SuperFastPython

/-Day Course

Python Asyncio
Jump-Start

Asynchronous Programming
And Non-Blocking I/O
With Coroutines

Jason Brownlee

Python Asyncio Jump-Start

Asynchronous Programming And Non-Blocking I/0O With Coroutines
Jason Brownlee

SuperFastPython.com

2022

Copyright 2022 Jason Brownlee. All Rights Reserved.

Python Asyncio Jump-Start

Python Asyncio Jump-Start
Copyright
Preface
Introduction
Who Is This For
Book Overview
Lesson Structure
Code Examples
Practice Exercises
How to Read

Learning Outcomes

Getting Help
Lesson 01: Asyncio Concurrency

What are Coroutines
What is Asynchronous Programming
Welcome to Asyncio
Asyncio Hello World Example
When to Use Asyncio
Lesson Review
Lesson 02: Coroutines and Tasks
How to Create and Run Coroutines
How to Create and Run Tasks
How to Use Asyncio Tasks
Lesson Review
Lesson 03: Collections of Tasks
How to Run Many Tasks as a Group
How to Wait for Many Tasks
How to Wait For a Task With a Timeout
How to Handle Tasks In Completion Order
How to Run Blocking Tasks
Lesson Review
Lesson 04: Iterators, Generators, and Context Managers
How to Use Asynchronous Iterators

kindle:embed:0001?mime=image/png

How to Use Asynchronous Generators
How to Use Asynchronous Context Managers
Lesson Review

Lesson 05: Queues and Synchronization Primitives
What is Coroutine-Safe
How to Share Data Between Coroutines with Queues
How to Protect Critical Sections with a Mutex L.ock

How to Limit Access to a Resource with a Semaphore

How to Signal Between Coroutines Using an Event
How to Coordinate Using a Condition Variable

Lesson Review

Lesson 06: Subprocesses and Streams
How to Run Commands in Subprocesses
How to Use Non-Blocking I/O Streams
Lesson Review

Lesson 07: Port Scanner Case Study

Develop an Asyncio Port Scanner
How to Open a Socket Connection on a Port

How to Scan a Range of Ports on a Server (slow)
How to Scan Ports Concurrently (fast)
How to Report Scan Results Dynamically
Lesson Review

Conclusions
Look Back At How Far You’ve Come

Resources For Diving Deeper

Getting More Help
About the Author

Python Concurrency Jump-Start Series

Python Asyncio Jump-Start

Praise for SuperFastPython

“I’m reading this article now, and it is really well made (simple, concise
but comprehensive). Thank you for the effort! Tech industry is going
forward thanks also by people like you that diffuse knowledge.”

— Gabriele Berselli, Python Developer.

“I enjoy your postings and intuitive writeups - keep up the good work”
— Martin Gay, Quantitative Developer at Lacima Group.

“Great work. I always enjoy reading your knowledge based articles”
— Janath Manohararaj, Director of Engineering.

“Great as always!!!”
— Jadranko Belusic, Software Developer at Crossvallia.

“Thank you for sharing your knowledge. Your tutorials are one of the
best I've read in years. Unfortunately, most authors, try to prove how
clever they are and fail to educate. Yours are very much different. I love
the simplicity of the examples on which more complex scenarios can be
built on, but, the most important aspect in my opinion, they are easy to
understand. Thank you again for all the time and effort spent on
creating these tutorials.”

— Marius Rusu, Python Developer.

“Thanks for putting out excellent content Jason Brownlee, tis much
appreciated”

— Bilal B., Senior Data Engineer.

“Thank you for sharing. I’ve learnt a lot from your tutorials, and, I am
still doing, thank you so much again. I wish you all the best.”

— Sehaba Amine, Research Intern at LIRIS.

“Wish I had this tutorial 7 yrs ago when I did my first multithreading
software. Awesome Jason”

— Leon Marusa, Big Data Solutions Project Leader at Elektro Celje.
“This is awesome”

— Subhayan Ghosh, Azure Data Engineer at Mercedes-Benz R&D.

Copyright
© Copyright 2022 Jason Brownlee. All Rights Reserved.

Disclaimer

The information contained within this book is strictly for educational
purposes. If you wish to apply ideas contained in this book, you are taking
full responsibility for your actions.

The author has made every effort to ensure the accuracy of the information
within this book was correct at time of publication. The author does not
assume and hereby disclaims any liability to any party for any loss, damage,
or disruption caused by errors or omissions, whether such errors or omissions
result from accident, negligence, or any other cause.

No part of this book may be reproduced or transmitted in any form or by any
means, electronic or mechanical, recording or by any information storage and
retrieval system, without written permission from the author.

Preface

Python concurrency is deeply misunderstood.

Opinions vary from “Python does not support concurrency” to “Python
concurrency is buggy”.

I created the website SuperFastPython.com to directly counter these
misunderstandings.

Asyncio is a new, important, and exciting addition to Python.

Broadly, asyncio refers to changes to the Python language to support
coroutines, and the asyncio module that provides an API for developing and
running programs using coroutines with an asynchronous programming style.

Asyncio was added specifically to support non-blocking I/0O with socket
connections. Combined with asynchronous programming, this is typically
referred to as asynchronous I/0.

Using asyncio, we can develop programs that exceed the scalability of
threads, allowing tens or hundreds of thousands of concurrent streams. This
capability can be used to develop client-side or server-side programs that
access a vast number of concurrent TCP socket connections, perhaps to
servers, websites, game servers, databases, and more.

This guide was carefully designed to help Python developers (like you) to get
productive with asyncio as fast as possible. After completing all seven
lessons, you will know how to bring coroutine-based concurrency with the
asyncio module API to your own projects, super fast.

Together, we can make Python code run faster and change the community’s
opinions about Python concurrency.

Thank you for letting me guide you along this path.

Jason Brownlee, Ph.D.

SuperFastPython.com
2022.

https://SuperFastPython.com

Introduction

The asyncio module allows us to develop asynchronous I/O programs using
coroutines in Python.

Coroutines are a different unit of concurrency from threads and processes.
The Python language was expanded to provide coroutines with specialized
expressions such as async/await.

Coroutines are suited to the asynchronous programming paradigm, and
asynchronous programming is well suited to programs that read and write
from resources in a non-blocking manner, called non-blocking or
asynchronous 1/0.

This book provides a jump-start guide to get you productive with developing
asyncio programs.

It is not a dry, long-winded academic textbook. Instead, it is a crash course
for Python developers that provides carefully designed lessons with complete
and working code examples that you can copy-paste into your project today
and get results.

Before we dive into the lessons, let’s look at what is coming with a
breakdown of this book.

Who Is This For

Before we dive in, let’s make sure you’re in the right place.

This book is designed for Python developers who want to discover how to
use and get the most out of the asyncio module to write fast programs.

Specifically, this book is for:

e Developers that can write simple Python programs.

e Developers that need better performance from current or future Python
programs.

e Developers that are working with I/0-based tasks.

This book does not require that you are an expert in the Python programming
language or concurrency.

Specifically:

e You do not need to be an expert Python developer.
e You do not need to be an expert in concurrency.

Next, let’s take a look at what this book will cover.

Book Overview

This book is designed to bring you up-to-speed with how to use asyncio as
fast as possible.

As such, it is not exhaustive. There are many topics that are interesting or
helpful but are not on the critical path to getting you productive fast.

This book is divided into a course of 7 lessons, they are:

Lesson 01: Asyncio Concurrency

Lesson 02: Coroutines and Tasks

Lesson 03: Collections of Tasks

Lesson 04: Iterators, Generators, and Context Managers
Lesson 05: Queues and Synchronization Primitives
Lesson 06: Subprocesses and Streams

Lesson 07: Port Scanner Case Study

Next, let’s take a closer look at how lessons are structured.

Lesson Structure

Each lesson has two main parts, they are:

1. The body of the lesson.
2. The lesson overview.

The body of the lesson will introduce a topic with code examples, whereas
the lesson overview will review what was learned with exercises and links for
further information.

Each lesson has a specific learning outcome and is designed to be completed
in less than one hour.

Each lesson is also designed to be self-contained so that you can read the
lessons out of order if you choose, such as dipping into topics in the future to
solve specific programming problems.

The lessons were written with some intentional repetition of key concepts.
These gentle reminders are designed to help embed the common usage
patterns in your mind so that they become second nature.

We Python developers learn best from real and working code examples.

Next, let’s learn more about the code examples provided in the book.

Code Examples

All code examples use Python 3.
Python 2.7 is not supported because it reached its end of life in 2020.

I recommend the most recent version of Python 3 available at the time you
are reading this, although Python 3.9 or higher is sufficient to run all code
examples in this book.

You do not require any specific integrated development environment (IDE). I
recommend typing code into a simple text editor like Sublime Text or Atom
that run on all modern operating systems. I’'m a Sublime user myself, but any
text editor will do. If you are familiar with an IDE, then, by all means, use it.

Each code example is complete and can be run as a standalone program. I
recommend running code examples from the command line (also called the
command prompt on Windows or terminal on macOS) to avoid any possible
issues.

To run a Python script from the command line:

Save the code file to a directory of your choice with a . py extension.
Open your command line (also called the command prompt or terminal).
Change the directory to the location where you saved the Python script.
Execute the script using the Python interpreter followed by the name of
the script.

e

For example:

python my_script.py

I recommend running scripts on the command line. It is easy, it works for
everyone, it avoids all kinds of problems that beginners have with notebooks
and IDEs, and scripts run fastest on the command line.

That being said, if you know what you’re doing, you can run code examples

within your IDE or a notebook if you like. Editors like Sublime Text and
Atom will let you run Python scripts directly, and this is fine. I just can’t help
you debug any issues you might encounter because they’re probably caused
by your development environment.

All lessons in this book provide code examples. These are typically
introduced first via snippets of code that begin with an ellipsis (...) to
clearly indicate that they are not a complete code example. After the program
is introduced via snippets, a complete code example is always listed that
includes all of the snippets tied together, with any additional glue code and
import statements.

I recommend typing code examples from scratch to help you learn and
memorize the API.

Beware of copy-pasting code from the EBook version of this book as you
may accidentally lose or add white space, which may break the execution of
the script.

A code file is provided for each complete example in the book organized by
lesson and example within each lesson. You can execute these scripts directly
or use them as a reference.

You can download all code examples from here:

e Download Code Examples
https://SuperFastPython.com/paj-code

All code examples were tested on a POSIX machine by myself and my
technical editors prior to publication.

APIs can change over time, functions can become deprecated, and idioms can
change and be replaced. I keep this book up to date with changes to the
Python standard library and you can email me any time to get the latest
version. Nevertheless, if you encounter any warnings or problems with the
code, please contact me immediately and I will fix it. I pride myself on
having complete and working code examples in all of my lessons.

https://superfastpython.com/paj-code

Next, let’s learn more about the exercises provided in each lesson.

Practice Exercises

Each lesson has an exercise.

The exercises are carefully designed to test that you understood the learning
outcome of the lesson.

I strongly recommend completing the exercise in each lesson to cement your
understanding.

NOTE: I recommend sharing your results for each exercise publicly.

This can be done easily using social media sites like Twitter, Facebook, and
LinkedIn, on a personal blog, or in a GitHub project. Include the name of this
book or SuperFastPython.com to give context to your followers.

