the outside of this, we
will know that we've calculated the derivatives for all weights and biases
for this particular layer. Before we iterate to the next layer, we will append
the calculated values for the gradient of the current set of weights and
biases into the all_grad list. We will also reshape the flattened list of weights
back into the original shape while we're at it:

all_grad.append([np.reshape(grad_w,self.network[i].weights.shape) , grad_b])

After we are done iterating over every layer, we can perform the
optimization of the weights and biases of our NN on this batch. Notice how
if the training_rate variable is far less than 1, this will reduce how fast the
weights are updated:

for i in xrange(len(self.network)):
 if self.network_summary[i][0] == 'dense':
  new_weights = self.network[i].weights.get()
  new_weights += training_rate*all_grad[i][0]
  new_bias = self.network[i].b.get()
  new_bias += training_rate*all_grad[i][1]
  self.network[i].weights.set(new_weights)
  self.network[i].b.set(new_bias)

We have fully implemented a (very simple) GPU-based DNN!



Conditioning and normalizing data
Before we move on to training and testing our brand-new NN, we need to
step back for a moment and talk about conditioning and normalizing data.
NNs are highly susceptible to numerical error, especially when inputs have
a large variance in scale. This can be mitigated by properly conditioning
our training data; this means that for each point in an input sample, we will
calculate the mean and variance of each point over all samples, and then
subtract the mean and divide by the standard deviation for each point in
each sample before it is input into the NN for either training or inference
(prediction). This method is known as normalization. Let's put together a
small Python function that can do this for us:

def condition_data(data, means=None, stds=None):
 
 if means is None:
  means = np.mean(data, axis=0)
 
 if stds is None:
  stds = np.std(data, axis = 0)
 
 conditioned_data = data.copy()
 conditioned_data -= means
 conditioned_data /= stds
 
 return (conditioned_data, means, stds)



The Iris dataset
We will now construct our very own DNN for a real-life problem:
classification of flower types based on the measurements of petals. We will
be working with the well-known Iris dataset for this. This dataset is stored
as a comma-separated value (CSV) text file, with each line containing four
different numerical values (petal measurements), followed by the flower
type (here, there are three classes—Irissetosa, Irisversicolor,
and Irisvirginica). We will now design a small DNN that will classify the
type of iris, based on this set.

Before we continue, please download the Iris dataset and put it into your working
directory.  This is available from the UC Irvine Machine Learning repository, which
can be found here: https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data.

We will start by processing this file into appropriate data arrays that we can
use for training and validating our DNN. Let's start by opening up our main
function; we will need to translate the names of the flowers into actual
classes that a DNN can output, so let's make a small dictionary that will
give us a corresponding label for each class. We will also set up some
empty lists to store our training data and labels:

if __name__ == '__main__':
 to_class = { 'Iris-setosa' : [1,0,0] , 'Iris-versicolor' : [0,1,0], 'Iris-
virginica' : [0,0,1]}
 
 iris_data = []
 iris_labels = []

Now, let's read from the CSV file. We will use the reader function from
Python's csv module, which we imported earlier:

with open('C:/Users/btuom/examples/9/iris.data', 'rb') as csvfile:
 csvreader = csv.reader(csvfile, delimiter=',')
 for row in csvreader:
  newrow = []
  if len(row) != 5:
   break
  for i in range(4):
   newrow.append(row[i])
  iris_data.append(newrow)
  iris_labels.append(to_class[row[4]])

https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data


We will now randomly shuffle the data and use two-third of these samples
as training data. The remaining one-third will be used for test (validation)
data:

iris_len = len(iris_data)
shuffled_index = list(range(iris_len))
np.random.shuffle(shuffled_index)
  
iris_data = np.float32(iris_data)
iris_labels = np.float32(iris_labels)
iris_data = iris_data[shuffled_index, :]
iris_labels = iris_labels[shuffled_index,:]
 
t_len = (2*iris_len) // 3
 
iris_train = iris_data[:t_len, :]
label_train = iris_labels[:t_len, :]
 
iris_test = iris_data[t_len:,:]
label_test = iris_labels[t_len:, :]

Now, finally, we can begin building our DNN! First, let's create a
SequentialNetwork object. We'll set the max_batch_size to 32:

sn = SequentialNetwork( max_batch_size=32 )

Now, let's create our NN. This will consist of four dense layers (two hidden)
and a softmax layer. We will increment the number of neurons in each layer
until the final layer, which will only have three outputs (one for each class).
This increasing amount of neurons per layer allows us to capture some of
the subtleties of the data:

sn.add_layer({'type' : 'dense', 'num_inputs' : 4, 'num_outputs' : 10, 'relu': 
True, 'sigmoid': False, 'weights' : None, 'bias' : None} ) 
sn.add_layer({'type' : 'dense', 'num_inputs' : 10, 'num_outputs' : 15, 'relu': 
True, 'sigmoid': False, 'weights': None, 'bias' : None} ) 
sn.add_layer({'type' : 'dense', 'num_inputs' : 15, 'num_outputs' : 20, 'relu': 
True, 'sigmoid': False, 'weights': None, 'bias' : None} ) 
sn.add_layer({'type' : 'dense', 'num_inputs' : 20, 'num_outputs' : 3, 'relu': 
True, 'sigmoid': False, 'weights': None , 'bias': None } ) 
sn.add_layer({'type' : 'softmax'})

We will now condition our training data and begin the training with our
BSGD method that we just implemented. We will train with batch_size set to
16, max_streams set to 10, the number of epochs set to 100, the delta set to
0.0001, and the training_rate set to 1—these will be admissible parameters



for virtually any modern GPU. We will also time the training procedure
while we're at it, which can be rather time-consuming:

ctrain, means, stds = condition_data(iris_train)

t1 = time()
sn.bsgd(training=ctrain, labels=label_train, batch_size=16, max_streams=20, 
epochs=100 , delta=0.0001, training_rate=1)
training_time = time() - t1

Now, our DNN is fully trained. We are ready to begin the validation
process! Let's set up a Python variable called hits to count the total number
of correct classifications. We will also need to condition the
validation/testing data too. One more thing—we determine the class by the
index corresponding to the largest value of the softmax layer of our DNN.
We can check whether this gives us the correct classification by using
NumPy's argmax function, like so:

hits = 0
ctest, _, _ = condition_data(iris_test, means=means, stds=stds)
for i in range(ctest.shape[0]):
 if np.argmax(sn.predict(ctest[i,:])) == np.argmax( label_test[i,:]):
  hits += 1

Now, we are ready to check how well our DNN actually works. Let's output
the accuracy as well as the total training time:

print 'Percentage Correct Classifications: %s' % (float(hits ) / ctest.shape[0])
print 'Total Training Time: %s' % training_time

Now, we are done. We can now fully implement a DNN with Python and
CUDA! Generally speaking, you can expect an accuracy ranging from
80%-97% for this particular problem, with a training time of 10-20 minutes
on any Pascal-level GPU. 

The code for this chapter is available in the deep_neural_network.py file, under the
appropriate directory in this book's GitHub repository.



Summary
In this chapter, we started by giving the definition of an artificial neural
network, and showed you how individual ANs can be combined into dense
layers, which combine together into a full-on deep neural network. We then
implemented a dense layer in CUDA-C and made an appropriate
corresponding Python wrapper class. We also included functionality to add
ReLU and sigmoid layers on the outputs of a dense layer. We saw the
definition and motivation of using a softmax layer, which is used for
classification problems, and then implemented this in CUDA-C and Python.
Finally, we implemented a Python class so that we could build a sequential
feed-forward DNN from the prior classes;  we implemented a cross-entropy
loss function, and then used this in our loss function in our implementation
of gradient descent to train the weights and biases in our DNN. Finally, we
used our implementation to construct, train, and test a DNN on a real-life
dataset.

We now have a great deal of self-confidence in our CUDA programming
abilities, since we can write our own GPU-based DNN! We will now move
on to some very advanced material in the next two chapters, where we will
look at how we can write our own interfaces to compiled CUDA code, as
well as some of the very technical ins and outs of NVIDIA GPUs.



Questions
1. Suppose you construct a DNN and after training it, it yields only

garbage. After inspection, you find that all of the weights and biases
are either huge numbers or NaNs. What might the problem be?

2. Name one possible problem with a small training_rate value.
3. Name one possible problem with a large training_rate value.
4. Suppose we want to train a DNN that will assign multiple labels to an

image of an animal ("slimey", "furry", "red", "brown", and so
on). Should we use a sigmoid or softmax layer at the end of the DNN?

5. Suppose we want to classify an image of a single animal as either a cat
or dog. Do we use sigmoid or softmax?

6. If we decrease the batch size, will there be more or less updates to the
weights and biases during gradient descent training?



Working with Compiled GPU Code
Throughout the course of this book, we have generally been reliant on the
PyCUDA library to interface our inline CUDA-C code for us automatically,
using just-in-time compilation and linking with our Python code. We might
recall, however, that sometimes the compilation process can take a while. In
Chapter 3, Getting Started With PyCUDA, we even saw in detail how the
compilation process can contribute to slowdown, and how it can even be
somewhat arbitrary as to when inline code will be compiled and retained. In
some cases, this may be inconvenient and cumbersome given the
application, or even unacceptable in the case of a real-time system. 

To this end, we will finally see how to use pre-compiled GPU code from
Python. In particular, we will look at three distinct ways to do this. First, we
will look at how we can do this by writing a host-side CUDA-C function
that can indirectly launch a CUDA kernel. This method will involve
invoking the host-side function with the standard Python Ctypes library.
Second, we will compile our kernel into what is known as a PTX module,
which is effectively a DLL file containing compiled binary GPU. We can
then load this file with PyCUDA and launch our kernel directly. Finally, we
will end this chapter by looking at how to write our own full-on Ctypes
interface to the CUDA Driver API. We can then use the appropriate
functions from the Driver API to load our PTX file and launch a kernel.

The learning outcomes for this chapter are as follows:

Launching compiled (host-side) code with the Ctypes module
Using host-side CUDA C wrappers with Ctypes to launch a kernel
from Python
How to compile a CUDA C module into a PTX file
How to load a PTX module into PyCUDA to launch pre-compiled
kernels
How to write your own custom Python interface to the CUDA Driver
API



Launching compiled code with
Ctypes
We will now give a brief overview of the Ctypes module from the Python
Standard Library. Ctypes is used for calling functions from the Linux .so
(shared object) or Windows. DLL (Dynamically Linked Library) pre-
compiled binaries. This will allow us to break out of the world of pure
Python and interface with libraries and code that have been written in
compiled languages, notably C and C++—it just so happens that Nvidia
only provides such pre-compiled binaries for interfacing with our CUDA
device, so if we want to sidestep PyCUDA, we will have to use Ctypes.

Let's start with a very basic example: we will show you how to call printf
directly from Ctypes. Open up an instance of IPython and type import ctypes.
We are now going to look at how to call the standard printf function from
Ctypes. First, we will have to import the appropriate library: in Linux, load
the LibC library by typing libc = ctypes.CDLL('libc.so.6') (in Windows,
replace 'libc.so.6' with 'msvcrt.dll'). We can now directly call printf from the
IPython prompt by typing libc.printf("Hello from ctypes!\n"). Try it for
yourself!

Now let's try something else: type libc.printf("Pi is approximately %f.\n", 3.14)
from IPython; you should get an error. This is because the 3.14 was not
appropriately typecast from a Python float variable to a C double variable—
we can do this with Ctypes like so:

libc.printf("Pi is approximately %f.\n", ctypes.c_double(3.14)) 

The output should be as expected. As in the case of launching a CUDA
kernel from PyCUDA, we have to be equally careful to typecast inputs into
functions with Ctypes.

Always be sure to appropriately typecast inputs into any function that you call with
Ctypes from Python to the appropriate C datatypes (in Ctypes, these are preceded by



c_: c_float, c_double, c_char, c_int, and so on).