I recommend sharing your answers to exercises for three reasons:

e It will improve your understanding of the topic of the lesson.

e It will keep you accountable, ensuring you complete the lesson to a high
standard.

e [’d love to see what you come up with!

You can email me the link to your answer for each exercise directly via:

e Super Fast Python - Contact Page
https://SuperFastPython.com/contact/

Or share it with me on Twitter via @SuperFastPython.

Next, let’s consider how we might approach working through this book.

https://superfastpython.com/contact/
https://twitter.com/SuperFastPython

How to Read

You can work at your own pace.
There’s no rush and I recommend that you take your time.

This book is designed to be read linearly from start to finish, guiding you
from being a Python developer at the start of the book to being a Python
developer that can confidently use the asyncio module in your project by the

end of the book.

In order to avoid overload, I recommend completing one or two lessons per
day, such as in the evening or during your lunch break. This will allow you to
complete the transformation in about one week.

I recommend maintaining a directory with all of the code you type from the
lessons in the book. This will allow you to use the directory as your own
private code library, allowing you to copy-paste code into your projects in the
future.

I recommend trying to adapt and extend the examples in the lessons. Play
with them. Break them. This will help you learn more about how the API
works and why we follow specific usage patterns.

Next, let’s review your newfound capabilities after completing this book.

Learning Outcomes

This book will transform you from a Python developer into a Python
developer that can confidently bring concurrency to your projects with
asyncio.

After working through all of the lessons in this book, you will know:

e How to define, create, and run coroutines and how to use the
async/await expressions.

e How to create asynchronous tasks, query their status, cancel them and
add callback functions.

e How to run many coroutines concurrently in a group and handle their
results.

e How to wait for many coroutines to complete, meet a condition, or
timeout.

e How to define, create and use asynchronous iterators, generators, and
context managers.

e How to use the async for and async with expressions in asyncio
programs.

e How to synchronize and coordinate coroutines with locks, semaphores,
events and condition variables.

e How to share data between coroutines using coroutine-safe queues.

e How to run, read, and write from subprocesses and streams with
coroutines.

e How to develop a concurrent and dynamically updating port scanner
using non-blocking 1/0.

Next, let’s discover how we can get help when working through the book.

Getting Help

The lessons in this book were designed to be easy to read and follow.
Nevertheless, sometimes we need a little extra help.

A list of further reading resources is provided at the end of each lesson. These
can be helpful if you are interested in learning more about the topic covered,
such as fine-grained details of the standard library and API functions used.

The conclusions at the end of the book provide a complete list of websites
and books that can help if you want to learn more about Python concurrency
and the relevant parts of the Python standard library. It also lists places where
you can go online and ask questions about Python concurrency.

Finally, if you ever have questions about the lessons or code in this book, you
can contact me any time and I will do my best to help. My contact details are
provided at the end of the book.

Now that we know what’s coming, let’s get started.
Next

Next up in the first lesson, we will discover coroutine-based concurrency
with asyncio in Python.

Lesson 01: Asyncio Concurrency

In this lesson, we will explore asyncio, including coroutines, asynchronous
programming and the asyncio module. We will develop an asyncio hello
world program and understand how it works.

After completing this lesson, you will know:

e What is a coroutine and how it relates to subroutines, threads, and
generators.

What is asynchronous programming and asynchronous 1/0.

What the asyncio module is and the capabilities it provides.

How to develop a hello world asyncio program and know how it works.
When to use asyncio in your programs.

Let’s get started.

What are Coroutines

A coroutine is a function that can be suspended and resumed.
It is often defined as a generalized subroutine.

A subroutine is a function that can be executed, starting at one point and
finishing at another point. Whereas, a coroutine can be executed then
suspended, and resumed many times before finally terminating.

Specifically, coroutines have control over when exactly they suspend their
execution.

This may involve the use of a specific expression, such as an await
expression, or like a yield expression in a generator.

A coroutine may suspend for many reasons, such as executing another
coroutine, e.g. awaiting another task, or waiting for some external resources,
such as a socket connection or process to return data.

Coroutines are used for concurrency.

Many coroutines can be created and executed at the same time. They have
control over when they will suspend and resume, allowing them to cooperate
as to when concurrent tasks are executed.

This is called cooperative multitasking and is different to the multitasking
typically used with threads called preemptive multitasking.

Preemptive multitasking involves the operating system choosing what threads
to suspend and resume and when to do so, as opposed to the tasks themselves
deciding in the case of cooperative multitasking.

Now that we have some idea of what a coroutine is, let’s deepen this
understanding by comparing them to other familiar programming constructs.

Coroutine vs Routine and Subroutine

A routine and subroutine often refer to the same thing in modern
programming.

Perhaps more correctly, a routine is a program, whereas a subroutine is a
function in the program.

A routine has subroutines.

It is a discrete module of expressions that is assigned a name, may take
arguments and may return a value.

e Subroutine: A module of instructions that can be executed on demand,
typically named, and may take arguments and return a value. Also called
a function.

A subroutine is executed, runs through the expressions, and returns somehow.
Typically, a subroutine is called by another subroutine.

A coroutine is an extension of a subroutine. This means that a subroutine is a
special type of coroutine.

A coroutine is like a subroutine in many ways, such as:

e They both are discrete named modules of expressions.
e They both can take arguments, or not.
e They both can return a value, or not.

The main difference is that a coroutine chooses to suspend and resume its
execution many times before returning and exiting.

Both coroutines and subroutines can call other examples of themselves. A
subroutine can call other subroutines. A coroutine executes other coroutines.
However, a coroutine can also execute other subroutines.

When a coroutine executes another coroutine, it must suspend its execution
and allow the other coroutine to run.

This is like a subroutine calling another subroutine. The difference is the
suspension of the coroutine may allow any number of other coroutines to run

as well.

This makes a coroutine calling another coroutine more powerful than a
subroutine calling another subroutine. It is central to the cooperative
multitasking facilitated by coroutines.

Next, let’s look at how coroutines are related to generators.

Coroutine vs Generator

A generator is a special function that can suspend its execution.

A generator function can be defined like a normal function although it uses a
yield expression at the point it will suspend its execution and return a value.

A generator function will return a generator iterator object that can be
traversed, such as via a for-loop. Each time the generator is executed, it runs
from the last point it was suspended to the next yield expression.

A coroutine can suspend or yield to another coroutine using an await
expression. It will then resume from this point once the awaited coroutine has
been completed.

We can think of a generator as a special type of coroutine and cooperative
multitasking used in loops.

Before coroutines were developed, generators were extended so that they can
be used like coroutines in our programs.

This required a lot of technical knowledge of generators and the development
of custom task schedulers.

This was made possible via changes to the generators and the introduction of
the yield from expression.

These were later deprecated in favor of the modern async/await expressions.

Next, let’s look at how coroutines are different to threads.

Coroutine vs Thread

A thread refers to a thread of execution in a computer program.

Each program is a process and has at least one thread that executes
instructions for that process.

When we run a script, it starts an instance of the interpreter that runs our code
in the main thread. The main thread is the default thread of a process.

The underlying operating system controls how new threads are created, when
threads are executed, and which CPU core executes them.

A coroutine is more lightweight than a thread.

A coroutine is defined as a function, whereas a thread is an object created and
managed by the underlying operating system and represented as a
threading.Thread object.

e Thread: Unit of concurrency managed by the operating system,
represented by an object. Belongs to a process, may execute many
coroutines.

This means that coroutines are typically faster to create and start executing
and take up less memory. Conversely, threads are slower than coroutines to
create and start and take up more memory.

Coroutines execute within one thread, therefore a single thread may execute
many coroutines.

Now that we are familiar with coroutines, let’s look at asynchronous
programming.

What is Asynchronous Programming

In this section, we will discover asynchronous programming and how it
relates to asynchronous 1/0.

Before we dive into asynchronous programming, let’s understand what
asynchronous means.

What is Asynchronous

Asynchronous means not at the same time, as opposed to synchronous or at
the same time.

When programming, asynchronous means that the action is requested,
although not performed at the time of the request. It is performed later.

For example, we can make an asynchronous function call.

This will issue the request to make the function call and will not wait around
for the call to complete. We can choose to check on the status or result of the
function call later.

e Asynchronous Function Call: Request that a function is called at some
time and in some manner, allowing the caller to resume and perform
other activities.

The function call will happen somehow and at some time, in the background,
and the program can perform other tasks or respond to other events.

This is key. We don’t have control over how or when the request is handled,
only that we would like it handled while the program does other things.

Issuing an asynchronous function call often results in some handle on the
request that the caller can use to check on the status of the call or get results.
This is often called a future.

e Future: A handle on an asynchronous function call allowing the status

of the call to be checked and results to be retrieved.

The combination of the asynchronous function call and future together is
often referred to as an asynchronous task. This is because it is more elaborate
than a function call, such as allowing the request to be canceled and more.

e Asynchronous Task: Used to refer to the aggregate of an asynchronous
function call and resulting future.

Issuing asynchronous tasks and making asynchronous function calls is
referred to as asynchronous programming.

e Asynchronous Programming: The use of asynchronous techniques,
such as issuing asynchronous tasks or function calls.

We now have the building blocks to consider asynchronous I/0.

What is Asynchronous 1/0

Asynchronous programming is primarily used with non-blocking 1/O, such as
reading and writing from socket connections with other processes or other
systems.

Non-blocking I/O is a way of performing I/O where reads and writes are
requested, although performed asynchronously. The caller does not need to
wait for the operation to complete before returning.

The read and write operations are performed somehow (e.g. by the
underlying operating system or systems built upon it), and the status of the
action and/or data is retrieved by the caller later, once available, or when the
caller is ready.

e Non-blocking I/O: Performing [/O operations via asynchronous
requests and responses, rather than waiting for operations to complete.

As such, we can see how non-blocking I/O is related to asynchronous
programming. In fact, we use non-blocking I/O via asynchronous
programming.

The combination of non-blocking I/0 with asynchronous programming is so
common that it is referred to by the shorthand of asynchronous 1/0.

e Asynchronous I/0: A shorthand that refers to combining asynchronous
programming with non-blocking 1/0.

Next, let’s consider asynchronous programming support in Python.

Asynchronous Programming in Python

Broadly, asynchronous programming in Python refers to making requests and
not blocking to wait for them to complete.

We can implement asynchronous programming in Python in various ways.
The first and obvious example is the asyncio module.

This module directly offers an asynchronous programming environment
using the async/await syntax and non-blocking I/O with sockets and
subprocesses.

It is implemented using coroutines that run in an event loop that itself runs in
a single thread.

e Asyncio: An asynchronous programming environment provided in
Python via the asyncio module.

We will learn more about this module in the next section.

More broadly, Python offers threads and processes that can execute tasks
asynchronously.

For example, one thread can start a second thread to execute a function call
and resume other activities. The operating system will schedule and execute
the second thread at some time and the first thread may or may not check on
the status of the task, manually.

More concretely, Python provides Executor-based thread pools and process

pools in the ThreadPoolExecutor and ProcessPoolExecutor classes.

These classes use the same interface and support asynchronous tasks via the
submit () method that returns a Future object.

The multiprocessing module also provides pools of workers using
processes and threads in the Pool and ThreadPool classes, forerunners to the
ThreadPoolExecutor and ProcessPoolExecutor classes.

The capabilities of these classes are described in terms of worker execution
tasks asynchronously. They explicitly provide synchronous (blocking) and
asynchronous (non-blocking) versions of each method for executing tasks.

For example, one may issue a one-off function call synchronously via the
apply() method or asynchronously via the apply_async() method.

This highlights that although we are focused on asynchronous programming
with coroutines and asyncio module, that Python provides alternate ways to
develop asynchronous programs.

Now that we are familiar with coroutines and asynchronous programming,
let’s finally look at asyncio.

Welcome to Asyncio

Python provides coroutines as first-class objects and the asyncio module
supports asynchronous programming.

Asynchronous programming in Python using coroutines and the asyncio
module is typically referred to simply as asyncio.

Nevertheless, it is helpful to separate these concerns, at least initially, so we
can better understand them.

Coroutines in Python

Python supports coroutines directly via additions to the language, including
new expressions and types.

A coroutine can be defined via the async def expression.
This is an extension of the def expression for defining subroutines.
It defines a coroutine that can be created and returns a coroutine object.

For example:

define a coroutine
async def custom_coro():
o,

A coroutine defined with the async def expression is referred to as a
coroutine function.

Calling a coroutine function will return a coroutine object, which is an
instance of the coroutine class, a type provided in the Python language.

A coroutine can then use coroutine-specific expressions within it, such as
await, async for, and async with.

The await expression will suspend the calling coroutine and schedule the
specified coroutine to execute. The caller will not resume until the specified
coroutine is done.

For example:

define a coroutine

async def custom_coro():
await another coroutine
await another_coro()

This was just a taste of coroutines in Python, we will learn more about how to
define, create and run coroutines in Lesson 02: Coroutines and Tasks,

Next, let’s learn more about the asyncio module.

The asyncio Module

Python supports asynchronous programming directly via the asyncio
module.

The module provides utility functions and classes to assist in creating and
managing asynchronous tasks and performing non-blocking I/O with sockets
and subprocesses.

It also provides utility functions to simulate non-blocking tasks with blocking
I/O and CPU-bound tasks using thread pools and process pools under the
covers.

Critically, it provides the event loop required to execute coroutines.

Coroutines can be defined and created, but they can only be executed within
an event loop. The event loop that executes coroutines, manages the
cooperative multitasking between coroutines. It is also responsible for
executing callback functions and managing the non-blocking network I/0.

In asyncio applications, we don’t need to interact directly with the asyncio
event loop, other than starting it. Nevertheless, there is a low-level API for
getting access to the event loop object and methods for interacting with it.

The way to start the asyncio event loop is via the asyncio.run() function.

This function takes one coroutine and returns the value of the coroutine. The
provided coroutine can be used as the entry point into the coroutine-based
program. I like to call it the main coroutine, similar to the main thread and
main process in other forms of concurrency.

For example:

start an asyncio program
asyncio.run(main())

In addition to the event loop infrastructure, the asyncio module provides
many high-level features for using our asynchronous programs, such as:

e Utility functions for creating and scheduling asynchronous tasks.

e Functions and classes for opening and managing non-blocking TCP
socket connections.

e Functions and classes for starting and managing non-blocking
subprocesses.

e Synchronization primitives for encouraging coroutine safety.

e Coroutines-safe queues for message passing between coroutines.

Now that we have seen how Python supports coroutines and the asyncio
module supports developing coroutine-based asynchronous programming,
let’s look at a worked example.

Asyncio Hello World Example

The first program we write in a new programming language is a hello world
program.

The asyncio module is different from most other modules.

Using it is like writing code in a new programming language. It’s different
from normal programming.

It is the reason why so many developers are excited to use it, and why others
are afraid to get started.

The first step into asyncio is to write a hello world. The second step is to
understand what it does.

Asyncio Hello World

Let’s write a hello world for asyncio.
The complete example is listed below.
Type the example and run it, or copy-paste it.

This is our first step on the asyncio journey.

SuperFastPython.com
example of a hello world program for asyncio
import asyncio

define a coroutine

async def custom_coroutine():
report a message
print('Hello world"')

execute the coroutine
asyncio.run(custom_coroutine())

Running the example reports the hello world message.

Hello world
Full of questions? Good!

Now, let’s slow everything down and understand what this example does.

Asyncio Hello World in Detail

We know how to type and run a hello world for asyncio, now let’s understand
what it does (at least from a birds-eye view).

What should a hello world program for asyncio do?

If asyncio is for coroutine-based concurrency, we should create and run a
coroutine.

If we were exploring thread-based concurrency in the threading module, we
would create and run a thread. This would be the same if we were exploring
process-based concurrency in the multiprocessing module.

Recall, a subroutine is a function. For example, we can define a function to
print hello world as follows:

custom routine

def custom_routine():
report a message
print('Hello world"')

A coroutine is a function that can be suspended.

We can define a coroutine just like a normal function, except it has the added
async keyword before the def keyword.

For example:

define a coroutine
async def custom_coroutine():
report a message

print('Hello world')
So far, so good.
We cannot execute a coroutine like a subroutine.

If we call our custom_coroutine directly, we get warning messages that look
like an error.

For example:

SuperFastPython.com
example of calling a coroutine directly

define a coroutine

async def custom_coroutine():
report a message
print('Hello world')

call the coroutine directly
custom_coroutine() # raises warning

Running the example results in warning messages that look scary.
The first says that we never awaited our coroutine.

The second is not at all helpful.

RuntimeWarning: coroutine '...' was never awaited
custom_coroutine()
RuntimeWarning: Enable tracemalloc to get the object
allocation traceback

We cannot call a coroutine directly.

Instead, we must have the routine called for us by the asyncio run time, called
the event loop.

This can be achieved by calling the asyncio.run() module function.

This function will start the asyncio event loop in the current thread, and we
can only have one of these running in a thread at a time.

It takes a coroutine as an argument.

Not the name of the coroutine, like the target argument of a
threading.Thread or multiprocessing.Process, instead it takes an instance
of a coroutine.

We can create an instance of a coroutine just like creating an object, and it
looks like we are calling the coroutine.

For example:

execute the coroutine
asyncio.run(custom_coroutine())

This will start the event loop and execute the coroutine and print the message.
But, let’s unpack this further.

If we are creating an instance of a coroutine and passing it to the
asyncio.run() module function to execute, why not assign it first?

For example:

create the coroutine and assign it to a variable
coro = custom_coroutine()

execute the coroutine

asyncio.run(coro)

This makes more sense now.

We can clearly see the creation of the coroutine and it is passed to the
asyncio.run() function for execution.

There’s one more thing.

If we don’t execute an instance of a coroutine, we will get a warning.

This means that if we create and assign an instance of our custom coroutine
and do not pass it to asyncio.run(), a warning message is reported.

For example:

SuperFastPython.com
example of creating but not awaiting a coroutine

define a coroutine

async def custom_coroutine():
report a message
print('Hello world')

create the coroutine and assign it to a variable
coro = custom_coroutine() # raises warning

Running the example creates the coroutine, but does not do anything with it.

The runtime then reports this as a warning message, similar to what we saw
when we called the coroutine directly.

sys:1: RuntimeWarning: coroutine '...' was never awaited

So now we know what our hello world example does. We will go into more
detail in later lessons.

Now that we have seen our first coroutine and asyncio program, let’s look at
when we should use asyncio, and when we shouldn’t.

When to Use Asyncio

There are perhaps three top reasons to adopt asyncio in a project, they are:

e The non-blocking I/0O with subprocesses or socket connections is
required.

e The benefits of coroutines outweigh the benefits of threads and
processes.

e The asynchronous programming paradigm is preferred or required.

Non-Blocking 1/0 is Required

Asyncio is specifically designed for non-blocking I/0O with subprocesses and
TCP socket connections.

If an application requires a large number of concurrent socket or subprocess
tasks then asyncio is an obvious choice.

Poster-child examples include:

e Executing and checking the results of many commands on a system.
e Making and managing many socket connections.
e Serving access to many client socket connections.

Although this is the focus of the asyncio module, it is not the only reason to
adopt it in a project.

Coroutine-Based Concurrency is Required

Coroutines and asyncio offer an alternative to concurrency with threads or
processes.

Each of threads, processes, and coroutines have benefits and limitations.
Coroutines and the asyncio module together provide an alternative to
concurrent programming.

Generally, coroutines are lightweight, they are just a type of function. The
use less memory and are faster to start, suspend, and resume than threads and
processes that are managed by the underlying operating system.

An asyncio program may have orders of magnitude more concurrent
coroutines than a threading program can have concurrent threads or a
multiprocessing program can have concurrent processes.

Asyncio be may required if a program may have tens or hundreds of
thousands of concurrent tasks.

Asynchronous Programming is Required

Asynchronous programming is a new or modern type of programming.

It has proven very popular in other programming languages, such as
JavaScript.

Coroutines and asyncio unlock this capability in the Python interpreter and
standard library, with no third-party libraries needed.

Adopting asyncio for a project may be appropriate if the asynchronous
programming paradigm is preferred. Sometimes a programming paradigm is
chosen beforehand, making it a de facto requirement.

Asynchronous programming with asyncio could be used instead of or in
complement to a procedural-programming, object-oriented programming or
functional programming paradigm.

When Not to Use Asyncio

Asyncio should not always be used.

Python provides robust and capable thread-based concurrency and process-
based concurrency. These options should be used in most cases for
concurrent programming in Python for I/O-bound tasks and CPU-bound tasks
respectively.

Modern thread pools in the concurrent.futures module support
asynchronous ad hoc tasks using both threads and processes. This provides an
alternative way of adding elements of asynchronous programming, without
adopting coroutines.

A mistake is to think that asyncio is going to make the program faster than
thread or processes, or that coroutines cannot suffer race conditions or
deadlocks. Both of these notions are false.

Downloading webpages or querying open ports is just as fast with concurrent
threads as concurrent coroutines in one thread.

Code must be made coroutine-safe when using coroutine-based concurrency,
just like it must be made thread-safe when using threads and process-safe
when using process-based concurrency. There is no escape from these
concepts when using concurrent programming.

Another mistake is to think that asyncio makes concurrent programming
easy.

Concurrent programming is always hard, regardless of the unit of
concurrency or programming paradigm.

Coroutines can make code easier to read. The coroutine definitions look and
read like functions. But the challenges of good design and safety in
concurrent programming do not go just by changing the unit of concurrency,
we described previously.

In fact, the adoption of asynchronous programming may introduce new and
different challenges.

Lesson Review

Takeaways

Well done, you made it to the end of the lesson.

e You now know what is a coroutine and how it relates to routines,
threads, and generators.

e You now know what is asynchronous programming and asynchronous
/0.

e You now know what the asyncio module is in Python and the
capabilities it provides.

e You now know how to develop a hello world asyncio program and
know how it works.

¢ You now know when to use asyncio in your Python programs.

Exercise

Your task for this lesson is to take what you have learned about asyncio and
think about where you could use it to improve the performance of your
programs.

List at least three examples of programs you have worked on recently that
could benefit from the concurrency provided by coroutines and the asyncio
module. No need to share sensitive details of the project or technical details
on how exactly asyncio could be used, just a one or two line high-level
description is sufficient.