The Mandelbrot set revisited
(again)
Let's revisit the Mandelbrot set that we looked at in Chapter 1, Why GPU
Programming?, and Chapter 3, Getting Started with PyCUDA. First, we
will write a full-on CUDA kernel that will compute the Mandelbrot set,
given a particular set of parameters, along with an appropriate host-side
wrapper function that we may interface to from Ctypes later. We will first
be writing these functions into a single CUDA-C .cu source file and then
compile this into a DLL or .so binary with the NVCC compiler. Finally, we
will write some Python code so that we can run our binary code and display
the Mandelbrot set.

We will now apply our knowledge of Ctypes to launch a pre-compiled
CUDA kernel from Python without any assistance from PyCUDA. This will
require us to write a host-side kernel launcher wrapper function in CUDA-
C that we may call directly, which itself has been compiled into a dynamic
library binary with any necessary GPU code—that is, a Dynamically
Linked Library (DLL) binary on Windows, or a shared-object (so) binary
on Linux.

We will start, of course, by writing our CUDA-C code, so open up your
favorite text editor and follow along. We will begin with the standard include
statements:

#include <cuda_runtime.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

We'll now jump directly into writing our kernel. Notice extern "C" in the
code, which will allow us to link to this function externally:

extern "C" __global__ void mandelbrot_ker(float * lattice, float * 
mandelbrot_graph, int max_iters, float upper_bound_squared, int lattice_size)
{



Let's think for a minute about how this will work: we will use a single one-
dimensional array for both the real and imaginary components
called lattice, which is of length lattice_size. We will use this to compute a
two-dimensional Mandelbrot graph of the shape (lattice_size, lattice_size)
into the pre-allocated array, mandelbrot_graph. We will specify the number of
iterations to check for divergence at each point with max_iters, specifying the
maximum upper bound as before by providing its squared value with
upper_bound_squared. (We'll look at the motivation for using the square in a
second.)

We will launch this kernel over a one-dimensional grid/block structure, with
each thread corresponding to a single point in the graph image of the
Mandelbrot set. We can then determine the real/imaginary lattice values for
the corresponding point, like so:

    int tid = blockIdx.x * blockDim.x + threadIdx.x;
    
    if ( tid < lattice_size*lattice_size )
    {
        int i = tid % lattice_size;
        int j = lattice_size - 1 - (tid / lattice_size);
        
        float c_re = lattice[i];
        float c_im = lattice[j];

Let's talk about this for a minute. First, remember that we may have to use
slightly more threads than necessary, so it's important that we check that the
thread ID will correspond to some point in the output image with the
if statement. Let's also remember that the output array, mandelbrot_graph, will
be stored as a one-dimensional array that represents a two-dimensional
image stored in a row-wise format, and that we will be using tid as the
index to write in this array. We will use i and j, as well as the x and y
coordinates of the graph on the complex plane. Since lattice is a series of
real values sorted from small to large, we will have to reverse their order to
get the appropriate imaginary values. Also, notice that we will be using
plain floats here, rather than some structure or object to represent a complex
value. Since there are real and imaginary components in every complex
number, we will have to use two floats here to store the complex number
corresponding to this thread's lattice point (c_re and c_im).



We will set up two more variables to handle the divergence check, z_re and
z_im, and set the initial value of this thread's point on the graph to 1 before
we check for divergence:

        float z_re = 0.0f;
        float z_im = 0.0f;
        
        mandelbrot_graph[tid] = 1;

Now we will do our check for divergence; if it does diverge after max_iters
iterations, we set the point to 0. Otherwise, it is left at 1:

        for (int k = 0; k < max_iters; k++)
        {
            float temp;
            
            temp = z_re*z_re - z_im*z_im + c_re;
            z_im = 2*z_re*z_im + c_im;
            z_re = temp;
            
            if ( (z_re*z_re + z_im*z_im) > upper_bound_squared )
            {
                mandelbrot_graph[tid] = 0;
                break;
            }
        }

Let's talk about this chunk of code for a minute before we continue. Let's
remember that each iteration of a Mandelbrot set is computed with complex
multiplication and addition for example, z_new = z*z + c. Since we are not
working with a class that will handle complex values for us, the preceding
operation is exactly what we need to do to compute the new real and
imaginary values of z. We also need to compute the absolute value and see
if it exceeds a particular value—remember that the absolute value of a
complex number, c = x + iy, is computed with √(x2+y2). It will actually
save us some time here to compute the square of the upper bound and then
plug that into the kernel, since it will save us the time of computing the
square root of z_re*z_re + z_im*z_im for each iteration here.

We're now pretty much done with this kernel—we just need to close off the
if statement and return from the kernel, and we're done:

    }
    return;
}



However, we are not completely finished just yet. We need to write a host-
side wrapper function with only extern "C" in the case of Linux, and extern
"C" __declspec(dllexport) in the case of Windows. (In contrast to a compiled
CUDA kernel, this extra word is necessary if we want to be able to access a
host-side function from Ctypes in Windows.) The parameters that we put
into this function will correspond directly to those that go into the kernel,
except these will be stored on the host:

extern "C" __declspec(dllexport) void launch_mandelbrot(float * lattice,  float * 
mandelbrot_graph, int max_iters, float upper_bound, int lattice_size)
{

Now, the first task we will have to do is allocate sufficient memory to store
the lattice and output on the GPU with cudaMalloc, and then copy the lattice
to the GPU with cudaMemcpy:

    int num_bytes_lattice = sizeof(float) * lattice_size;
    int num_bytes_graph = sizeof(float)* lattice_size*lattice_size;
    
    float * d_lattice;
    float * d_mandelbrot_graph;
    
    cudaMalloc((float **) &d_lattice, num_bytes_lattice);
    cudaMalloc((float **) &d_mandelbrot_graph, num_bytes_graph);
    
    cudaMemcpy(d_lattice, lattice, num_bytes_lattice, cudaMemcpyHostToDevice);

Like many of our other kernels, we will launch this over one-dimensional
blocks of size 32 over a one-dimensional grid. We will take the ceiling
value of the number of output points to compute, divided by 32, to
determine the grid size, like so:

    int grid_size = (int)  ceil(  ( (double) lattice_size*lattice_size ) / ( 
(double) 32 ) );

Now we are ready to launch our kernel by using the traditional CUDA-C
triple-triangle brackets to specify grid and block size. Notice how we square
the upper bound beforehand here:

    mandelbrot_ker <<< grid_size, 32 >>> (d_lattice,  d_mandelbrot_graph, 
max_iters, upper_bound*upper_bound, lattice_size);

Now we just need to copy the output to the host after this is done, and then
call cudaFree on the appropriate arrays. Then we can return from this



function:

    cudaMemcpy(mandelbrot_graph, d_mandelbrot_graph, num_bytes_graph, 
cudaMemcpyDeviceToHost);    
    cudaFree(d_lattice);
    cudaFree(d_mandelbrot_graph);
}

And with that, we are done with all of the CUDA-C code that we will need.
Save this to a file named mandelbrot.cu, and let's continue to the next step.

You can also download this file from https://github.com/btuomanen/handsongpuprogramming/blob/master/
10/mandelbrot.cu.

https://github.com/btuomanen/handsongpuprogramming/blob/master/10/mandelbrot.cu


Compiling the code and interfacing
with Ctypes
Now let's compile the code we just wrote into a DLL or .so binary. This is
actually fairly painless: if you are a Linux user, type the following into the
command line to compile this file into mandelbrot.so:

nvcc -Xcompiler -fPIC -shared -o mandelbrot.so mandelbrot.cu

If you are a Windows user, type the following into the command line to
compile the file into mandelbrot.dll: 

nvcc -shared -o mandelbrot.dll mandelbrot.cu

Now we can write our Python interface. We will start with the appropriate
import statements, excluding PyCUDA completely and using just Ctypes.
For ease of use, we'll just import all of the classes and functions from
Ctypes directly into the default Python namespace, like so:

from __future__ import division
from time import time
import matplotlib
from matplotlib import pyplot as plt
import numpy as np
from ctypes import *

Let's set up an interface for the launch_mandelbrot host-side function using
Ctypes. First, we will have to load our compiled DLL or .so file as such
(Linux users will, of course, have to change the file name to mandelbrot.so):

mandel_dll = CDLL('./mandelbrot.dll')

Now we can get a reference to launch_mandelbrot from the library, like so;
we'll call it mandel_c for short:

mandel_c = mandel_dll.launch_mandelbrot

Now before we call a function with Ctypes, we will have to make Ctypes
aware of what the input types are. Let's remember that for launch_mandelbrot,



the inputs were float-pointer, float-pointer, integer, float, and integer. We set
this up with the argtypes parameter, using the appropriate Ctypes datatypes
(c_float, c_int), as well as the Ctypes POINTER class:

mandel_c.argtypes = [POINTER(c_float), POINTER(c_float), c_int, c_float, c_int]

Now let's write a Python function that will run this for us. We will specify
the width and height of the square output image with breadth, and the
minimum and maximum values in the complex lattice for both the real and
imaginary components. We will also specify the maximum number of
iterations, as well as the upper bound:

def mandelbrot(breadth, low, high, max_iters, upper_bound):

Now, we will create our lattice array with NumPy's linspace function, like
so:

 lattice = np.linspace(low, high, breadth, dtype=np.float32)

Let's remember that we will have to pass a pre-allocated float array to
launch_mandelbrot to get the output in the form of an output graph. We can do
this by calling NumPy's empty command to set up an array of the appropriate
shape and size, which will act as a C malloc call here:

    out = np.empty(shape=(lattice.size,lattice.size), dtype=np.float32)

Now, we are ready to compute the Mandelbrot graph. Notice that we can
pass the NumPy arrays to C by using their ctypes.data_as method with the
appropriate corresponding types. After we have done this, we can return the
output; that is, the Mandelbrot graph in the form of a two-dimensional
NumPy array:

 mandel_c(lattice.ctypes.data_as(POINTER(c_float)), 
out.ctypes.data_as(POINTER(c_float)), c_int(max_iters), c_float(upper_bound), 
c_int(lattice.size) ) 
 return out

Now, let's write our main function to compute, time, and view the
Mandelbrot graph with Matplotlib:

if __name__ == '__main__':
    t1 = time()



    mandel = mandelbrot(512,-2,2,256, 2)
    t2 = time()
    mandel_time = t2 - t1
    print 'It took %s seconds to calculate the Mandelbrot graph.' % mandel_time
    plt.figure(1)
    plt.imshow(mandel, extent=(-2, 2, -2, 2))
    plt.show()

We will now try running this. You should get an output that looks exactly
like the Mandelbrot graph from Chapter 1, Why GPU Programming? and Chap
ter 3, Getting Started with PyCUDA:

The code for this Python example is also available as the file mandelbrot_ctypes.py in the
GitHub repository.



Compiling and launching pure
PTX code
We have just seen how to call a pure-C function from Ctypes. In some
ways, this may seem a little inelegant, as our binary file must contain both
host code as well as the compiled GPU code, which may seem
cumbersome. Can we just use pure, compiled GPU code and then launch it
appropriately onto the GPU without writing a C wrapper each and every
time? Fortunately, we can.

The NVCC compiler compiles CUDA-C into PTX (Parallel Thread
Execution), which is an interpreted pseudo-assembly language that is
compatible across NVIDIA 's various GPU architectures. Whenever you
compile a program that uses a CUDA kernel with NVCC into an executable
EXE, DLL, .so, or ELF file, there will be PTX code for that kernel
contained within the file. We can also directly compile a file with the
extension PTX, which will contain only the compiled GPU kernels from a
compiled CUDA .cu file. Luckily for us, PyCUDA includes an interface to
load a CUDA kernel directly from a PTX, freeing us from the shackles of
just-in-time compilation while still allowing us to use all of the other nice
features from PyCUDA.