If you have trouble coming up with examples of recent applications that may
benefit from using asyncio, then think of applications or functionality you
could develop for current or future projects that could make good use of
asynchronous programming.

This is a useful exercise, as it will start to train your brain to see when you
can and cannot make use of these techniques in practice.

Share your results online on Twitter, LinkedIn, GitHub, or similar.

Send me the link to your results, I’d love to see what you come up with.

You can send me a message directly via:

Super Fast Python - Contact Page

https://SuperFastPython.com/contact/

Or share it with me on Twitter via @SuperFastPython.

Further Reading

This section provides resources for you to learn more about the topics
covered in this lesson.

asyncio - Asynchronous I/O.
https://docs.python.org/3/library/asyncio.html

PEP 492 - Coroutines with async and await syntax.
https://peps.python.org/pep-0492/

PEP 3156 - Asynchronous IO Support Rebooted: the asyncio Module.
https://peps.python.org/pep-3156/

Asynchronous 1/0, Wikipedia.
https://en.wikipedia.org/wiki/Asynchronous_I/O
Async/await, Wikipedia.
https://en.wikipedia.org/wiki/Async/await
Coroutine, Wikipedia.
https://en.wikipedia.org/wiki/Coroutine

Cooperative multitasking, Wikipedia.

https://en.wikipedia.org/wiki/Cooperative_multitasking

Next

In the next lesson, we will explore more about how to define coroutines and
how to create, schedule and query asynchronous tasks.

https://superfastpython.com/contact/
https://twitter.com/SuperFastPython
https://docs.python.org/3/library/asyncio.html
https://peps.python.org/pep-0492/
https://peps.python.org/pep-3156/
https://en.wikipedia.org/wiki/Asynchronous_I/O
https://en.wikipedia.org/wiki/Async/await
https://en.wikipedia.org/wiki/Coroutine
https://en.wikipedia.org/wiki/Cooperative_multitasking

Lesson 02: Coroutines and Tasks

In this lesson, we will explore how to create and use coroutines and tasks in
asyncio programs. These are the primary units of concurrency in asyncio
programs that can be suspended, resumed, canceled and more.

After completing this lesson, you will know:

e How to define, create, and run a coroutine with the async and await
expressions.

e How to create and schedule a coroutine as an independent task.

e How to query the status of asyncio tasks, get results, and check for
exceptions.

e How to cancel asyncio tasks and add done callback functions.

Let’s get started.

How to Create and Run Coroutines

A coroutine is a function that can be suspended and resumed.
Python provides coroutines for concurrency.
They are provided in two main ways:

e Through specific additions to the language, e.g. async and await
expressions.
e Through a specific module in the standard library, e.g. asyncio module.

Let’s explore how we can create and use coroutines.

How to Define a Coroutine

A coroutine can be defined via the async def expression.
This is an extension of the def expression for defining subroutines.
It defines a coroutine that can be created and returns a coroutine object.

For example:

define a coroutine
async def custom_coro():
...

A coroutine defined with the async def expression is referred to as a
coroutine function.

A coroutine function can take arguments and return a value, just like a regular
function.

Another key difference is that it can use special coroutine expressions, such
as await, async for, and async with.

We will look at the await expression soon in a following section. We will
learn about the async for, and async with expressions in Lesson 04:
Iterators, Generators, and Context Managers.

Next, let’s look at how to create a coroutine.

How to Create a Coroutine

Once a coroutine is defined, it can be created.
This looks like calling a subroutine.

For example:

create a coroutine
coro = custom_coro()

This does not execute the coroutine.
It returns a coroutine object.
A coroutine object has methods, such as send() and close(). It is a type.

We can demonstrate this by creating an instance of a coroutine and calling
the type() built-in function in order to report its type.

For example:

SuperFastPython.com
example of checking the type of a coroutine

define a coroutine
async def custom_coro():
do nothing
pass

create the coroutine
coro = custom_coro()
check the type of the coroutine

print(type(coro))

Running the example reports that the created coroutine is a coroutine class.
A coroutine object is an awaitable.

This means it is a type that implements the __await__ () method.

We also get a RuntimeError because the coroutine was created but never
executed, we will explore that in the next section.

<class 'coroutine'>
sys:1: RuntimeWarning: coroutine '...' was never awaited

Next, let’s look at how to run a coroutine.

How to Run a Coroutine

Coroutines can be defined and created, but they can only be executed within
an event loop.

The event loop that executes coroutines, manages the cooperative
multitasking between coroutines.

The typical way to start a coroutine event loop is via the asyncio.run()
function.

This function takes one coroutine and returns the value of the coroutine. The
provided coroutine can be used as the entry point into the coroutine-based
program.

For example:

create the coroutine

coro = custom_coroutine()

start the event loop and execute the coroutine
asyncio.run(coro)

This approach to executing a coroutine is typically performed in a single line.

For example:

start the event loop and execute the coroutine
asyncio.run(custom_coroutine())

This will start the asyncio runtime, called the event loop, and execute the
coroutine.

It is the primary way that asyncio applications are started.

For example:

SuperFastPython.com

example of running a coroutine
import asyncio

main coroutine

async def main():

report a message
print('Hello from a coroutine')

start the coroutine program
asyncio.run(main())

Running the example creates the main() coroutine and passes the coroutine
object to the run() function.

The run() function then starts the asyncio event loop and schedules the
main() coroutine.

The main() coroutine executes and reports a message.

The coroutine terminates. There are no further coroutines to execute, so the
event loop terminates.

Hello from a coroutine

Next, let’s look at how to await a coroutine.

How to Await a Coroutine

Another way to run a coroutine is to await it from a running coroutine.
This requires the use of the await expression.

The await expression takes an awaitable and suspends the caller. It schedules
the provided awaitable if needed. The caller will resume only once the
provided awaitable is done.

For example:

awalt an awaitable
await coro

An awaitable is an object that can be waited on using the await expression.
It is an object that implements the __await__ () method.

Coroutines are awaitables, but so too are asyncio.Task and asyncio.Future
objects.

We can execute a coroutine by awaiting it directly from within another
coroutine.

For example:

defines a custom coroutine
def another_coroutine():

create the coroutine
coro = custom_coroutine()

execute and wait for the coroutine to finish
awalit coro

This is typically performed in a single line.

For example:

execute and wait for the coroutine to finish
await custom_coroutine()

The asyncio API provides coroutine functions that return coroutine objects
that can be awaited.

An example is asyncio.sleep(). This function takes a number of seconds as
an integer or floating point value and returns a coroutine that can be awaited.

For example:

execute and walt for the coroutine to finish
await asyncio.sleep(1)

This suspends the caller and executes a coroutine that sleeps for a given
number of seconds, e.g. is also suspended.

It is a helpful function that we will use often to simulate a coroutine doing
some work.

The example below executes a coroutine that in turn executes and awaits the
asyncio.sleep() coroutine.

SuperFastPython.com
example of running a coroutine from a coroutine
import asyncio

main coroutine
async def main():
report a message
print('Hello from a coroutine')
sleep for a moment
await asyncio.sleep(1)

start the coroutine program
asyncio.run(main())

Running the example creates the main() coroutine and passes the coroutine

object to the run() function.

The run() function then starts the asyncio event loop and schedules the
main() coroutine.

The main() coroutine executes and reports a message. It then creates the
sleep() coroutine and schedules it for execution, suspending it until it is
done.

The sleep() coroutine runs and suspends itself for a fixed number of
seconds.

The sleep() coroutine terminates, then the main() coroutine resumes and
terminates.

There are no further coroutines to execute, so the event loop terminates.

Hello from a coroutine
We now know how to create and run coroutines in asyncio programs.

Next, let’s explore asyncio tasks.

How to Create and Run Tasks

Asyncio provides tasks that provide a way to wrap and execute coroutines
independently.

The benefit is that the task provides a handle on the coroutine that can be
queried, from which results can be retrieved, and provides a way to cancel a
running coroutine.

In this section, we will explore how to create and run tasks in asyncio
programs.

What is an Asyncio Task

An asyncio.Task is an object that schedules and independently runs an
asyncio coroutine.

It provides a handle on a scheduled coroutine that an asyncio program can
query and use to interact with the coroutine.

A task is created from a coroutine. It requires a coroutine object, wraps the
coroutine, schedules it for execution, and provides ways to interact with it.

A task is executed independently. This means it is scheduled in the asyncio
event loop and will execute regardless of what else happens in the coroutine
that created it. This is different from executing a coroutine directly, where the
caller must wait for it to complete.

The asyncio.Task class extends the asyncio.Future class and an instance
are awaitable.

A Future is a lower-level class that represents a result that will eventually
arrive.

Classes that extend the Future class are often referred to as Future-like.

Because a Task is awaitable it means that a coroutine can wait for a task to be

done using the await expression.

For example:

walt for a task to be done
await task

Now that we know what an asyncio task is, let’s look at how we can create
one.

How to Create a Task

A task is created using a provided coroutine instance.
In fact, a task can only be created and scheduled within a coroutine.
A task can be created using the asyncio.create_task() function.

The asyncio.create_task() function takes a coroutine instance and an
optional name for the task and returns an asyncio.Task instance.

For example:

create a coroutine

coro = task_coroutine()

create a task from a coroutine
task = asyncio.create_task(coro)

This can be achieved with a compound statement on a single line.

For example:

create a task from a coroutine
task = asyncio.create_task(task_coroutine())

This will do a few things:

1. Wrap the coroutine in a Task instance.
2. Schedule the task for execution in the event loop.
3. Return a Task instance

The task instance can be discarded, interacted with via methods, and awaited
by a coroutine.

There are other ways to create a task using the low-level API, but this is the
preferred way to create a Task from a coroutine in an asyncio program.

Next, let’s look at when exactly the task will run.

When Does the Task Run

A common question after creating a task is when does it run?
This is a good question.

Although we can schedule a coroutine to run independently as a task with the
create_task() function, it may not run immediately.

In fact, the task will not execute until the event loop has an opportunity to
execute it.

This will not happen until all other coroutines are not running and it is the
task’s turn to run.

For example, if we had an asyncio program with one coroutine that created
and scheduled a task, the scheduled task will not run until the calling
coroutine that created the task is suspended.

This may happen if the calling coroutine chooses to sleep, chooses to await

another coroutine or task, or chooses to await the new task that was
scheduled.

For example:

create a task from a coroutine

task = asyncio.create_task(task_coroutine())
await the task, allowing it to run
await task

Now that we know what a task is and how to create one, let’s look at a
worked example.

Example of Creating and Running a Task

We can explore an example of creating a Task from a coroutine in an asyncio
program.

This is the quintessential use case of creating and using a task.

In this example, we will define a coroutine that we will wrap in a task. We
will then define the main coroutine that will be the entry point of the
program. A task will be created from our task coroutine and then await the
task to complete.

The complete example is listed below.

SuperFastPython.com
example of creating and awaiting an asyncio task
import asyncio

define a coroutine for a task
async def task_coroutine():
report a message
print('executing the task')
suspend for a moment
await asyncio.sleep(1)

custom coroutine
async def main():
report a message
print('main coroutine')
create and schedule the task
task = asyncio.create_task(task_coroutine())
wait for the task to complete
await task

start the asyncio program
asyncio.run(main())

Running the example first creates the main() coroutine and uses it as the
entry point to the asyncio program.