Now let's compile the Mandelbrot code we just wrote into a PTX file; we
don't need to make any changes to it. Just type the following into the
command line in either Linux or Windows:

nvcc -ptx -o mandelbrot.ptx mandelbrot.cu

Now let's modify the Python program from the last section to use PTX code
instead. We will remove ctypes from the imports and add the appropriate
PyCUDA imports:

from __future__ import division
from time import time
import matplotlib



from matplotlib import pyplot as plt
import numpy as np
import pycuda
from pycuda import gpuarray
import pycuda.autoinit

Now let's load the PTX file using PyCUDA's module_from_file function, like
so:

mandel_mod = pycuda.driver.module_from_file('./mandelbrot.ptx')

Now we can get a reference to our kernel with get_function, just like did with
PyCUDA's SourceModule:

mandel_ker = mandel_mod.get_function('mandelbrot_ker')

We can now rewrite the Mandelbrot function to handle using this kernel
with the appropriate gpuarray objects and typecast inputs. (We won't go over
this one line-by-line since its functionality should be obvious at this point.):

def mandelbrot(breadth, low, high, max_iters, upper_bound):
    lattice = gpuarray.to_gpu(np.linspace(low, high, breadth, dtype=np.   
    out_gpu = gpuarray.empty(shape=(lattice.size,lattice.size), dtype=np.float32)
    gridsize = int(np.ceil(lattice.size**2 / 32))
    mandel_ker(lattice, out_gpu, np.int32(256), np.float32(upper_bound**2), 
np.int32(lattice.size), grid=(gridsize, 1, 1), block=(32,1,1))
    out = out_gpu.get()
 
    return out

The main function will be exactly the same as in the last section:

if __name__ == '__main__':
    t1 = time()
    mandel = mandelbrot(512,-2,2,256,2)
    t2 = time()
    mandel_time = t2 - t1
    print 'It took %s seconds to calculate the Mandelbrot graph.' % mandel_time
    plt.figure(1)
    plt.imshow(mandel, extent=(-2, 2, -2, 2))
    plt.show()

Now, try running this to ensure that the output is correct. You may also
notice some speed improvements over the Ctypes version. 

This code is also available in the mandelbrot_ptx.py file under the "10" directory in this
book's GitHub repository.



Writing wrappers for the CUDA
Driver API
We will now look at how we can write our very own wrappers for some
pre-packaged binary CUDA library functions using Ctypes. In particular,
we will be writing wrappers for the CUDA Driver API, which will allow us
to perform all of the necessary operations needed for basic GPU usage—
including GPU initialization, memory allocation/transfers/deallocation,
kernel launching, and context creation/synchronization/destruction. This is
a very powerful piece of knowledge; it will allow us to use our GPU
without going through PyCUDA, and also without writing any cumbersome
host-side C-function wrappers.

We will now write a small module that will act as a wrapper library for the
CUDA Driver API. Let's talk about what this means for a minute. The
Driver API is slightly different and a little more technical than the CUDA
Runtime API, the latter being what we have been working within this text
from CUDA-C. The Driver API is designed to be used with a regular
C/C++ compiler rather than with NVCC, with some different conventions
like using the cuLaunchKernel function to launch a kernel rather than using the
<<< gridsize, blocksize >>> bracket notation. This will allow us to directly
access the necessary functions that we need to launch a kernel from a PTX
file with Ctypes.

Let's start writing this module by importing all of the Ctypes into the
module's namespace, and then importing the sys module. We will make our
module usable from both Windows and Linux by loading the proper library
file (either nvcuda.dll or libcuda.so) by checking the system's OS with
sys.platform, like so:

from ctypes import *
import sys
if 'linux' in sys.platform:
 cuda = CDLL('libcuda.so')



elif 'win' in sys.platform:
 cuda = CDLL('nvcuda.dll')

We have successfully loaded the CUDA Driver API, and we can now begin
writing wrappers for the necessary functions for basic GPU usage. We will
look at the prototypes of each Driver API function as we go along, which is
generally necessary to do when you are writing Ctypes wrappers.

The reader is encouraged to look up all of the functions we will be using in this section
in the official Nvidia CUDA Driver API Documentation, which is available here: http
s://docs.nvidia.com/cuda/cuda-driver-api/.

Let's start with the most fundamental function from the Driver API, cuInit,
which will initialize the Driver API. This takes an unsigned integer used for
flags as an input parameter and returns a value of type CUresult, which is
actually just an integer value. We can write our wrapper like so:

cuInit = cuda.cuInit
cuInit.argtypes = [c_uint]
cuInit.restype = int

Now let's start on the next function, cuDeviceCount, which will tell us how
many NVIDIA GPUs we have installed on our computer. This takes in an
integer pointer as its single input, which is actually a single integer output
value that is returned by reference. The return value is another CUresult
integer—all of the functions will use CUresult, which is a standardization
of the error values for all of the Driver API functions. For instance, if any
function we see returns a 0, this means the result is CUDA_SUCCESS, while non-
zero results will always mean an error or warning:

cuDeviceGetCount = cuda.cuDeviceGetCount
cuDeviceGetCount.argtypes = [POINTER(c_int)]
cuDeviceGetCount.restype = int

Now let's write a wrapper for cuDeviceGet, which will return a device handle
by reference in the first input. This will correspond to the ordinal GPU
given in the second input. The first parameter is of the type CUdevice *, which
is actually just an integer pointer:

cuDeviceGet = cuda.cuDeviceGet
cuDeviceGet.argtypes = [POINTER(c_int), c_int]
cuDeviceGet.restype = int

https://docs.nvidia.com/cuda/cuda-driver-api/


Let's remember that every CUDA session will require at least one CUDA
Context, which can be thought of as analogous to a process running on the
CPU. Since this is handled automatically with the Runtime API, here we
will have to create a context manually on a device (using a device handle)
before we can use it, and we will have to destroy this context when our
CUDA session is over. 

We can create a CUDA context with the cuCtxCreate function, which will, of
course, create a context. Let's look at the prototype listed in the
documentation: 

 CUresult cuCtxCreate ( CUcontext* pctx, unsigned int flags, CUdevice dev )

Of course, the return value is CUresult. The first input is a pointer to a type
called CUcontext, which is actually itself a pointer to a particular C structure
used internally by CUDA. Since our only interaction with CUcontext from
Python will be to hold onto its value to pass between other functions, we
can just store CUcontext as a C void * type, which is used to store a generic
pointer address for any type. Since this is actually a pointer to a CU context
(again, which is itself a pointer to an internal data structure—this is another
pass-by-reference return value), we can set the type to be just a plain void *,
which is a c_void_p type in Ctypes. The second value is an unsigned integer,
while the final value is the device handle on which to create the new
context—let's remember that this is itself just an integer. We are now
prepared to create our wrapper for cuCtxCreate:

cuCtxCreate = cuda.cuCtxCreate
cuCtxCreate.argtypes = [c_void_p, c_uint, c_int]
cuCtxCreate.restype = int

You can always use the void * type in C/C++ (c_void_p in Ctypes) to point to any
arbitrary data or variable—even structures and objects whose definition may not be
available.

The next function is cuModuleLoad, which will load a PTX module file for us.
The first argument is a CUmodule by reference (again, we can just use a
c_void_p here), and the second is the file name, which will be a typical null-
terminated C-string—this is a char *, or c_char_p in Ctypes:

cuModuleLoad = cuda.cuModuleLoad
cuModuleLoad.argtypes = [c_void_p, c_char_p]



cuModuleLoad.restype = int

The next function is for synchronizing all launched operations over the
current CUDA context, and is called cuCtxSynchronize (this takes no
arguments):

cuCtxSynchronize = cuda.cuCtxSynchronize
cuCtxSynchronize.argtypes = []
cuCtxSynchronize.restype = int

The next function is used for retrieving a kernel function handle from a
loaded module so that we may launch it onto the GPU, which corresponds
exactly to PyCUDA's get_function method, which we've seen many times at
this point. The documentation tells us that the prototype is CUresult
cuModuleGetFunction ( CUfunction* hfunc, CUmodule hmod, const char* name ). We can
now write the wrapper:

cuModuleGetFunction = cuda.cuModuleGetFunction
 cuModuleGetFunction.argtypes = [c_void_p, c_void_p, c_char_p ]
 cuModuleGetFunction.restype = int

Now let's write the wrappers for the standard dynamic memory operations;
these will be necessary since we won't have the vanity of using PyCUDA
gpuarray objects. These are practically the same as the CUDA runtime
operations that we have worked with before; that is, cudaMalloc, cudaMemcpy,
and cudaFree:

cuMemAlloc = cuda.cuMemAlloc
cuMemAlloc.argtypes = [c_void_p, c_size_t]
cuMemAlloc.restype = int

cuMemcpyHtoD = cuda.cuMemcpyHtoD
cuMemcpyHtoD.argtypes = [c_void_p, c_void_p, c_size_t]
cuMemAlloc.restype = int

cuMemcpyDtoH = cuda.cuMemcpyDtoH
cuMemcpyDtoH.argtypes = [c_void_p, c_void_p, c_size_t]
cuMemcpyDtoH.restype = int

cuMemFree = cuda.cuMemFree
cuMemFree.argtypes = [c_void_p] 
cuMemFree.restype = int

Now, we will write a wrapper for the cuLaunchKernel function. Of course, this
is what we will use to launch a CUDA kernel onto the GPU, provided that
we have already initialized the CUDA Driver API, set up a context, loaded



a module, allocated memory and configured inputs, and have extracted the
kernel function handle from the loaded module. This one is a little more
complex than the other functions, so we will look at the prototype: 

CUresult cuLaunchKernel ( CUfunction f, unsigned int gridDimX, unsigned int 
gridDimY, unsigned int gridDimZ, unsigned int blockDimX, unsigned int blockDimY, 
unsigned int blockDimZ, unsigned int sharedMemBytes, CUstream hStream, void** 
kernelParams, void** extra )  

The first parameter is a handle to the kernel function we want to launch,
which we can represent as c_void_p. The six gridDim and blockDim parameters
are used to indicate the grid and block dimensions. The unsigned
integer, sharedMemBytes, is used to indicate how many bytes of shared memory
will be allocated for each block upon kernel launch. CUstream hStream is an
optional parameter that we can use to set up a custom stream, or set to
NULL (0) if we wish to use the default stream, which we can represent as
c_void_p in Ctypes. Finally, the kernelParams and extra parameters are used to
set the inputs to a kernel; these are a little involved, so for now just know
that we can also represent these as c_void_p:

cuLaunchKernel = cuda.cuLaunchKernel
cuLaunchKernel.argtypes = [c_void_p, c_uint, c_uint, c_uint, c_uint, c_uint, 
c_uint, c_uint, c_void_p, c_void_p, c_void_p]
cuLaunchKernel.restype = int

Now we have one last function to write a wrapper for, cuCtxDestroy. We use
this at the end of a CUDA session to destroy a context on the GPU. The
only input is a CUcontext object, which is represented by c_void_p:

cuCtxDestroy = cuda.cuCtxDestroy
cuCtxDestroy.argtypes = [c_void_p]
cuCtxDestroy.restype = int

Let's save this into the cuda_driver.py file. We have now completed our
Driver API wrapper module! Next, we will look at how to load a PTX
module and launch a kernel using only our module and our Mandelbrot
PTX. 

This example is also available as the cuda_driver.py file in this book's GitHub repository.



Using the CUDA Driver API
We will now translate our little Mandelbrot generation program so that we
can use our wrapper library. Let's start with the appropriate import
statements; notice how we load all of our wrappers into the current
namespace:

from __future__ import division
from time import time
import matplotlib
from matplotlib import pyplot as plt
import numpy as np
from cuda_driver import *

Let's put all of our GPU code into the mandelbrot function, as we did
previously. We will start by initializing the CUDA Driver API with
cuInit and then checking if there is at least one GPU installed on the system,
raising an exception otherwise:

def mandelbrot(breadth, low, high, max_iters, upper_bound):
 cuInit(0)
 cnt = c_int(0)
 cuDeviceGetCount(byref(cnt))
 if cnt.value == 0:
  raise Exception('No GPU device found!')