The main() coroutine then reports a message. It then creates an instance of
the task_coroutine() coroutine and passes it to the create_task() function
in order to wrap it in a Task instance and return the instance.

This schedules the Task-wrapped coroutine for execution as soon as it is able.

The main() coroutine then continues on and then suspends execution and
awaits the task to be completed.

This gives the task an opportunity to execute. It reports a message and then
suspends, sleeping for one second.

At this time both the main() coroutine and the Task are suspended.
The Task resumes and then terminates.

The main() coroutine then continues on and terminates, which closes the
asyncio program.

main coroutine
executing the task

Now that we know how to create tasks, let’s look at how we can interact with
them.

How to Use Asyncio Tasks

The asyncio.Task object provides a handle on a scheduled coroutine.

It provides a number of methods that we can use in our asyncio programs to
query and interact with the coroutine.

In this section, we will explore how to use asyncio.Task objects once they
have been created.

How to Check Task Status

After a Task is created we can check its status.
There are two statuses we can check, they are:

e Whether the task is done.
e Whether the task was canceled.

Let’s take a closer look at each in turn.
Check if a Task is Done

We can check if a task is done via the done () method.
The method returns True if the task is done, or False otherwise.

For example:

check if a task is done
if task.done():
...

A task is done if it has had the opportunity to run and is now no longer
running.

A task that has been scheduled is not done. Similarly, a task that is running is
not done.

A task is done if:

The coroutine finishes normally.

The coroutine returns explicitly.

An unexpected error or exception is raised in the coroutine
The task is canceled.

Check if a Task is Canceled

We can check if a task is canceled via the cancelled() method.
The method returns True if the task was canceled, or False otherwise.

For example:

check if a task was canceled
if task.cancelled():
...

A task is canceled if the cancel() method was called on the task and
completed successfully, e..g cancel() returned True.

A task is not canceled if the cancel() method was not called, or if the
cancel () method was called but failed to cancel the task.

Next, let’s look at how we can get the result from a task.

How to Get a Tasks Result

We can get the return value from the coroutine wrapped by the task by
simply awaiting the task.

For example:

get the return value from the wrapped coroutine
value = await task

Another approach to get the result of a task via the result () method.

This returns the return value of the coroutine wrapped by the Task or None if
the wrapped coroutine does not explicitly return a value.

For example:

get the return value from the wrapped coroutine
value = task.result()

If the coroutine raises an unhandled error or exception, it is re-raised when
calling the result () method and may need to be handled.

For example:

try:
get the return value from the wrapped coroutine
value = task.result()

except Exception:
task failed and there is no result

If the task was canceled, then a CancelledError exception is raised when
calling the result () method and may need to be handled.

For example:

try:
get the return value from the wrapped coroutine
value = task.result()

except asyncio.CancelledError:
task was canceled

As such, it is a good idea to check if the task was canceled first.

For example:

check if the task was not canceled

if not task.cancelled():
get the return value from the wrapped coroutine
value = task.result()

else:
task was canceled

If the task is not yet done, then an InvalidStateError exception is raised
when calling the result () method and may need to be handled.

For example:

try:
get the return value from the wrapped coroutine
value = task.result()

except asyncio.InvalidStateError:
task is not yet done

As such, it is a good idea to check if the task is done first.

For example:

check if the task is not done
if not task.done():
await task
get the return value from the wrapped coroutine
value = task.result()

Next, let’s look at how we can get an unhandled exception raised by a task.

How to Get a Tasks Exception

A coroutine wrapped by a task may raise an exception that is not handled.
This will cause the task to fail, in effect.

We can retrieve an unhandled exception in the coroutine wrapped by a task
via the exception() method.

For example:

get the exception raised by a task
exception = task.exception()

If an unhandled exception was not raised in the wrapped coroutine, then a
value of None is returned.

If the task was canceled, then a CancelledError exception is raised when
calling the exception() method and may need to be handled.

Similarly, if the task is not yet done, then an InvalidStateError exception is
raised when calling the exception() method and may need to be handled.

Next, let’s look at how we can cancel a running task.

How to Cancel a Task

We can cancel a scheduled task via the cancel() method.
The cancel method returns True if the task was canceled, or False otherwise.

For example:

cancel the task
was_cancelled = task.cancel()

If the task is already done, it cannot be canceled and the cancel() method
will return False and the task will not have the status of canceled.

If cancel request was successfully, the next time the task is given an
opportunity to run, it will raise a CancelledError exception.

If the cancelledError exception is not handled within the wrapped
coroutine, the task will be canceled.

Otherwise, if the cancelledError exception is handled within the wrapped

coroutine, the task will not be canceled.

The cancel() method can also take a message argument which will be used
in the content of the CancelledError.

We can explore how to cancel a task.

In this example, we will create and schedule a task as per normal. The caller
will then wait a moment and allow the task to begin executing.

It will then cancel the task and check that the request to cancel was
successful.

The caller will then wait a moment more for the task to be canceled, then
report the status of the task to confirm it is marked as canceled.

The complete example is listed below.

SuperFastPython.com
example of canceling an asyncio task
import asyncio

define a coroutine for a task
async def task_coroutine():
report a message
print('executing the task')
suspend for a moment
await asyncio.sleep(1)

custom coroutine
async def main():
report a message
print('main coroutine')
create and schedule the task
task = asyncio.create_task(task_coroutine())
walit a moment
await asyncio.sleep(0.5)
cancel the task
was_cancelled = task.cancel()
print(f'>was canceled: {was_cancelled}')
walit a moment

await asyncio.sleep(0.1)
report the status
print(f'>canceled: {task.cancelled()}")

start the asyncio program
asyncio.run(main())

Running the example first creates the main() coroutine and uses it as the
entry point to the asyncio program.

The main() coroutine then reports a message. It then creates an instance of
the task_coroutine() coroutine and passes it to the create_task() method
in order to wrap it in a Task instance and return the instance.

The main() coroutine then suspends execution and suspends for half a
second.

This gives the task an opportunity to execute the task. The task reports a
message and then suspends, sleeping for one second.

The main() coroutine resumes and cancels the new task. It then reports
whether the request to cancel the task was successful. It was because we
know that the task is not yet done. The main() coroutine then suspends for a
fraction of a second.

This gives the task another opportunity to execute, in which case the
CancelledError exception is raised in the wrapped coroutine, canceling the
task.

The main() coroutine then resumes and checks the canceled status of the
task, confirming that it indeed is done and was canceled.

main coroutine
executing the task
>was canceled: True
>canceled: True

Next, let’s look at how we can add a done callback function to a task.

How to Use Callback With a Task

We can add a done callback function to a task via the add_done_callback()
method.

This method takes the name of a function to call when the task is done.
The callback function must take the Task instance as an argument.

For example:
done callback function

def handle(task):
print(task)

register a done callback function

task.add_done_callback(handle)

Recall that a task may be done when the wrapped coroutine finishes normally
when it returns, when an unhandled exception is raised or when the task is
canceled.

The add_done_callback() method can be used to add or register as many
done callback functions as we like.

We can also remove or de-register a callback function via the
remove_done_callback() function.

For example:

remove a done callback function
task.remove_done_callback(handle)

We can explore how to use a done callback function on a task.

In this example, we will define a done callback function that will report
whether a task is done or not.

The function will then be registered on the task after it is created.

The complete example is listed below.

SuperFastPython.com
example of adding a done callback function to a task
import asyncio

custom done callback function
def handle(task):
print(f'Task callback done: {task.done()}')

define a coroutine for a task
async def task_coroutine():
report a message
print('executing the task')
suspend for a moment
awalit asyncio.sleep(1)

custom coroutine
async def main():
report a message
print('main coroutine')
create and schedule the task
task = asyncio.create_task(task_coroutine())
add a done callback function
task.add_done_callback(handle)
wait for the task to complete
await task

start the asyncio program
asyncio.run(main())

Running the example first creates the main() coroutine and uses it as the
entry point to the asyncio program.

The main() coroutine then reports a message. It then creates an instance of
the task_coroutine() coroutine and passes it to the create_task() method
in order to wrap it in a Task instance and return the instance.

The main() coroutine then registers the done callback function on the task. It

then suspends execution and awaits the task to be completed.

This gives the task an opportunity to execute. It reports a message and then
suspends, sleeping for one second. It resumes and terminates.

This triggers the asyncio infrastructure to call the callback function and pass
it the Task instance.

The callback function is executed and reports a message, confirming that
indeed the task is marked as done.

main coroutine
executing the task
Task callback done: True

Next, let’s look at how we can assign a meaningful name to a task.

How to Set the Task Name

A task may have a name.

This name can be helpful if multiple tasks are created from the same
coroutine and we need some way to tell them apart programmatically.

The name can be set when the task is created from a coroutine via the name
argument.

For example:

create a coroutine

coro = task_coroutine()

create a task from a coroutine

task = asyncio.create_task(coro, name='MyTask')

The name for the task can also be set via the set_name () method.

For example:

set the name of the task
task.set_name('MyTask')

We can retrieve the name of a task via the get_name () method.

For example:

get the name of a task
name = task.get_name()

This is just a sample of some of the key ways that we can interact with an
asyncio.Task that represents a scheduled coroutine.

Lesson Review

Takeaways

Well done, you made it to the end of the lesson.

¢ You now know how to define, create, and run a coroutine with the async
and await expressions.

e You now know how to create and schedule a coroutine as an
independent task.

¢ You now know how to query the status of asyncio tasks, get results, and
check for exceptions.

e You now know how to cancel asyncio tasks and add done callback
functions.

Exercise

Your task for this lesson is to use what you have just learned about running
ad hoc code in a coroutine or independent task.

Devise a small asyncio program that executes a repetitive task, such as
calling the same function multiple times in a loop. Execute this program and
record how long it takes to complete.

The specifics of the task do not matter. You can try to complete something
practical, or if you run out of ideas, you can calculate a number, or suspend
with the asyncio.sleep() function.

Now update the program to execute each task using a separate coroutines
executed concurrently as independent asyncio.Tasks. Record how long it
takes to execute.

Compare the execution time between the serial and concurrent versions of the
program. Calculate the difference in seconds (e.g. it is faster by 5 seconds).
Calculate the ratio that the second program is faster than the first program
(e.g. it is 2.5x faster).

These calculations may help:

e difference = serial time—concurrent_timeserial\ time - concurrent\ time
e ratio = serial timeconcurrent_time\frac{serial_time}{concurrent\ time}

If it turns out that the asynchronous version of the program is not faster,
perhaps change or manipulate the task so that the serial version is slower than
the faster version.

This exercise will help you develop the calculations and practice needed to
benchmark and compare the performance before and after making code
concurrent with asyncio.

Share your results online on Twitter, LinkedIn, GitHub, or similar.
Send me the link to your results, I’d love to see what you come up with.

You can send me a message directly via:

e Super Fast Python - Contact Page
https://SuperFastPython.com/contact/

Or share it with me on Twitter via @SuperFastPython.

Further Reading

This section provides resources for you to learn more about the topics
covered in this lesson.

e asyncio - Asynchronous I/O.
https://docs.python.org/3/library/asyncio.html

e PEP 492 - Coroutines with async and await syntax.
https://peps.python.org/pep-0492/

e PEP 3156 - Asynchronous 10 Support Rebooted: the asyncio Module.
https://peps.python.org/pep-3156/

e Coroutines and Tasks.
https://docs.python.org/3/library/asyncio-task.html

e Coroutine, Wikipedia.

https://superfastpython.com/contact/
https://twitter.com/SuperFastPython
https://docs.python.org/3/library/asyncio.html
https://peps.python.org/pep-0492/
https://peps.python.org/pep-3156/
https://docs.python.org/3/library/asyncio-task.html
https://en.wikipedia.org/wiki/Coroutine

https://en.wikipedia.org/wiki/Coroutine

Next

In the next lesson, we will explore how to run multiple coroutines as a group
and wait for groups of coroutines to complete or meet a condition.

Lesson 03: Collections of Tasks

In this lesson, we will explore how to run and work with collections of
coroutines and asyncio tasks. This is the main way to issue and wait on many
asynchronously issued and concurrently executing tasks at points in our
program.

After completing this lesson, you will know:

How to run many coroutines concurrently as a group and retrieve their
results.

How to wait for a collection of tasks to complete or for the first of a
group to complete or fail.

How to wait for an asynchronous task to complete with a timeout.

How to handle task results in the order that tasks are completed.

How to run blocking function calls asynchronously in a separate thread.

Let’s get started.

How to Run Many Tasks as a Group

The asyncio.gather() function allows the caller to group multiple
awaitables together and have them executed concurrently.

We may use the asyncio.gather() function in situations where we create
many tasks or coroutines up-front and then wish to execute them all at once
and wait for them all to complete before continuing on.

This is a likely situation where the result is required from many similar tasks,
e.g. same task or coroutine with different data.

The awaitables can be executed concurrently, results returned, and the main
program can resume by making use of the results.

Now that we know what the asyncio.gather () function is, let’s look at how
we can use it.

How to use asyncio.gather()

The asyncio.gather () function takes one or more awaitables as arguments.

Recall an awaitable may be a coroutine, a Future or a Task. Therefore, we
can call the gather () function with multiple tasks, multiple coroutines, or a
mixture of tasks and coroutines.

For example:

execute multiple coroutines
asyncio.gather(corol(), coro2())

If Task objects are provided to gather(), they will already be running
because tasks are scheduled as part of being created.

The asyncio.gather () function takes awaitables as position arguments.

We cannot create a list or collection of awaitables and provide it to gather, as
this will result in an error.

For example:

create a list of coroutines

coros = [corol(), coro2()]

cannot provide a list of awaitables directly
asyncio.gather(corors) # error

A list of awaitables can be provided if it is first unpacked into separate
expressions using the star operator (*), also called the asterisk operator.

This operator specifically unpacks iterables, like lists, into separate
expressions. It is often referred to as the iterable unpacking operator.

For example:

create a list of coroutines

coros = [corol(), coro2()]

gather with an unpacked list of awaitables
asyncio.gather(*coros)

If coroutines are provided to gather(), they are wrapped in Task objects
automatically.

The gather() function does not suspend directly. Instead, it returns an
asyncio.Future object that represents the group of awaitables.

For example:

get a future that represents multiple awaitables
group = asyncio.gather(corol(), coro2())

Once the Future object is created it is scheduled automatically within the
event loop.

This means that if the caller did nothing else, the scheduled group of
awaitables will run (assuming the caller suspends). We can interact with the
group via the Future object just like a task, such as add a done callback
function, cancel the group and check on the status of the group.

Nevertheless, the most common usage of asyncio.gather() is to await the
returned Future directly.

This will collect the return values from the coroutines and tasks and return
them as an iterable.

For example:

execute coroutines and get the return values
values = await asyncio.gather(corol(), coro2())

Now that we know how to use asyncio.gather(), let’s look at a worked
example.

Example of Running Many Coroutines in a List

It is common to create multiple coroutines beforehand and then gather them
later.

This allows a program to prepare the tasks that are to be executed
concurrently and then trigger their concurrent execution all at once and wait
for them to complete.

We can collect many coroutines together into a list either manually or using a
list comprehension.

For example:

create many coroutines
coros = [task_coro(i) for i in range(10)]

We can then call gather () with all coroutines in the list.

The list of coroutines cannot be provided directly to the gather () function as
this will result in an error.

Instead, the gather() function requires each awaitable to be provided as a
separate positional argument.

This can be achieved by unwrapping the list into separate expressions and
passing them to the gather () function. The star operator (*) will perform this
operation for us.

For example:

run the tasks
await asyncio.gather(*coros)

Tying this together, the complete example of running a list of pre-prepared
coroutines with gather () is listed below.

SuperFastPython.com
example of gather for many coroutines in a list
import asyncio

coroutine used for a task
async def task_coro(value):
report a message
print(f'>task {value} executing')
sleep for a moment
awalit asyncio.sleep(1)

coroutine used for the entry point
async def main():
report a message
print('main starting')
create many coroutines
coros = [task_coro(i) for i in range(10)]
run the tasks
await asyncio.gather(*coros)
report a message
print('main done')

start the asyncio program
asyncio.run(main())

Running the example executes the main() coroutine as the entry point to the
program.

The main() coroutine then creates a list of 10 coroutine objects using a list
comprehension.

This list is then provided to the gather() function and unpacked into 10
separate expressions using the star operator.

The main() coroutine then awaits the Future object returned from the call to
gather (), suspending and waiting for all scheduled coroutines to complete
their execution.

The coroutines run as soon as they are able, reporting their unique messages
and sleeping before terminating.

Only after all coroutines in the group are complete does the main() coroutine
resume and report its final message.

This highlights how we can prepare a collection of coroutines and provide
them as separate expressions to the gather () function.

main starting
>task 0 executing

>task 1 executing
>task 2 executing
>task 3 executing
>task 4 executing
>task 5 executing
>task 6 executing
>task 7 executing
>task 8 executing
>task 9 executing
main done

Next, let’s look at how we can wait for many tasks in an asyncio program.

How to Wait for Many Tasks

The asyncio.wait () function can be used to wait for a collection of asyncio
tasks to complete.

Recall that an asyncio task is an instance of the asyncio.Task class that
wraps a coroutine. It allows a coroutine to be scheduled and executed
independently, and the Task instance provides a handle on the task for
querying status and getting results.

The wait () function allows us to wait for a collection of tasks to be done.

The call to wait can be configured to wait for different conditions, such as all
tasks being completed, the first task completed and the first task failing with
an error.

Next, let’s look at how we can use the wait () function.

How to Use asyncio.wait()

The asyncio.wait() function takes a collection of awaitables, typically Task
objects.

This could be a 1ist, dict, or set of task objects that we have created, such
as via calls to the asyncio.create() task function in a list comprehension.

For example:

create many tasks
tsks = [asyncio.create_task(task(i)) for i in range(10)]

The asyncio.wait () will not return until some condition on the collection of
tasks is met.

By default, the condition is that all tasks are completed.

The wait () function returns a tuple of two sets. The first set contains all task
objects that meet the condition, and the second contains all other task objects
that do not yet meet the condition.

These sets are referred to as the done set and the pending set.

For example:

wait for all tasks to complete
done, pending = await asyncio.wait(tasks)

Technically, the asyncio.wait() is a coroutine function that returns a
coroutine.

We can then await this coroutine which will return the tuple of sets.

For example:

create the wait coroutine
wait_coro = asyncio.wait(tasks)
await the wait coroutine

t = await wait_coro

The condition waited for can be specified by the return_when argument
which is set to asyncio.ALL_COMPLETED by default.

For example:

wait for all tasks to complete
done, pending = await asyncio.wait(tasks,
return_when=asyncio.ALL_COMPLETED)

We can wait for the first task to be completed by setting return_when to
FIRST_COMPLETED.

For example:

wait for the first task to be completed
done, pending = await asyncio.wait(tasks,
return_when=asyncio.FIRST_COMPLETED)

When the first task is complete and returned in the done set, the remaining
tasks are not canceled and continue to execute concurrently.

We can wait for the first task to fail with an exception by setting
return_when to FIRST_EXCEPTION.

For example:

walit for the first task to fail
done, pending = await asyncio.wait(tasks,
return_when=asyncio.FIRST_EXCEPTION)

In this case, the done set will contain the first task that failed with an
exception. If no task fails with an exception, the done set will contain all
tasks and wait () will return only after all tasks are completed.

We can specify how long we are willing to wait for the given condition via a
timeout argument in seconds.

If the timeout expires before the condition is met, the tuple of tasks is
returned with whatever subset of tasks do meet the condition at that time,
e.g. the subset of tasks that are completed if waiting for all tasks to complete.

For example:

wait for all tasks to complete with a timeout
done, pending = await asyncio.wait(tasks, timeout=3)

If the timeout is reached before the condition is met, an exception is not
raised and the remaining tasks are not canceled.

Now that we know how to use the asyncio.wait() function, let’s look at a
worked example.

Example of Waiting for All Tasks

We can explore how to wait for all tasks using asyncio.wait().

In this example, we will define a simple task coroutine that generates a
random value, sleeps for a fraction of a second, then reports a message with
the generated value.

The main coroutine will then create many tasks in a list comprehension with
the coroutine and then wait for all tasks to be complete.

The complete example is listed below.

SuperFastPython.com

example of waiting for all tasks to complete
from random import random

import asyncio

coroutine to execute in a new task
async def task_coro(arg):
generate a random value between 0 and 1
value = random()
suspend for a moment
await asyncio.sleep(value)
report the value
print(f'>task {arg} done with {value}'")

main coroutine
async def main():
create many tasks
tasks = [asyncio.create_task(task_coro(1i))
for 1 in range(10)]
wait for all tasks to complete
_ = awailt asyncio.wait(tasks)
report results
print('All done')

start the asyncio program
asyncio.run(main())

Running the example first creates the main() coroutine and uses it as the
entry point into the asyncio program.

The main() coroutine then creates a list of ten tasks in a list comprehension,
each providing a unique integer argument from 0 to 9.

The main () coroutine is then suspended and waits for all tasks to complete.

The tasks execute. Each generates a random value, sleeps for a moment, then
reports its generated value.

After all tasks have been completed, the main() coroutine resumes and
reports a final message.

This example highlights how we can use the wait() function to wait for a
collection of tasks to be completed.

This is perhaps the most common usage of the function.

NOTE: Results will vary each time the program is run given the use of
random numbers.

>task 5 done with 0.0591009105682192
>task 8 done with 0.10453715687017351
>task O done with 0.15462838864295925
>task 6 done with 0.4103492027393125
>task 9 done with 0.45567100006991623
>task 2 done with 0.6984682905809402
>task 7 done with 0.7785363531316224
>task 3 done with 0.827386088873161
>task 4 done with 0.9481344994700972
>task 1 done with 0.9577302665040541
All done

Next, let’s look at how we can wait for a coroutine to complete with a fixed
timeout.

How to Wait For a Task With a Timeout

The asyncio.wait_for() function allows the caller to wait for an asyncio
task or coroutine to complete with a timeout.

If no timeout is specified, the wait_for() function will wait until the task is
completed.