Notice the byref here: this is the Ctypes equivalent of the reference operator
(&) from C programming. We'll now apply this idea again, remembering that
the device handle and CUDA context can be represented as c_int and
c_void_p with Ctypes:

 cuDevice = c_int(0)
 cuDeviceGet(byref(cuDevice), 0)
 cuContext = c_void_p()
 cuCtxCreate(byref(cuContext), 0, cuDevice)

We will now load our PTX module, remembering to typecast the filename
to a C string with c_char_p:

 cuModule = c_void_p()
 cuModuleLoad(byref(cuModule), c_char_p('./mandelbrot.ptx'))



Now we will set up the lattice on the host side, as well as a NumPy array of
zeros called graph that will be used to store the output on the host side. We
will also allocate memory on the GPU for both the lattice and the graph
output, and then copy the lattice to the GPU with cuMemcpyHtoD:

 lattice = np.linspace(low, high, breadth, dtype=np.float32)
 lattice_c = lattice.ctypes.data_as(POINTER(c_float))
 lattice_gpu = c_void_p(0)
 graph = np.zeros(shape=(lattice.size, lattice.size), dtype=np.float32)
 cuMemAlloc(byref(lattice_gpu), c_size_t(lattice.size*sizeof(c_float)))
 graph_gpu = c_void_p(0)
 cuMemAlloc(byref(graph_gpu), c_size_t(lattice.size**2 * sizeof(c_float)))
 cuMemcpyHtoD(lattice_gpu, lattice_c, c_size_t(lattice.size*sizeof(c_float)))

Now we will get a handle to the Mandelbrot kernel with cuModuleGetFunction
and set up some of the inputs:

 mandel_ker = c_void_p(0)
 cuModuleGetFunction(byref(mandel_ker), cuModule, c_char_p('mandelbrot_ker'))
 max_iters = c_int(max_iters)
 upper_bound_squared = c_float(upper_bound**2)
 lattice_size = c_int(lattice.size)

The next step is a little complex to understand. Before we continue, we
have to understand how the parameters are passed into a CUDA kernel with
cuLaunchKernel. Let's see how this works in CUDA-C first.

We express the input parameters in kernelParams as an array of void * values,
which are, themselves, pointers to the inputs we desire to plug into our
kernel. In the case of our Mandelbrot kernel, it would look like this:

void * mandel_params [] = {&lattice_gpu, &graph_gpu, &max_iters, 
&upper_bound_squared, &lattice_size};

Now let's see how we can express this in Ctypes, which isn't immediately
obvious. First, let's put all of our inputs into a Python list, in the proper
order:

mandel_args0 = [lattice_gpu, graph_gpu, max_iters, upper_bound_squared, 
lattice_size ]

Now we need pointers to each of these values, typecast to the void * type.
Let's use the Ctypes function addressof to get the address of each Ctypes



variable here (which is similar to byref, only not bound to a particular type),
and then typecast it to c_void_p. We'll store these values in another list:

mandel_args = [c_void_p(addressof(x)) for x in mandel_args0]

Now let's use Ctypes to convert this Python list to an array of void
* pointers, like so:

 mandel_params = (c_void_p * len(mandel_args))(*mandel_args)

We can now set up our grid's size, as we did previously, and launch our
kernel with this set of parameters using cuLaunchKernel. We then synchronize
the context afterward:

 gridsize = int(np.ceil(lattice.size**2 / 32))
 cuLaunchKernel(mandel_ker, gridsize, 1, 1, 32, 1, 1, 10000, None, mandel_params, 
None)
 cuCtxSynchronize()

We will now copy the data from the GPU into our NumPy array using
cuMemcpyDtoH with the NumPy array.ctypes.data member, which is a C pointer
that will allow us to directly access the array from C as a chunk of heap
memory. We will typecast this to c_void_p using the Ctypes typecast
function cast:

 cuMemcpyDtoH( cast(graph.ctypes.data, c_void_p), graph_gpu,  
c_size_t(lattice.size**2 *sizeof(c_float)))

We are now done! Let's free the arrays we allocated on the GPU and end
our GPU session by destroying the current context. We will then return the
graph NumPy array to the calling function:

 cuMemFree(lattice_gpu)
 cuMemFree(graph_gpu)
 cuCtxDestroy(cuContext)
 return graph

Now we can set up our main function exactly as before:

if __name__ == '__main__':
 t1 = time()
 mandel = mandelbrot(512,-2,2,256, 2)
 t2 = time()
 mandel_time = t2 - t1
 print 'It took %s seconds to calculate the Mandelbrot graph.' % mandel_time



 
 fig = plt.figure(1)
 plt.imshow(mandel, extent=(-2, 2, -2, 2))
 plt.show()

Now try running this function to ensure that it yields the same output as the
other Mandelbrot programs we just wrote. 

Congratulations—you've just written a direct interface to the low-level
CUDA Driver API and successfully launched a kernel with it! 

This program is also available as the mandelbrot_driver.py file under the directory in this
book's GitHub repository.



Summary
We started this chapter with a brief overview of the Python Ctypes library,
which is used to interface directly with compiled binary code, and
particularly dynamic libraries written in C/C++. We then looked at how to
write a C-based wrapper with CUDA-C that launches a CUDA kernel, and
then used this to indirectly launch our CUDA kernel from Python by
writing an interface to this function with Ctypes. We then learned how to
compile a CUDA kernel into a PTX module binary, which can be thought
of as a DLL but with CUDA kernel functions, and saw how to load a PTX
file and launch pre-compiled kernels with PyCUDA. Finally, we wrote a
collection of Ctypes wrappers for the CUDA Driver API and saw how we
can use these to perform basic GPU operations, including launching a pre-
compiled kernel from a PTX file onto the GPU.

We will now proceed to what will arguably be the most technical chapter of
this book: Chapter 11, Performance Optimization in CUDA. In this chapter,
we will learn about some of the technical ins and outs of NVIDIA GPUs
that will assist us in increasing performance levels in our applications.



Questions
1. Suppose that you use nvcc to compile a single .cu file containing both

host and kernel code into an EXE file, and also into a PTX file. Which
file will contain the host functions, and which file will contain the
GPU code?

2. Why do we have to destroy a context if we are using the CUDA Driver
API?

3. At the beginning of this chapter when we first saw how to use Ctypes,
notice that we had to typecast the floating point value 3.14 to a Ctypes
c_double object in a call to printf before it would work. Yet we can see
many working cases of not typecasting to Ctypes in this chapter. Why
do you think printf is an exception here?

4. Suppose you want to add functionality to our Python CUDA Driver
interface module to support CUDA streams. How would you represent
a single stream object in Ctypes?

5. Why do we use extern "C" for functions in mandelbrot.cu?
6. Look at mandelbrot_driver.py again. Why do we not use

the cuCtxSynchronize function after GPU memory allocations and
host/GPU memory transfers, and only after the single kernel
invocation?



Performance Optimization in
CUDA
In this penultimate chapter, we will cover some fairly advanced CUDA
features that we can use for low-level performance optimizations. We will
start by learning about dynamic parallelism, which allows kernels to launch
and manage other kernels on the GPU, and see how we can use this to
implement quicksort directly on the GPU. We will learn about vectorized
memory access, which can be used to increase memory access speedups
when reading from the GPU's global memory. We will then look at how we
can use CUDA atomic operations, which are thread-safe functions that can
operate on shared data without thread synchronization or mutex locks. We
will learn about Warps, which are fundamental blocks of 32 or fewer
threads, in which threads can read or write to each other's variables directly,
and then make a brief foray into the world of PTX Assembly. We'll do this
by directly writing some basic PTX Assembly inline within our CUDA-C
code, which itself will be inline in our Python code! Finally, we will bring
all of these little low-level tweaks together into one final example, where
we will apply them to make a blazingly fast summation kernel, and
compare this to PyCUDA's sum.

The learning outcomes for this chapter are as follows:

Dynamic parallelism in CUDA
Implementing quicksort on the GPU with dynamic parallelism
Using vectorized types to speed up device memory accesses
Using thread-safe CUDA atomic operations
Basic PTX Assembly
Applying all of these concepts to write a performance-optimized
summation kernel



Dynamic parallelism
First, we will take a look at dynamic parallelism, a feature in CUDA that
allows a kernel to launch and manage other kernels without any interaction
or input on behalf of the host. This also makes many of the host-side
CUDA-C features that are normally available also available on the GPU,
such as device memory allocation/deallocation, device-to-device memory
copies, context-wide synchronizations, and streams.

Let's start with a very simple example. We will create a small kernel over N
threads that will print a short message to the terminal from each thread,
which will then recursively launch another kernel over N - 1 threads. This
process will continue until N reaches 1. (Of course, beyond illustrating how
dynamic parallelism works, this example would be pretty pointless.)

Let's start with the import statements in Python:

from __future__ import division
import numpy as np
from pycuda.compiler import DynamicSourceModule
import pycuda.autoinit

Notice that we have to import DynamicSourceModule rather than the usual
SourceModule! This is due to the fact that the dynamic parallelism feature
requires particular configuration details to be set by the compiler.
Otherwise, this will look and act like a usual SourceModule operation. Now we
can continue writing the kernel:

DynamicParallelismCode='''
__global__ void dynamic_hello_ker(int depth)
{
 printf("Hello from thread %d, recursion depth %d!\\n", threadIdx.x, depth);
 if (threadIdx.x == 0 && blockIdx.x == 0 && blockDim.x > 1)
 {
  printf("Launching a new kernel from depth %d .\\n", depth);
  printf("-----------------------------------------\\n");
  dynamic_hello_ker<<< 1, blockDim.x - 1 >>>(depth + 1);
 }
}'''



The most important thing here to note is this: we must be careful that we
have only a single thread launch the next iteration of kernels with a single
thread with a well-placed if statement that checks the threadIdx and blockIdx
values. If we don't do this, then each thread will launch far more kernel
instances than necessary at every depth iteration. Also, notice how we could
just launch the kernel in a normal way with the usual CUDA-C triple-
bracket notation—we don't have to use any obscure or low-level commands
to make use of dynamic parallelism.

When using the CUDA dynamic parallelism feature, always be careful to avoid
unnecessary kernel launches. This can be done by having a designated thread launch
the next iteration of kernels.

Now let's finish this up:

dp_mod = DynamicSourceModule(DynamicParallelismCode)
hello_ker = dp_mod.get_function('dynamic_hello_ker')
hello_ker(np.int32(0), grid=(1,1,1), block=(4,1,1))

Now we can run the preceding code, which will give us the following
output:



This example can also be found in the dynamic_hello.py file under the directory in this
book's GitHub repository.



Quicksort with dynamic
parallelism
Now let's look at a slightly more interesting and utilitarian application of
dynamic parallelism—the Quicksort Algorithm. This is actually a well-
suited algorithm for parallelization, as we will see.

Let's start with a brief review. Quicksort is a recursive and in-place sorting
algorithm that has an average and best case performance of O(N log N), and
worst-case performance of O(N2). Quicksort is performed by choosing an
arbitrary point called a pivot in an unsorted array, and then partitioning the
array into a left array (which contains all points less than the pivot), a right
array (which contains all points equal to or greater than the pivot), with the
pivot in-between the two arrays. If one or both of the arrays now has a
length greater than 1, then we recursively call quicksort again on one or
both of the sub-arrays, with the pivot point now in its final position.

Quicksort can be implemented in a single line in pure Python using functional
programming:
qsort = lambda xs : [] if xs == [] else qsort(filter(lambda x: x < xs[-1] , xs[0:-1])) +

[xs[-1]] + qsort(filter(lambda x: x >= xs[-1] , xs[0:-1]))

We can see where parallelism will come into play by the fact that quicksort
is recursively called on both the right and left arrays—we can see how this
will start with one thread operating on an initial large array, but by the time
the arrays get very small, there should be many threads working on them.
Here, we will actually accomplish this by launching all of the kernels over
one single thread each!