If a timeout is specified and elapses before the task is complete, then the task
is canceled.

This allows the caller to both set an expectation about how long they are
willing to wait for a task to complete, and to enforce the timeout by canceling
the task if the timeout elapses.

Now that we know what the asyncio.wait_for () function is, let’s look at
how to use it.

How to Use asyncio.wait_for()

The asyncio.wait_for () function takes an awaitable and a timeout.
The awaitable may be a coroutine or a task.

A timeout must be specified and may be None for no timeout, an integer or
floating point number of seconds.

The wait_for () function returns a coroutine that is not executed until it is
explicitly awaited or scheduled as a task.

For example:

wait for a task to complete
await asyncio.wait_for(coro, timeout=10)

If a coroutine is provided, it will be converted to the task when the

wait_for() coroutine is executed.

If the timeout elapses before the task is completed, the task is canceled, and
an asyncio.TimeoutError is raised, which may need to be handled.

For example:

execute a task with a timeout
try:

walit for a task to complete

await asyncio.wait_for(coro, timeout=1)
except asyncio.TimeoutError:

...

If the waited-for task fails with an unhandled exception, the exception will be
propagated back to the caller that is awaiting on the wait_for () coroutine, in
which case it may need to be handled.

For example

execute a task that may fail
try:
wait for a task to complete
await asyncio.wait_for(coro, timeout=1)
except asyncio.TimeoutError:
oo,
except Exception:
oo,

Now that we know how the wait_for() function works, let’s look at a
worked example.

Example of Waiting for a Task with a Timeout

We can explore how to wait for a coroutine with a timeout that elapses before
the task is completed.

In this example, we execute a coroutine except the caller waits a fixed

timeout of 0.2 seconds or 200 milliseconds.
Recall that one second is equal to 1,000 milliseconds.

The task coroutine is modified so that it sleeps for more than one second,
ensuring that the timeout always expires before the task is complete.

The complete example is listed below.

SuperFastPython.com

example of waiting for a coroutine with a timeout
from random import random

import asyncio

coroutine to execute in a new task
async def task_coro():
generate a random value between 1 and 2
value = 1 + random()
report message
print(f'>task got {value}')
suspend for a moment
await asyncio.sleep(value)
report all done
print('>task done')

main coroutine
async def main():
create a task
task = task_coro()
execute and wait for the task without a timeout
try:
awalit asyncio.wait_for(task, timeout=0.2)
except asyncio.TimeoutError:
print('Gave up waiting, task canceled')

start the asyncio program
asyncio.run(main())

Running the example first creates the main() coroutine and uses it as the
entry point into the asyncio program.

The main() coroutine creates the task coroutine. It then calls wait_for () and
passes the task coroutine and sets the timeout to 0.2 seconds.

The main() coroutine is suspended and the task_coro() is executed. It
reports a message and sleeps for a moment.

The main() coroutine resumes after the timeout has elapsed. The wait_for()
coroutine cancels the task_coro() coroutine and the main() coroutine is
suspended.

The task_coro() runs again and responds to the request to be terminated. It
raises a TimeoutError exception and terminates.

The main() coroutine resumes and handles the TimeoutError raised by the
task_coro().

This highlights how we can call the wait_for () function with a timeout and
to cancel a task if it is not completed within a timeout.

NOTE: Results will vary each time the program is run given the use of
random numbers.

>task got 1.4231068884240894
Gave up waiting, task canceled

Next, let’s look at how we can handle coroutine results in the order they are
completed.

How to Handle Tasks In Completion Order

The asyncio.as_completed() function will run a collection of tasks and
coroutines concurrently.

More importantly, it returns an iterable that we can use to retrieve the
awaitables in the order that they are completed.

It allows us to execute many coroutines or tasks concurrently and get the
results from tasks as they are done, rather than the order we issued them.

Now that we know what as_completed() is, let’s look at how we can use it.

How to Use asyncio.as_completed()

The asyncio.as_completed() function is called with a collection of
awaitables.

This may be a list, dict, or set, and may contain asyncio.Task objects,
coroutines, or other awaitables.

Any coroutines provided to as_completed() will be wrapped in a Task
object for independent execution.

It returns an iterable that when traversed will yield awaitables in the provided
list. These can be awaited by the caller in order to get results in the order that
tasks are completed, e.g. get the result from the next task to complete.

For example:

iterate over awaitables

for task in asyncio.as_completed(tasks):
get the next result
result = await task

The as_completed() function also takes a timeout argument.

This specifies how long the caller is willing to wait for all awaitables to be
done.

For example:

iterate over awaitables with a timeout

for task in asyncio.as_completed(tasks, timeout=10):
get the next result
result = await task

If the timeout elapses before all awaitables are done, a
asyncio.TimeoutError is raised and may need to be handled.

For example, we could handle it within the loop:

iterate over awaitables with a timeout
for task in asyncio.as_completed(tasks, timeout=10):
handle a timeout
try:
get the next result
result = await task
except asyncio.TimeoutError:
#

This is not desirable because once the timeout has elapsed, an
asyncio.TimeoutError will be raised each time next() is called on the
generator.

Therefore, it is better to wrap the entire loop in a try-except expression.

For example:

handle a timeout
try:
iterate over awaitables with a timeout
for task in asyncio.as_completed(tasks, timeout=10):
get the next result
result = await task

except asyncio.TimeoutError:
...

Now that we know how to use the as_completed() function, let’s take a
moment to consider how it works.

How Does asyncio.as_completed() Work

The function works by providing a generator that yields coroutines, where
each coroutine will return a result of a provided awaitable.

The asyncio.as_completed() function does not suspend, but instead returns
a generator.

For example:

get a gen that yields awaitables in completion order
generator = asyncio.as_completed(tasks)

Calling the next () built-in function on the generator does not suspend, but
instead yields a coroutine.

The returned coroutine is not one of the provided awaitables, but rather an
internal coroutine from the as_completed() function that manages and
monitors which issued task will return a result next.

For example:

get the next coroutine
coro = next(generator)

It is not until one of the returned coroutines is awaited that the caller will
suspend.

For example:

get a result from the next task to complete

result = await coro

Now that we have an idea of how to use the as_completed() function and
how it works, let’s look at a worked example.

Example of Handling Task Results Dynamically

We can explore how to execute coroutines concurrently and get coroutine
results as tasks are completed with the asyncio.as_completed() function.

In this example, we will define a simple coroutine task that takes an integer
argument, generates a random value, sleeps for a fraction of a second then
returns the integer argument multiplied by the generated value.

A list of the task coroutines is created and passed to the as_completed()
function. This returns a generator that is traversed using a for-loop.

In each iteration of the loop a coroutine is yielded from the generator and is
then awaited in the body of the loop. A result from the next coroutine to
complete is returned and the result is reported.

The complete example is listed below.

SuperFastPython.com

example of getting coroutine results as completed
from random import random

import asyncio

coroutine to execute in a new task
async def task_coro(arg):
generate a random value between 0 and 1
value = random()
suspend for a moment
await asyncio.sleep(value)
return the result
return arg * value

main coroutine
async def main():
create many coroutines

coros = [task_coro(i) for i in range(10)]
get results as coroutines are completed
for coro in asyncio.as_completed(coros):
get the result from the next task to complete
result = await coro
report the result
print(f'>got {result}')

start the asyncio program
asyncio.run(main())

Running the example first creates the main() coroutine and then uses this as
the entry point into the asyncio program.

The main() coroutine runs and creates a list of coroutines.

It then passes this list to the as_completed() function which returns a
generator. The generator is traversed in a for loop and each iteration yields a
coroutine.

The coroutine is awaited. This suspends the main() coroutine.

The tasks begin executing, generating a random value, and sleeping. A task
finishes and returns a value.

The main() coroutine resumes, receives the return value, and reports it.

The loop repeats, another coroutine is yielded, the main() coroutine awaits it
and suspends, and another result is returned.

This continues until all coroutines in the provided list are completed.

This example highlights that we can traverse a collection of coroutines and
get and use results in the order that tasks are completed.

NOTE: Results will vary each time the program is run given the use of
random numbers.

>got 0.07236962530232949
>got 0.5171864910147306

>got 0.7153626682953872
>got 2.54812333824902
>got 0.5960648114598495
>got 5.051883987489034
>got 0.0

>got 2.842043340472799
>got 6.343694133393031
>got 4.903128525746293

Next, let’s look at how we can call blocking functions without blocking the
asyncio event loop.

How to Run Blocking Tasks

We can execute thread-blocking function calls in asyncio using the
asyncio.to_thread() function.

It will take a function call and execute it in a new thread, separate from the
thread that is executing the asyncio event loop.

It allows the asyncio event loop to treat a blocking function call as a
coroutine and execute asynchronously using thread-based concurrency
instead of coroutine-based concurrency.

The asyncio.to_thread() function is specifically designed to execute
blocking I/0O functions, not CPU-bound functions that can also block the
asyncio event loop.

This is a useful function to use when we have an asyncio program that needs
to perform both non-blocking I/O (such as with sockets) and blocking 1/0
(such as with files or a legacy API).

Now that we know how to execute blocking functions asynchronously in
asyncio, let’s look at how to use the to_thread() function.

How to Use asyncio.to_thread()

The to_thread() function takes the name of a blocking function to execute
and any arguments to the function.

It then returns a coroutine that can be awaited to get the return value from the
function, if any.

For example:

create a coroutine for a blocking function
blocking_coro = asyncio.to_thread(blocking, argl, arg2)
awalt the coroutine and get return value

result = await blocking_coro

The blocking function will not be executed in a new thread until it is awaited
or executed independently.

The coroutine can be wrapped in an asyncio.Task to execute the blocking
function call independently.

For example:

create a coroutine for a blocking function
blocking_coro = asyncio.to_thread(blocking)

execute the blocking function independently
task = asyncio.create_task(blocking_coro)

This allows the blocking function call to be used like any other asyncio Task.

Now that we know how to use the asyncio.to_thread() function, let’s look
at a worked example.

Example of Running a Blocking Function in a Thread

We can explore how to execute the blocking call in a new thread and not stop
the event loop.

In the example below we call asyncio.to_thread() to create a coroutine for
the call to the blocking_task() function.

This coroutine is then awaited allowing the main coroutine to suspend and for
the blocking function to execute in a new thread.

The complete example is listed below.

SuperFastPython.com

example of running a blocking call in a new thread
import time

import asyncio

blocking function

def blocking_task():
report a message
print('task is running')
block the thread
time.sleep(2)
report a message
print('task is done')

background coroutine task
async def background():
loop forever
while True:
report a message
print('>background task running')
sleep for a moment
await asyncio.sleep(0.5)

main coroutine

async def main():
run the background task
_= asyncio.create_task(background())
create a coroutine for the blocking function call
coro = asyncio.to_thread(blocking_task)
make call in a new thread and await the result
await coro

start the asyncio program
asyncio.run(main())

Running the example first creates the main() coroutine and uses it as the
entry point into the asyncio program.

The main() coroutine runs. It creates the background coroutine and schedules
it for execution as soon as it can.

The main() coroutine then creates a coroutine to run the background task in a
new thread and then awaits this coroutine.

This does a couple of things.