Let's get going, and start with the import statements. (We will ensure that
we import the shuffle function from the standard random module for the
example that we will go over later.):

from __future__ import division
import numpy as np



from pycuda.compiler import DynamicSourceModule
import pycuda.autoinit
from pycuda import gpuarray
from random import shuffle

Now we'll write our quicksort kernel. We'll write a device function for the
partitioning step, which will take an integer pointer, the lowest point of the
subarray to partition, and the highest point of the subarray. This function
will also use the highest point of this subarray as the pivot. Ultimately, after
this function is done, it will return the final resting place of the pivot:

DynamicQuicksortCode='''
__device__ int partition(int * a, int lo, int hi)
{
 int i = lo;
 int pivot = a[hi];
 int temp;

 for (int k=lo; k<hi; k++)
 {
  if (a[k] < pivot)
  {
   temp = a[k];
   a[k] = a[i];
   a[i] = temp;
   i++;
  }
 }
 
 a[hi] = a[i];
 a[i] = pivot;
  
 return i;
}

Now we can write the kernel that implements this partition function into a
parallel quicksort. We'll have to use the CUDA-C conventions for streams,
which we haven't seen so far: to launch a kernel k in a stream s in CUDA-C,
we use k<<<grid, block, sharedMemBytesPerBlock, s>>>(...). By using two streams
here, we can be sure that they are launched in parallel. (Considering that we
won't be using shared memory, we'll set the third launch parameter to "0".)
The creation and destruction of the stream objects should be self-
explanatory:

__global__ void quicksort_ker(int *a, int lo, int hi)
{

 cudaStream_t s_left, s_right; 
 cudaStreamCreateWithFlags(&s_left, cudaStreamNonBlocking);
 cudaStreamCreateWithFlags(&s_right, cudaStreamNonBlocking);



 
 int mid = partition(a, lo, hi);
  
 if(mid - 1 - lo > 0)
   quicksort_ker<<< 1, 1, 0, s_left >>>(a, lo, mid - 1);
 if(hi - (mid + 1) > 0)
   quicksort_ker<<< 1, 1, 0, s_right >>>(a, mid + 1, hi);
    
 cudaStreamDestroy(s_left);
 cudaStreamDestroy(s_right);

}
'''

Now let's randomly shuffle a list of 100 integers and have our kernel sort
this for us. Notice how we launch the kernel over a single thread:

qsort_mod = DynamicSourceModule(DynamicQuicksortCode)

qsort_ker = qsort_mod.get_function('quicksort_ker')

if __name__ == '__main__':
    a = range(100)
    shuffle(a)
    
    a = np.int32(a)
    
    d_a = gpuarray.to_gpu(a)
    
    print 'Unsorted array: %s' % a
    
    qsort_ker(d_a, np.int32(0), np.int32(a.size - 1), grid=(1,1,1), block=(1,1,1))
    
    a_sorted = list(d_a.get())
    
    print 'Sorted array: %s' % a_sorted

This program is also available in the dynamic_quicksort.py file in this book's GitHub
repository.



Vectorized data types and memory
access
We will now look at CUDA's Vectorized Data Types. These are
vectorized versions of the standard datatypes, such as int or double, in that
they can store multiple values. There are vectorized versions of the 32-bit
types of up to size 4 (for example, int2, int3, int4, and float4), while 64-bit
variables can only be vectorized to be twice their original size (for example,
double2 and long2). For a size 4 vectorized variable, we access each individual
element using the C "struct" notation for the members x, y, z, and w, while we
use x,y, and z for a 3-member variable and just x and y for a 2-member
variable.

These may seem pointless right now, but these datatypes can be used to
improve the performance of loading arrays from the global memory. Now,
let's do a small test to see how we can load some int4 variables from an array
of integers, and double2s from an array of doubles—we will have to use the
CUDA reinterpret_cast operator to do this:

from __future__ import division
import numpy as np
from pycuda.compiler import SourceModule
import pycuda.autoinit
from pycuda import gpuarray

VecCode='''
__global__ void vec_ker(int *ints, double *doubles) { 

 int4 f1, f2;

 f1 = *reinterpret_cast<int4*>(ints);
 f2 = *reinterpret_cast<int4*>(&ints[4]);

 printf("First int4: %d, %d, %d, %d\\n", f1.x, f1.y, f1.z, f1.w);
 printf("Second int4: %d, %d, %d, %d\\n", f2.x, f2.y, f2.z, f2.w);
 
 double2 d1, d2;
 
 d1 = *reinterpret_cast<double2*>(doubles);
 d2 = *reinterpret_cast<double2*>(&doubles[2]);
 
 printf("First double2: %f, %f\\n", d1.x, d1.y);
 printf("Second double2: %f, %f\\n", d2.x, d2.y);



 
}'''

Notice how we have to use the dereference operator * to set the vectorized
variables, and how we have to jump to the next address by reference
(&ints[4], &doubles[2]) to load the second int4 and double2 by using the reference
operator & on the array:

This example is also available in the vectorized_memory.py file in this book's GitHub
repository.



Thread-safe atomic operations
We will now learn about atomic operations in CUDA. Atomic operations
are very simple, thread-safe operations that output to a single global array
element or shared memory variable, which would normally lead to race
conditions otherwise.

Let's think of one example. Suppose that we have a kernel, and we set a
local variable called x across all threads at some point. We then want to find
the maximum value over all xs, and then set this value to the shared variable
we declare with __shared__ int x_largest. We can do this by just calling
atomicMax(&x_largest, x) over every thread.

Let's look at a brief example of atomic operations. We will write a small
program for two experiments:

Setting a variable to 0 and then adding 1 to this for each thread
Finding the maximum thread ID value across all threads

Let's start out by setting the tid integer to the global thread ID as usual, and
then set the global add_out variable to 0. In the past, we would do this by
having a single thread alter the variable using an if statement, but now we
can use atomicExch(add_out, 0) across all threads. Let's do the imports and
write our kernel up to this point:

from __future__ import division
import numpy as np
from pycuda.compiler import SourceModule
import pycuda.autoinit
from pycuda import gpuarray
import pycuda.driver as drv

AtomicCode='''
__global__ void atomic_ker(int *add_out, int *max_out) 
{

 int tid = blockIdx.x*blockDim.x + threadIdx.x;
 
 atomicExch(add_out, 0);



It should be noted that while Atomics are indeed thread-safe, they by no
means guarantee that all threads will access them at the same time, and they
may be executed at different times by different threads. This can be
problematic here, since we will be modifying add_out in the next step. This
might lead to add_out being reset after it's already been partially modified by
some of the threads. Let's do a block-synchronization to guard against this:

 __syncthreads();

We can now use atomicAdd to add 1 to add_out for each thread, which will give
us the total number of threads:

 atomicAdd(add_out, 1);

Now let's check what the maximum value of tid is for all threads by using
atomicMax. We can then close off our CUDA kernel:

 atomicMax(max_out, tid);

}
'''

We will now add the test code; let's try launching this over 1 block of 100
threads. We only need two variables here, so we will have to allocate some
gpuarray objects of only size 1. We will then print the output:

atomic_mod = SourceModule(AtomicCode)
atomic_ker = atomic_mod.get_function('atomic_ker')

add_out = gpuarray.empty((1,), dtype=np.int32)
max_out = gpuarray.empty((1,), dtype=np.int32)

atomic_ker(add_out, max_out, grid=(1,1,1), block=(100,1,1))

print 'Atomic operations test:'
print 'add_out: %s' % add_out.get()[0]
print 'max_out: %s' % max_out.get()[0]

Now we are prepared to run this:



This example is also available as the atomic.py file in this book's GitHub repository.



Warp shuffling
We will now look at what is known as warp shuffling. This is a feature in
CUDA that allows threads that exist within the same CUDA Warp
concurrently to communicate by directly reading and writing to each other's
registers (that is, their local stack-space variables), without the use of
shared variables or global device memory. Warp shuffling is actually much
faster and easier to use than the other two options. This almost sounds too
good to be true, so there must be a catch—indeed, the catch is that this only
works between threads that exist on the same CUDA Warp, which limits
shuffling operations to groups of threads of size 32 or less. Another catch is
that we can only use datatypes that are 32 bits or less. This means that we
can't shuffle 64-bit long long integers or double floating point values across
a Warp.

Only 32-bit (or smaller) datatypes can be used with CUDA Warp shuffling! This means
that while we can use integers, floats, and chars, we cannot use doubles or long
long integers!

Let's briefly review CUDA Warps before we move on to any coding. (You
might wish to review the section entitled The warp lockstep property in Chapt
er 6, Debugging and Profiling Your CUDA Code, before we continue.) A
CUDA Warp is the minimal execution unit in CUDA that consists of 32
threads or less, that runs on exactly 32 GPU cores. Just as a Grid consists of
blocks, blocks similarly consist of one or more Warps, depending on the
number of threads the Block uses – if a Block consists of 32 threads, then it
will use one Warp, and if it uses 96 threads, it will consist of three Warps.
Even if a Warp is of a size less than 32, it is also considered a full Warp: this
means that a Block with only one single thread will use 32 cores. This also
implies that a block of 33 threads will consist of two Warps and 31 cores.

To remember what we looked at in Chapter 6, Debugging and Profiling Your
CUDA Code, a Warp has what is known as the Lockstep Property. This
means that every thread in a warp will iterate through every instruction,
perfectly in parallel with every other thread in the Warp. That is to say, every



thread in a single Warp will step through the same exact instructions
simultaneously, ignoring any instructions that are not applicable to a
particular thread – this is why any divergence among threads within a single
Warp is to be avoided as much as possible. NVIDIA calls this execution
model Single Instruction Multiple Thread, or SIMT. By now, you should
understand why we have tried to always use Blocks of 32 threads
consistently throughout the text!

We need to learn one more term before we get going—a lane in a Warp is a
unique identifier for a particular thread within the warp, which will be
between 0 and 31. Sometimes, this is also called the Lane ID.

Let's start with a simple example: we will use the __shfl_xor command to
swap the values of a particular variable between all even and odd numbered
Lanes (threads) within our warp. This is actually very quick and easy to do,
so let's write our kernel and take a look:

from __future__ import division
import numpy as np
from pycuda.compiler import SourceModule
import pycuda.autoinit
from pycuda import gpuarray

ShflCode='''
__global__ void shfl_xor_ker(int *input, int * output) {

int temp = input[threadIdx.x];

temp = __shfl_xor (temp, 1, blockDim.x);

output[threadIdx.x] = temp;

}'''

Everything here is familiar to us except __shfl_xor . This is how an individual
CUDA thread sees this: this function takes the value of temp as an input from
the current thread. It performs an XOR operation on the binary Lane ID of the
current thread with 1, which will be either its left neighbor (if the least
significant digit of this thread's Lane is "1" in binary), or its right neighbor
(if the least significant digit is "0" in binary). It then sends the current
thread's temp value to its neighbor, while retrieving the neighbor's temp value,
which is __shfl_xor. This will be returned as output right back into temp. We
then set the value in the output array, which will swap our input array values.



Now let's write the rest of the test code and then check the output:

shfl_mod = SourceModule(ShflCode)
shfl_ker = shfl_mod.get_function('shfl_xor_ker')

dinput = gpuarray.to_gpu(np.int32(range(32)))
doutout = gpuarray.empty_like(dinput)

shfl_ker(dinput, doutout, grid=(1,1,1), block=(32,1,1))

print 'input array: %s' % dinput.get()
print 'array after __shfl_xor: %s' % doutout.get()

The output for the preceding code is as follows:

Let's do one more warp-shuffling example before we move on—we will
implement an operation to sum a single local variable over all of the threads
in a Warp. Let's recall the Naive Parallel Sum algorithm from Chapter 4,
Kernels, Threads, Blocks, and Grids, which is very fast but makes the
naive assumption that we have as many processors as we do pieces of data—
this is one of the few cases in life where we actually will, assuming that
we're working with an array of size 32 or less. We will use the
__shfl_down function to implement this in a single warp. __shfl_down takes the
thread variable in the first parameter and works by shifting a variable
between threads by the certain number of steps indicated in the second
parameter, while the third parameter will indicate the total size of the Warp.

Let's implement this right now. Again, if you aren't familiar with the Naive
Parallel Sum or don't remember why this should work, please review Chapter
4, Kernels, Threads, Blocks, and Grids. We will implement a straight-up sum
with __shfl_down, and then run this on an array that includes the integers 0
through 31. We will then compare this against NumPy's own sum function to
ensure correctness:

from __future__ import division
import numpy as np



from pycuda.compiler import SourceModule
import pycuda.autoinit
from pycuda import gpuarray

ShflSumCode='''
__global__ void shfl_sum_ker(int *input, int *out) {

 int temp = input[threadIdx.x];

 for (int i=1; i < 32; i *= 2)
     temp += __shfl_down (temp, i, 32);

 if (threadIdx.x == 0)
     *out = temp;

}'''

shfl_mod = SourceModule(ShflSumCode)
shfl_sum_ker = shfl_mod.get_function('shfl_sum_ker')

array_in = gpuarray.to_gpu(np.int32(range(32)))
out = gpuarray.empty((1,), dtype=np.int32)

shfl_sum_ker(array_in, out, grid=(1,1,1), block=(32,1,1))

print 'Input array: %s' % array_in.get()
print 'Summed value: %s' % out.get()[0]
print 'Does this match with Python''s sum? : %s' % (out.get()[0] == 
sum(array_in.get()) )

This will give us the following output:

The examples in this section are also available as the shfl_sum.py and shfl_xor.py files
under the Chapter11 directory in this book's GitHub repository.



Inline PTX assembly
We will now scratch the surface of writing PTX (Parallel Thread
eXecution) Assembly language, which is a kind of a pseudo-assembly
language that works across all Nvidia GPUs, which is, in turn, compiled by
a Just-In-Time (JIT) compiler to the specific GPU's actual machine code.
While this obviously isn't intended for day-to-day usage, it will let us work
at an even a lower level than C if necessary. One particular use case is that
you can easily disassemble a CUDA binary file (a host-side
executable/library or a CUDA .cubin binary) and inspect its PTX code if no
source code is otherwise available. This can be done with the cuobjdump.exe -
ptx  cuda_binary command in both Windows and Linux.

As stated previously, we will only cover some of the basic usages of PTX
from within CUDA-C, which has a particular syntax and usage which is
similar to that of using the inline host-side assembly language in GCC. Let's
get going with our code—we will do the imports and start writing our GPU
code: 

from __future__ import division
import numpy as np
from pycuda.compiler import SourceModule
import pycuda.autoinit
from pycuda import gpuarray

PtxCode='''

We will do several mini-experiments here by writing the code into separate
device functions. Let's start with a simple function that sets an input
variable to zero. (We can use the C++ pass-by-reference operator & in
CUDA, which we will use in the device function.):

__device__ void set_to_zero(int &x)
{
 asm("mov.s32 %0, 0;" : "=r"(x));
}

Let's break this down before we move on. asm, of course, will indicate to the
nvcc compiler that we are going to be using assembly, so we will have to put



that code into quotes so that it can be handled properly. The mov instruction
just copies a constant or other value, and inputs this into a register. (A
register is the most fundamental type of on-chip storage unit that a GPU or
CPU uses to store or manipulate values; this is how most local variables are
used in CUDA.) The .s32 part of mov.s32 indicates that we are working with a
signed, 32-bit integer variable—PTX Assembly doesn't have types for data
in the sense of C, so we have to be careful to use the correct particular
operations. %0 tells nvcc to use the register corresponding to the 0th argument
of the string here, and we separate this from the next input to mov with a
comma, which is the constant 0. We then end the line of assembly with a
semicolon, like we would in C, and close off this string of assembly code
with a quote. We'll have to then use a colon (not a comma!) to indicate the
variables we want to use in our code. The "=r" means two things: the = will
indicate to nvcc that the register will be written to as an output, while
the r indicates that this should be handled as a 32-bit integer datatype. We
then put the variable we want to be handled by the assembler in
parentheses, and then close off the asm, just like we would with any C
function.

All of that exposition to set the value of a single variable to 0! Now, let's
make a small device function that will add two floating-point numbers for
us:

__device__ void add_floats(float &out, float in1, float in2)
{
 asm("add.f32 %0, %1, %2 ;" : "=f"(out) : "f"(in1) , "f"(in2));
}

Let's stop and notice a few things. First, of course, we are using add.f32 to
indicate that we want to add two 32-bit floating point values together. We
also use "=f" to indicate that we will be writing to a register, and f to
indicate that we will be only reading from it. Also, notice how we use a
colon to separate the write registers from the only read registers for nvcc.

Let's look at one more simple example before we continue, that is, a
function akin to the ++ operator in C that increments an integer by 1:

__device__ void plusplus(int &x)
{



 asm("add.s32 %0, %0, 1;" : "+r"(x));
}

First, notice that we use the "0th" parameter as both the output and the first
input. Next, notice that we are using +r rather than =r—the + tells nvcc that
this register will be read from and written to in this instruction.

Now, we won't be getting any fancier than this, as even writing a simple if
statement in assembly language is fairly involved. However, let's look at
some more examples that will come in useful when using CUDA Warps.
Let's start with a small function that will give us the lane ID of the current
thread; this is particularly useful, and actually far more straightforward than
doing this with CUDA-C, since the lane ID is actually stored in a special
register called %laneid that we can't access in pure C. (Notice how we use
two % symbols in the code, which will indicate to nvcc to directly use the % in
the assembly code for the %laneid reference rather than interpret this as an
argument to the asm command.):

__device__ int laneid()
{
 int id; 
 asm("mov.u32 %0, %%laneid; " : "=r"(id)); 
 return id;
}

Now let's write two more functions that will be useful for dealing with
CUDA Warps. Remember, you can only pass a 32-bit variable across a
Warp using a shuffle command. This means that to pass a 64-bit variable
over a warp, we have to split this into two 32-bit variables, shuffle both of
those to another thread individually, and then re-combine these 32-bit
values back into the original 64-bit variable. We can use the mov.b64
command for the case of splitting a 64-bit double into two 32-bit integers—
notice how we have to use d to indicate a 64-bit floating-point double:

Notice our use of volatile in the following code, which will ensure that these commands
are executed exactly as written after they are compiled. We do this because sometimes a
compiler will make its own optimizations to or around inline assembly code, but for
particularly delicate operations such as this, we want this done exactly as written.

__device__ void split64(double val, int & lo, int & hi)
{
 asm volatile("mov.b64 {%0, %1}, %2; ":"=r"(lo),"=r"(hi):"d"(val));
}



__device__ void combine64(double &val, int lo, int hi)
{
 asm volatile("mov.b64 %0, {%1, %2}; ":"=d"(val):"r"(lo),"r"(hi));
}

Now let's write a simple kernel that will test all of the PTX assembly device
functions we wrote. We will then launch it over one single thread so that we
can check everything:

__global__ void ptx_test_ker() { 

 int x=123;
 
 printf("x is %d \\n", x);
 
 set_to_zero(x);
 
 printf("x is now %d \\n", x);
 
 plusplus(x);
 
 printf("x is now %d \\n", x);
 
 float f;
 
 add_floats(f, 1.11, 2.22 );
 
 printf("f is now %f \\n", f);
 
 printf("lane ID: %d \\n", laneid() );
 
 double orig = 3.1415;

 int t1, t2;
 
 split64(orig, t1, t2);
 
 double recon;
 
 combine64(recon, t1, t2);
 
 printf("Do split64 / combine64 work? : %s \\n", (orig == recon) ? "true" : 
"false"); 
 
}'''

ptx_mod = SourceModule(PtxCode)
ptx_test_ker = ptx_mod.get_function('ptx_test_ker')
ptx_test_ker(grid=(1,1,1), block=(1,1,1))

We will now run the preceding code:



This example is also available as the ptx_assembly.py file under the Chapter11 directory in
this book's GitHub repository.



Performance-optimized array sum 
For the final example of this book, we will now make a standard array
summation kernel for a given array of doubles, except this time we will use
every trick that we've learned in this chapter to make it as fast as possible.
We will check the output of our summing kernel against NumPy's
sum function, and then we will run some tests with the standard Python timeit
function to compare how our function compares to PyCUDA's own sum
function for gpuarray objects.

Let's get started by importing all of the necessary libraries, and then start
with a laneid function, similar to the one we used in the previous section:

from __future__ import division
import numpy as np
from pycuda.compiler import SourceModule
import pycuda.autoinit
from pycuda import gpuarray
import pycuda.driver as drv
from timeit import timeit

SumCode='''
__device__ void __inline__ laneid(int & id)
{
 asm("mov.u32 %0, %%laneid; " : "=r"(id)); 
}

Let's note a few things—notice that we put a new inline statement in the
declaration of our device function. This will effectively make our function
into a macro, which will shave off a little time from calling and branching to
a device function when we call this from the kernel. Also, notice that we set
the id variable by reference instead of returning a value—in this case, there
may actually be two integer registers that should be used, and there should
be an additional copy command. This guarantees that this won't happen.

Let's write the other device functions in a similar fashion. We will need to
have two more device functions so that we can split and combine a 64-bit
double into two 32-bit variables:

__device__ void __inline__ split64(double val, int & lo, int & hi)
{



 asm volatile("mov.b64 {%0, %1}, %2; ":"=r"(lo),"=r"(hi):"d"(val));
}

__device__ void __inline__ combine64(double &val, int lo, int hi)
{
 asm volatile("mov.b64 %0, {%1, %2}; ":"=d"(val):"r"(lo),"r"(hi));
}

Let's start writing the kernel. We will take in an array of doubles called
input, and then output the entire sum to out, which should be initialized to 0.
We will start by getting the lane ID for the current thread and loading two
values from global memory into the current thread with vectorized memory
loading:

__global__ void sum_ker(double *input, double *out) 
{

 int id;
 laneid(id);

 double2 vals = *reinterpret_cast<double2*> ( &input[(blockDim.x*blockIdx.x + 
threadIdx.x) * 2] );

Now let's sum these values from the double2 vals variable into a new double
variable, sum_val, which will keep track of all the summations across this
thread. We will create two 32-bit integers, s1 and s2, that we will use for
splitting this value and sharing it with Warp Shuffling, and then create a
temp variable for reconstructed values we receive from other threads in this
Warp:

 double sum_val = vals.x + vals.y;

 double temp;
 
 int s1, s2;

Now let's use a Naive Parallel sum again across the warp, which will be the
same as summing 32-bit integers across a Warp, except we will be using our
split64 and combine64 PTX functions on sum_val and temp for each iteration:

 for (int i=1; i < 32; i *= 2)
 {

     
     // use PTX assembly to split
     split64(sum_val, s1, s2);
 
     // shuffle to transfer data
     s1 = __shfl_down (s1, i, 32);



     s2 = __shfl_down (s2, i, 32);
     
     
     // PTX assembly to combine
     combine64(temp, s1, s2);
     sum_val += temp;
 }

Now that we are done, let's have the 0th thread of every single warp add their
end value to out using the thread-safe atomicAdd:

 if (id == 0)
     atomicAdd(out, sum_val);
     
}'''

We will now write our test code with timeit operations to measure the
average time of our kernel and PyCUDA's sum over 20 iterations of both on
an array of 10000*2*32 doubles:

sum_mod = SourceModule(SumCode)
sum_ker = sum_mod.get_function('sum_ker')

a = np.float64(np.random.randn(10000*2*32))
a_gpu = gpuarray.to_gpu(a)
out = gpuarray.zeros((1,), dtype=np.float64)

sum_ker(a_gpu, out, grid=(int(np.ceil(a.size/64)),1,1), block=(32,1,1))
drv.Context.synchronize()

print 'Does sum_ker produces the same value as NumPy\'s sum (according allclose)? : 
%s' % np.allclose(np.sum(a) , out.get()[0])

print 'Performing sum_ker / PyCUDA sum timing tests (20 each)...'

sum_ker_time = timeit('''from __main__ import sum_ker, a_gpu, out, np, drv 
\nsum_ker(a_gpu, out, grid=(int(np.ceil(a_gpu.size/64)),1,1), block=(32,1,1)) 
\ndrv.Context.synchronize()''', number=20)
pycuda_sum_time = timeit('''from __main__ import gpuarray, a_gpu, drv 
\ngpuarray.sum(a_gpu) \ndrv.Context.synchronize()''', number=20)

print 'sum_ker average time duration: %s, PyCUDA\'s gpuarray.sum average time 
duration: %s' % (sum_ker_time, pycuda_sum_time)
print '(Performance improvement of sum_ker over gpuarray.sum: %s )' % 
(pycuda_sum_time / sum_ker_time)

Let's run this from IPython. Make sure that you have run both gpuarray.sum
and sum_ker beforehand to ensure that we aren't timing any compilation by
nvcc as well:



So, while summing is normally pretty boring, we can be excited by the fact
that our clever use of hardware tricks can speed up such a bland and trivial
algorithm quite a bit.

This example is available as the performance_sum_ker.py file under the Chapter11 directory in
this book's GitHub repository.



Summary
We started this chapter by learning about dynamic parallelism, which is a
paradigm that allows us to launch and manage kernels directly on the GPU
from other kernels. We saw how we can use this to implement a quicksort
algorithm on the GPU directly. We then learned about vectorized datatypes
in CUDA, and saw how we can use these to speed up memory reads from
global device memory. We then learned about CUDA Warps, which are
small units of 32 threads or less on the GPU, and we saw how threads
within a single Warp can directly read and write to each other's registers
using Warp Shuffling. We then looked at how we can write a few basic
operations in PTX assembly, including import operations such as
determining the lane ID and splitting a 64-bit variable into two 32-bit
variables. Finally, we ended this chapter by writing a new performance-
optimized summation kernel that is used for arrays of doubles, applying
almost most of the tricks we've learned in this chapter. We saw that this is
actually faster than the standard PyCUDA sum on double arrays with a
length of an order of 500,000.

We have gotten through all of the technical chapters of this book! You
should be proud of yourself, since you are now surely a skilled GPU
programmer with many tricks up your sleeve. We will now embark upon
the final chapter, where we will take a brief tour of a few of the different
paths you can take to apply and extend your GPU programming knowledge
from here.



Questions
1. In the atomic operations example, try changing the grid size from 1 to

2 before the kernel is launched while leaving the total block size at
100. If this gives you the wrong output for add_out (anything other than
200), then why is it wrong, considering that atomicExch is thread-safe?

2. In the atomic operations example, try removing __syncthreads, and then
run the kernel over the original parameters of grid size 1 and block size
100. If this gives you the wrong output for add_out (anything other than
100), then why is it wrong, considering that atomicExch is thread-safe?

3. Why do we not have to use __syncthreads to synchronize over a block of
size 32 or less?

 

4. We saw that sum_ker is around five times faster than PyCUDA's sum
operation for random-valued arrays of length 640,000 (10000*2*32). If
you try adding a zero to the end of this number (that is, multiply it by
10), you'll notice that the performance drops to the point where sum_ker
is only about 1.5 times as fast as PyCUDA's sum. If you add another
zero to the end of that number, you'll notice that sum_ker is only 75% as
fast as PyCUDA's sum. Why do you think this is the case? How can
we improve sum_ker to be faster on larger arrays?

5. Which algorithm performs more addition operations (counting both
calls to the C + operator and atomicSum as a single operation): sum_ker
or PyCUDA's sum?



Where to Go from Here
This book has been a journey, much like a daring mountain hike… but now,
at last, we have arrived at the end of our trek. We now stand upon the
summit of mount introductory-GPU-programming, and we stand proud as
we gaze back upon our native village of serial-programming-ville and smile
as we think about the quaint naivity of our old one-dimensional
programming traditions, where we considered forking a process in Unix to
be our entire understanding of the notion of parallel programming. We have
braved many pitfalls and dangers to arrive at this point, and we may have
even made such mishaps as installing a broken NVIDIA driver module in
Linux, or maybe downloading the wrong Visual Studio version over a slow
100k connection while visiting our parents for vacation. But these setbacks
were only temporary, leaving wounds that developed into calluses that
made us even stronger against the forces of (GPU) nature.

But, in the corner of our eye, we can see two wooden signs a few meters
away from where we are standing; we avert our gaze from the little village
of our past and now take a look at them. The first has an arrow pointing in
the direction from which we are currently faced, with only one word on it—
PAST. The other is pointing in the opposite direction, also with only one
word—FUTURE. We turn around in the direction pointing to FUTURE,
and we see a large glimmering metropolis strewn out before us to the
horizon, beckoning us. Now that we have finally caught our breath, we can
start walking into the future…

In this chapter, we will go over some of the options that you now have so
that you can continue your education and career in fields related to GPU
programming. Whether you are trying to build a career, a hobbyist doing
this for fun, an engineering student studying GPUs for a class, a
programmer or engineer trying to enhance your technical background, or an
academic scientist trying to apply GPUs to a research project, there are
many, many options that you now have at this point. Much like our
metaphorical metropolis, it is easy to get lost, and it is difficult to determine



where we should go. We hope to provide something akin to a brief tour
guide in this final chapter, providing you with some of the options for
where you can go next.

We will now take a look at the following paths in this chapter:

Advanced CUDA and GPGPU programming
Graphics
Machine learning and computer vision
Blockchain technology



Furthering your knowledge of
CUDA and GPGPU programming
The first option you have is, of course, to learn more about CUDA and
General-Purpose GPU (GPGPU) programming in particular. In this case,
you have probably already found a good application of this and want to
write even more advanced or optimized CUDA code. You may find it
interesting for its own sake, or perhaps you want to get a job as a
CUDA/GPU programmer. With a strong GPU programming foundation in
place (which was provided by this book), we will now look at some of the
advanced topics in this field that we are now prepared to learn about.



Multi-GPU systems
The first major topic that comes to mind would be to learn how to program
systems with more than one GPU installed. Many professional workstations
and servers contain several GPUs that have been installed with the intention
of processing far more data that requires not one, but several top-of-the-line
GPUs. To this end, there exists a subfield called Multi-GPU programming.
Much of the work is focused on load balancing, which is the art of using
each GPU at its peak capacity, ensuring that no GPU gets saturated with too
much work while the other goes without being fully utilized. Another topic
here is Inter-GPU Communication, which is generally concerned about the
issue of one GPU directly copying memory arrays to or from another using
CUDA's GPUDirect peer-to-peer (P2P) memory access.

NVIDIA provides a brief introduction to Multi-GPU programming here: https://www.nvidia.
com/docs/IO/116711/sc11-multi-gpu.pdf.

https://www.nvidia.com/docs/IO/116711/sc11-multi-gpu.pdf


Cluster computing and MPI
Another topic is cluster computing, that is, writing programs that make
collective use of a multitude of servers containing GPUs. These are the
server farms that populate the data-processing facilities of well-known
internet companies such as Facebook and Google, as well as the scientific
supercomputing facilities used by governments and militaries. Clusters are
generally programmed with a programming paradigm called message-
passing interface (MPI), which is an interface used with languages such as
C++ or Fortran that allows you to program many computers that are
connected to the same network.

More information about using CUDA with MPI is available here: https://devblogs.nvidia.co
m/introduction-cuda-aware-mpi/.

https://devblogs.nvidia.com/introduction-cuda-aware-mpi/


OpenCL and PyOpenCL
CUDA isn't the only language that can be used to program a GPU. CUDA's
most major competitor is called Open Computing Language, or OpenCL.
Where CUDA is a closed and proprietary system that will work exclusively
on only NVIDIA hardware, OpenCL is an open standard that's developed
and supported by the nonprofit Khronos Group. OpenCL can be used to
program not only an NVIDIA GPU, but also AMD Radeon GPUs and even
Intel HD GPUs—most major technology companies have committed to
supporting OpenCL in their products. Additionally, the author of PyCUDA,
Professor Andreas Kloeckner of UIUC, has written another excellent (and
free) Python library called PyOpenCL, which provides an equally user-
friendly interface to OpenCL, with nearly the same syntax and notions as
PyCUDA.

Information on OpenCL is provided by NVIDIA here: https://developer.nvidia.com/opencl.

Information on the free PyOpenCL library is available from Andreas Kloeckner’s
website here:
https://mathema.tician.de/software/pyopencl/.

https://developer.nvidia.com/opencl
https://mathema.tician.de/software/pyopencl/


Graphics
Obviously, the G in GPU stands for graphics, which we really haven't seen
much of in this book. Even though machine learning applications are now
NVIDIA's bread and butter, it all started with rendering nice-looking
graphics. We will provide some resources to get you started here, whether
you want to develop video game engines, render CGI movies, or develop
CAD software. CUDA can actually be used hand in hand with graphics
applications, and is actually used in professional software such as Adobe's
Photoshop and After Effects, as well as in many recent video games such as
the Mafia and Just Cause series. We will briefly cover some of the major
APIs you might consider starting with here.



OpenGL
The Open Graphics Language, or OpenGL, is an industry open standard
that has existed since the early 90's. While in some ways it is showing its
age, it is a stable API that enjoys widespread support, and if you write a
program that makes use of this, it is pretty much guaranteed to work on any
relatively modern GPU in existence. The CUDA samples folder actually
contains many examples of how OpenGL can interface with CUDA
(particularly in the 2_Graphics subdirectory), so interested readers may
consider going over these examples. (The default location is
C:\ProgramData\NVIDIA Corporation\CUDA Samples in Windows, and
/usr/local/cuda/samples in Linux.)

Information about OpenGL is available directly from NVIDIA here: https://developer.nvidi
a.com/opengl.

PyCUDA also provides an interface for the NVIDIA OpenGL driver. Information is
available here: https://documen.tician.de/pycuda/gl.html.

https://developer.nvidia.com/opengl
https://documen.tician.de/pycuda/gl.html


DirectX 12
DirectX 12 is the latest iteration of Microsoft's well-known and well-
supported graphics API. While this is proprietary for Windows PCs and
Microsoft Xbox game consoles, these systems obviously have a wide install
base of hundreds of millions of users. Furthermore, a variety of GPUs are
supported on Windows PCs besides NVIDIA cards, and the Visual Studio
IDE provides a great ease of use. DirectX 12 actually supports low-level
GPGPU programming-type concepts and can utilize multiple GPUs.

Microsoft's DirectX 12 Programming Guide is available here: https://docs.microsoft.com/en-u
s/windows/desktop/direct3d12/directx-12-programming-guide.

https://docs.microsoft.com/en-us/windows/desktop/direct3d12/directx-12-programming-guide


Vulkan
Vulkan can be thought of as the open equivalent of DirectX 12, which was
developed by the Khronos Group as the next-gen successor of OpenGL.
Along with Windows, Vulkan is also supported on macOS and Linux, as
well as on the Sony PlayStation 4, Nintendo Switch, and Xbox One
consoles. Vulkan has many of the same features as DirectX 12, such as
quasi-GPGPU programming. Vulkan is providing some serious competition
to DirectX 12, with video games such as the 2016 DOOM remake.

The Beginner's Guide to Vulkan is available from the Khronos Group here: https://www.khr
onos.org/blog/beginners-guide-to-vulkan.

https://www.khronos.org/blog/beginners-guide-to-vulkan


Machine learning and computer
vision
Of course, the elephant in the room of this chapter is machine learning and
its fraternal twin computer vision. It goes without saying that machine
learning (particularly the subfields of deep neural networks and
convolutional neural networks) is what is keeping a roof over
NVIDIA CEO Jensen Huang's head these days. (Okay, we admit that was
the understatement of the decade...) If you need a reminder as to why GPUs
are so applicable and useful in this field, please take another look at Chapter
9, Implementation of a Deep Neural Network. A large number of parallel
computations and mathematical operations, as well as the user-friendly
mathematical libraries, have made NVIDIA GPUs the hardware backbone
of the machine learning industry.



The basics
While you now know many of the intricacies of low-level GPU
programming, you won't be able to apply this knowledge to machine
learning immediately. If you don't have the basic skills in this field, like
how to do a basic statistical analysis of a dataset, you really should stop and
familiarize yourself with them. Stanford Professor Andrew Ng, the founder
of Google Brain, provides many materials that are available for free on the
web and on YouTube. Professor Ng's work is generally considered to be the
gold standard of educational material on machine learning.

Professor Ng provides a free introductory machine learning class on the web here: htt
p://www.ml-class.org.

http://www.ml-class.org/


cuDNN
NVIDIA provides an optimized GPU library for deep neural network
primitives called cuDNN. These primitives include operations such as
forward propagation, convolutions, back propagation, activation functions
(such as sigmoid, ReLU, and tanh), and gradient descent. cuDNN is what
most of the mainstream deep neural network frameworks such as
Tensorflow use as a backend for NVIDIA GPUs. This is provided for free
by NVIDIA , but has to be downloaded separately from the CUDA Toolkit.

More information on cuDNN is available here: https://developer.nvidia.com/cudnn.

https://developer.nvidia.com/cudnn


Tensorflow and Keras
Tensorflow is, of course, Google's well-known neural network framework.
This is a free and open source framework that is usable with Python and
C++, and has been available to the general public since 2015.

Tutorials on Tensorflow are available from Google here: https://www.tensorflow.org/tutorials/.

Keras is a higher level library that provides a more user-friendly interface to
Tensorflow, which was originally written by Google Brain's Francois
Chollet. Readers may actually consider starting with Keras before moving
on to Tensorflow.

Information on Keras is available here: https://keras.io/.

https://www.tensorflow.org/tutorials/
https://keras.io/


Chainer
Chainer is another neural network API that was developed by Seiya Tokui,
who is currently a PhD student at the University of Tokyo in Japan. While it
is less mainstream than Tensorflow, it is very well-respected due to its
incredible speed and efficiency. Moreover, readers may find Chainer of
particular interest, since this was originally developed using PyCUDA.
(This was later switched to CuPy, which is a PyCUDA branch that was
developed to provide an interface that is more similar to NumPy.)

Information on Chainer is available here: https://chainer.org/.

https://chainer.org/


OpenCV
The Open Source computer vision Library (OpenCV) has been around since
2001. This library provides many of the tools from classical computer
vision and image processing, which are still extremely useful in this age of
the deep neural network. Most of the algorithms in OpenCV have been
ported to CUDA in recent years, and it interfaces very easily with
PyCUDA.

Information on OpenCV is here: https://opencv.org/.

https://opencv.org/


Blockchain technology
Last, but certainly not least, is blockchain technology. This is the
underlying cryptographic technology that powers cryptocurrencies such as
Bitcoin and Ethereum. This is, of course, a very new field, which was first
described by Bitcoin's mysterious creator, Satoshi Nakamoto, in a white
paper published in 2008. GPUs were applied to this field almost
immediately after its invention—generating a unit of currency comes down
to brute-force cracking a cryptographic puzzle, and a GPU can attempt to
brute-force crack more combinations in parallel than any other piece of
hardware available to the general public today. This process is known as
mining.

Those who are interested in blockchain technology are suggested to read Satoshi
Nakamoto's original white paper on Bitcoin, which is available here: https://bitcoin.org/bi
tcoin.pdf.

GUIMiner, an open source, CUDA-based Bitcoin miner, is available here: https://guimine
r.org/.

https://bitcoin.org/bitcoin.pdf
https://guiminer.org/


Summary
In this chapter, we went over some of the options and paths for those that
are interested in furthering their background in GPU programming, which is
beyond the scope of this book. The first path we covered was expanding
your background in pure CUDA and GPGPU programming—some of the
things you can learn about that weren't covered in this book include
programming systems with multiple GPUs and networked clusters. We also
looked at some of the parallel programming languages/APIs besides
CUDA, such as MPI and OpenCL. Next, we discussed some of the well-
known APIs available to those who are interested in applying GPUs to
rendering graphics, such as Vulkan and DirectX 12. We then looked at
machine learning and went into some of the basic backgrounds that you
should have as well as some of the major frameworks available for
developing deep neural networks. Finally, we ended by taking a brief look
at blockchain technology and GPU-based cryptocurrency mining.

As the author, I would like to say thank you to everyone who has pushed
through this book and made it here, to the end. GPU programming is one of
the trickiest subfields of programming that I have encountered, and I hope
my text has helped you come to grips with the essentials. As the reader, you
should now feel free to indulge in a slice of the richest, most calorie-laden
slice of chocolate cake you can find—just know that you've earned it. (But
only one slice!)



Questions
1. Use Google or some other search engine to find at least one

application of GPU programming that is not featured in this chapter.
2. Try to find at least one programming language or API that can be used

to program a GPU that is not featured in this chapter.
3. Look up Google's new Tensor Processing Unit (TPU) chips. How do

these differ from GPUs?
4. Do you think it is a better idea to connect computers together into a

cluster using Wi-Fi or wired Ethernet cables?



Assessment



Chapter 1, Why GPU
Programming?

1. The first two for loops iterate over every pixel, whose outputs are
invariant to each other; we can thus parallelize over these two
for loops. The third for loop calculates the final value of a particular
pixel, which is intrinsically recursive.

2. Amdahl's Law doesn't account for the time it takes to transfer memory
between the GPU and the host.

3. 512 x 512 amounts to 262,144 pixels. This means that the first GPU
can only calculate the outputs of half of the pixels at once, while the
second GPU can calculate all of the pixels at once; this means the
second GPU will be about twice as fast as the first here. The third GPU
has more than sufficient cores to calculate all pixels at once, but as we
saw in problem 1, the extra cores will be of no use to us here. So the
second and third GPUs will be equally fast for this problem.

4. One issue with generically designating a certain segment of code as
parallelizable with regards to Amdahl's Law is that this makes the
assumption that the computation time for this piece of code will be
close to 0 if the number of processors, N, is very large. As we can see
from the last problem, this is not the case.

5. First, using time consistently can be cumbersome, and it might not zero
in on the bottlenecks of your program. Second, a profiler can tell you
the exact computation time of all of your code from the perspective of
Python, so you can tell whether some library function or background
activity of your operating system is at fault rather than your code.



Chapter 2, Setting Up Your GPU
Programming Environment

1. No, CUDA only supports Nvidia GPUs, not Intel HD or AMD Radeon
2. This book only uses Python 2.7 examples
3. Device Manager
4. lspci
5. free
6. .run



Chapter 3, Getting Started with
PyCUDA

1. Yes.
2. Memory transfers between host/device, and compilation time.
3. You can, but this will vary depending on your GPU and CPU setup.
4. Do this using the C ? operator for both the point-wise and reduce

operations.
5. If a gpuarray object goes out of scope its destructor is called, which will

deallocate (free) the memory it represents on the GPU automatically.
6. ReductionKernel may perform superfluous operations, which may be

necessary depending on how the underlying GPU code is structured. A
neutral element will ensure that no values are altered as a result of
these superfluous operations.

7. We should set neutral to the smallest possible value of a signed 32-bit
integer.



Chapter 4, Kernels, Threads,
Blocks, and Grids

1. Try it.
2. All of the threads don't operate on the GPU simultaneously. Much like

a CPU switching between tasks in an OS, the individual cores of the
GPU switch between the different threads for a kernel.

3. O( n/640 log n), that is, O(n log n).
4. Try it.

 

5. There is actually no internal grid-level synchronization in CUDA—
only block-level (with __syncthreads). We have to synchronize anything
above a single block with the host.

6. Naive: 129 addition operations. Work-efficient: 62 addition operations.
7. Again, we can't use __syncthreads if we need to synchronize over a large

grid of blocks. We can also launch over fewer threads on each iteration
if we synchronize on the host, freeing up more resources for other
operations.

8. In the case of a naive parallel sum, we will likely be working with only
a small number of data points that should be equal to or less than the
total number of GPU cores, which can likely fit in the maximum size
of a block (1032); since a single block can be synchronized internally,
we should do so. We should use the work-efficient algorithm only if
the number of data points are far greater than the number of available
cores on the GPU.



Chapter 5, Streams, Events,
Contexts, and Concurrency

1. The performance improves for both; as we increase the number of
threads, the GPU reaches peak utilization in both cases, reducing the
gains made through using streams.

2. Yes, you can launch an arbitrary number of kernels asynchronously
and synchronize them to with cudaDeviceSynchronize.

3. Open up your text editor and try it!
4. High standard deviation would mean that the GPU is being used

unevenly, overwhelming the GPU at some points and under-utilizing it
at others. A low standard deviation would mean that all launched
operations are running generally smoothly.

5. i. The host can generally handle far fewer concurrent threads than a
GPU. ii. Each thread requires its own CUDA context. The GPU can
become overwhelmed with excessive contexts, since each has its own
memory space and has to handle its own loaded executable code.



Chapter 6, Debugging and
Profiling Your CUDA Code

1. Memory allocations are automatically synchronized in CUDA.
2. The lockstep property only holds in single blocks of size 32 or less.

Here, the two blocks would properly diverge without any lockstep.
3. The same thing would happen here. This 64-thread block would

actually be split into two 32-thread warps.
4. Nvprof can time individual kernel launches, GPU utilization, and

stream usage; any host-side profiler would only see CUDA host
functions being launched.

5. Printf is generally easier to use for small-scale projects with relatively
short, inline kernels. If you write a very involved CUDA kernel with
thousands of lines, then probably you would want to use the IDE to
step through and debug your kernel line by line.

6. This tells CUDA which GPU we want to use.
7. cudaDeviceSynchronize will ensure that interdependent kernel launches and

mem copies are indeed synchronized, and that they won't launch
before all necessary operations have finished.



Chapter 7, Using the CUDA
Libraries with Scikit-CUDA

1. SBLAH starts with an S, so this function uses 32-bit real floats.
ZBLEH starts with a Z, which means it works with 128-bit complex
floats.

2. Hint: set trans = cublas._CUBLAS_OP['T']
3. Hint: use the Scikit-CUDA wrapper to the dot product,

skcuda.cublas.cublasSdot

4. Hint: build upon the answer to the last problem.
5. You can put the cuBLAS operations in a CUDA stream and use event

objects with this stream to precisely measure the computation times on
the GPU.

6. Since the input appears as being complex to cuFFT, it will calculate all
of the values as NumPy.

7. The dark edge is due to the zero-buffering around the image. This can
be mitigated by mirroring the image on its edges rather than by using a
zero-buffer.



Chapter 8, The CUDA Device
Function Libraries and Thrust

1. Try it. (It's actually more accurate than you'd think.)
2. One application: a Gaussian distribution can be used to add white

noise to samples to augment a dataset in machine learning.
3. No, since they are from different seeds, these lists may have a strong

correlation if we concatenate them together. We should use
subsequences of the same seed if we plan to concatenate them
together.

4. Try it.
5. Hint: remember that matrix multiplication can be thought of as a series

of matrix-vector multiplications, while matrix-vector multiplication
can be thought of as a series of dot products.

6. Operator() is used to define the actual function.



Chapter 9, Implementation of a
Deep Neural Network

1. One problem could be that we haven't normalized our training inputs.
Another could be that the training rate was too large.

2. With a small training rate a set of weights might converge very slowly,
or not at all.

3. A large training rate can lead to a set of weights being over-fit to
particular batch values or this training set. Also, it can lead to
numerical overflows/underflows as in the first problem.

4. Sigmoid.
5. Softmax.
6. More updates.



Chapter 10, Working with
Compiled GPU Code

1. Only the EXE file will have the host functions, but both the PTX and
EXE will contain the GPU code.

2. cuCtxDestory.
3. printf with arbitrary input parameters. (Try looking up the printf

prototype.)
4. With a Ctypes c_void_p object.
5. This will allow us to link to the function with its original name from

Ctypes.
6. Device memory allocations and memcopies between device/host are

automatically synchronized by CUDA.



Chapter 11, Performance
Optimization in CUDA

1. The fact that atomicExch is thread-safe doesn't guarantee that all threads
will execute this function at the same time (which is not the case since
different blocks in a grid can be executed at different times).

2. A block of size 100 will be executed over multiple warps, which will
not be synchronized within the block unless we use __syncthreads. Thus,
atomicExch may be called at multiple times.

3. Since a warp executes in lockstep by default, and blocks of size 32 or
less are executed with a single warp, __syncthreads would be
unnecessary.

4. We use a naïve parallel sum within the warp, but otherwise, we are
doing as many sums withatomicAdd as we would do with a serial sum.
While CUDA automatically parallelizes many of these
atomicAdd invocations, we could reduce the total number of
required atomicAdd invocations by implementing a work-efficient
parallel sum.

5. Definitely sum_ker. It's clear that PyCUDA's sum doesn't use the same
hardware tricks as we do since ours performs better on smaller arrays,
but by scaling the size to be much larger, the only explanation as to
why PyCUDA's version is better is that it performs fewer addition
operations.



Chapter 12, Where to Go from
Here

1. Two examples: DNA analysis and physics simulations.
2. Two examples: OpenACC, Numba.
3. TPUs are only used for machine learning operations and lack the

components required to render graphics.
4. Ethernet.
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