Firstly, it suspends the main() coroutine, allowing any other coroutines in the

event loop to run, such as the new coroutine for executing the blocking
function in a new thread.

The new coroutine runs and starts a new thread and executes the blocking
function in the new thread. This coroutine was also suspended.

The event loop is free and the background coroutine gets an opportunity to
run, looping and reporting its messages.

The blocking call in the other thread finishes, suspends the background task,
resumes the main thread, and terminates the program.

This highlights that running a blocking call in a new thread does not block
the event loop, allowing other coroutines to run while the blocking call is
being executed, suspending some threads other than the main event loop
thread.

task is running
>packground task running
>background task running
>packground task running
>background task running
task is done

Lesson Review

Takeaways

Well done, you made it to the end of the lesson.

¢ You now know how to run many coroutines concurrently as a group and
retrieve their results.

¢ You now know how to wait for a collection of tasks to complete or for
the first of a group to complete or fail.

¢ You now know how to wait for an asynchronous task to complete with a
timeout.

¢ You now know how to handle task results in the order that tasks are
completed.

¢ You now know how to run blocking function calls asynchronously in a
separate thread.

Exercise

Your task for this lesson is to use what you have learned about running and
waiting for many asynchronous tasks.

Develop a small asyncio program that creates and starts one or more
asynchronous task performing some arbitrary activity, like sleeping.

Then from the main coroutine, wait for some time or a trigger and query the
status one or more of the tasks you have created. For example, you could wait
for all tasks to complete or for a timeout.

Extend the example so that the tasks take an random amount of time to
complete or randomly raise an exception or not. Have the main coroutine
wait for the first task to complete, the first to fail, or report results as they are
completed.

This example will help you get used to working with and operating upon
collections of asynchronous tasks that are executing concurrently.

Share your results online on Twitter, LinkedIn, GitHub, or similar.

Send me the link to your results, I’d love to see what you come up with.

You can send me a message directly via:

Super Fast Python - Contact Page

https://SuperFastPython.com/contact/

Or share it with me on Twitter via @SuperFastPython.

Further Reading

This section provides resources for you to learn more about the topics
covered in this lesson.

asyncio - Asynchronous I/O.
https://docs.python.org/3/library/asyncio.html

PEP 492 - Coroutines with async and await syntax.
https://peps.python.org/pep-0492/

PEP 3156 - Asynchronous IO Support Rebooted: the asyncio Module.
https://peps.python.org/pep-3156/

Coroutines and Tasks.
https://docs.python.org/3/library/asyncio-task.html
time - Time access and conversions.
https://docs.python.org/3/library/time.html

random - Generate pseudo-random numbers.
https://docs.python.org/3/library/random.html

Next

In the next lesson, we will explore how to define, create and use
asynchronous iterators, generators, and context managers.

https://superfastpython.com/contact/
https://twitter.com/SuperFastPython
https://docs.python.org/3/library/asyncio.html
https://peps.python.org/pep-0492/
https://peps.python.org/pep-3156/
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/random.html

Lesson 04: Iterators, Generators,
and Context Managers

In this lesson, we will explore how to create and to use asynchronous
iterators, generators, and context managers in asyncio programs. These are
the asynchronous versions of the classical iterators, generators, and context
managers we may use in conventional programs.

After completing this lesson, you will know:

e How to define, create and traverse asynchronous iterators and how they
compare to classical iterators.

e How to create and use asynchronous generators and how they compare
to classical generators.

e How to define and create asynchronous context managers and how they
compare to classical context managers

e How and when to use the async for expression in coroutines with
asynchronous iterables.

e How and when to use the async with expression for use with
asynchronous context managers.

Let’s get started.

How to Use Asynchronous Iterators

An asynchronous iterator is an object that implements the __aiter_ () and
__anext__ () methods.

Before we take a close look at asynchronous iterators, let’s review classical
iterators and see how they compare to asynchronous iterators.

What are Classical and Asynchronous Iterators

An iterator is an object that implements a specific interface.

Specifically, the __iter_ () method returns an instance of the iterator, and
the _ next__ () method steps the iterator one cycle and returns a value.

An iterator can be stepped using the next() built-in function or traversed
using a for-loop.

Many objects are iterable, most notable are containers such as lists.

An asynchronous iterator is an object that implements a specific interface,
specifically the __aiter_ () and __anext__ () methods.

The __aiter_ () method must return an instance of the iterator. The
__anext__ () method must return an awaitable that steps the iterator.

An asynchronous iterator may only be stepped or traversed in an asyncio
program, such as within a coroutine.

An asynchronous iterator can be stepped using the anext () built-in function
that returns an awaitable that executes one step of the iterator, e.g. one call to
the __anext__ () method.

An asynchronous iterator can be traversed using the async for expression
that will automatically call anext() each iteration and await the returned
awaitable in order to retrieve the return value. We will learn more about the
async for expression in a moment.

Next, let’s look at how to define an asynchronous iterator.

How to Define an Asynchronous Iterator

We can define an asynchronous iterator by defining a class that implements
the __aiter_ () and __anext__ () methods.

These methods are defined on an object as per normal.

Importantly, because the __anext__ () function must return an awaitable, it
must be defined using the async def expression.

When the iteration is complete, the _ anext_ () method must raise a
StopAsyncIteration exception.

For example:

define an asynchronous iterator
class AsyncIterator():
constructor, define some state
def __init__ (self):
self.counter = 0

create an instance of the iterator
def __ aiter__ (self):
return self

return the next awaitable
async def __anext__ (self):
check for no further items
if self.counter >= 10:
raise StopAsyncIteration
increment the counter
self.counter += 1
return the counter value
return self.counter

Because the asynchronous iterator is a coroutine and each iterator returns an
awaitable that is scheduled and executed in the asyncio event loop, we can
execute and await awaitables within the body of the iterator.

For example:

return the next awaitable
async def __anext_ (self):
check for no further items
if self.counter >= 10:
raise StopAsyncIteration
increment the counter
self.counter += 1
simulate work
await asyncio.sleep(1)
return the counter value
return self.counter

Next, let’s look at how we can use an asynchronous iterator.

How to Create an Asynchronous Iterator

To use an asynchronous iterator we must create the iterator.
This involves creating the object as per normal.

For example:

create the iterator
it = AsyncIterator()

This returns an asynchronous iterable, which is an instance of an
asynchronous iterator.

Next, let’s look at how to step an asynchronous iterator.

How to Step an Asynchronous Iterator

One step of the iterator can be traversed using the anext () built-in function,
just like a classical iterator can be traversed using the next () function.

The result is an awaitable that is awaited.

For example:

get an awaitable for one step of the iterator
awaitable = anext(it)

execute the one step and get the result
result = await awaitable

This can be achieved on one line.

For example:

step the async iterator
result = await anext(it)

Next, let’s look at how to traverse an asynchronous iterator to completion.

How to Traverse an Asynchronous Iterator

The asynchronous iterator can also be traversed in a loop using the async
for expression that will await each iteration of the loop automatically.

For example:

traverse an asynchronous iterator
async for result in AsyncIterator():
print(result)

This does not execute the for-loop in parallel. Instead, this is an asynchronous
for-loop.

The difference is that the coroutine that executes the for-loop will suspend
and internally await each awaitable iteration.

Behind the scenes, this may require coroutines to be scheduled and awaited,
or tasks to be awaited.

An asynchronous iterator cannot be traversed using the for expression and

classical iterators cannot be traversed using the async for expression. Each
expression expects different methods to exist on the object that is being
iterated.

We may also use an asynchronous list comprehension with the async for
expression to collect the results of the iterator.

For example:

async list comprehension with async iterator
results = [item async for item in AsyncIterator()]

This is called an asynchronous list comprehension. We may also use the
async for expression in asynchronous dict and set comprehensions.

Now that we are familiar with how to create and use asynchronous iterators,
let’s look at a worked example.

Example of Using an Asynchronous Iterator

We can explore how to traverse an asynchronous iterator using the async
for expression.

In this example, we will create and traverse the asynchronous iterator to
completion using an async for loop.

This loop will automatically await each awaitable returned from the iterator,
retrieve the returned value, and make it available within the loop body so that
in this case it can be reported.

This is perhaps the most common usage pattern for asynchronous iterators.

The complete example is listed below.

SuperFastPython.com
example of an async iterator with async for loop
import asyncio

define an asynchronous iterator
class AsyncIterator():
constructor, define some state
def __init_ (self):
self.counter = 0

create an instance of the iterator
def __aiter__(self):
return self

return the next awaitable
async def __anext_ (self):
check for no further items
if self.counter >= 10:
raise StopAsyncIteration
increment the counter
self.counter += 1
simulate work
await asyncio.sleep(1)
return the counter value
return self.counter

main coroutine
async def main():
loop over async iterator with async for loop
async for item in AsyncIterator():
print(item)

execute the asyncio program
asyncio.run(main())

Running the example first creates the main() coroutine and uses it as the
entry point into the asyncio program.

The main() coroutine runs and starts the for-loop.

An instance of the asynchronous iterator is created and the loop automatically
steps it using the anext() function to return an awaitable. The loop then
awaits the awaitable and retrieves a value which is made available to the
body of the loop where it is reported.

This process is then repeated, suspending the main() coroutine, executing a
step of the iterator and suspending, and resuming the main() coroutine until
the iterator is exhausted.

Once the internal counter of the iterator reaches 10, a StopAsyncIteration
exception is raised. This does not terminate the program. Instead, it is
expected and handled by the async for expression and breaks the loop.

This highlights how an asynchronous iterator can be traversed using an async
for expression.

© o0 ~NOO A WNBRE

(I
©

Next, let’s look at how we can use asynchronous generators in asyncio
programs.

How to Use Asynchronous Generators

An asynchronous generator is a coroutine that uses the yield expression.

Before we dive into the details of asynchronous generators, let’s first review
classical generators and see how they compare to asynchronous generators.

What are Classical and Asynchronous Generators

A generator is a function that returns a value via a yield expression.

For example:

define a generator
def generator():
for i in range(10):
yield 1

The generator is executed to the yield expression, after which a value is
returned. This suspends the generator at that point. The next time the
generator is executed it is resumed from the point it was suspended and runs
until the next yield expression.

Technically, a generator function creates and returns a generator iterator. The
generator iterator executes the content of the generator function, yielding and
resuming as needed.

A generator can be executed in steps by using the next () built-in function.

For example:

create the generator
gen = generator()

step the generator
result = next(gen)

Although, it is more common to iterate the generator to completion, such as

using a for-loop or a list comprehension.

For example:

traverse the generator and collect results
results = [item for item in generator()]

An asynchronous generator is a coroutine that uses the yield expression.

Unlike a function generator, the coroutine can schedule and await other
coroutines and tasks.

Like a classical generator, an asynchronous generator function can be used to
create an asynchronous generator iterator that can be traversed using the
built-in anext () function, instead of the next () function.

This means that the asynchronous generator iterator implements the
__anext__ () method and can be used with the async for expression.

Each iteration of the generator is scheduled and executed as awaitable. The
async for expression will schedule and execute each iteration of the
generator, suspending the calling coroutine and awaiting the result.

Next, let’s explore how we can define an asynchronous generator.

How to Define an Asynchronous Generator

We can define an asynchronous generator by defining a coroutine that has at
least one yield expression.

This means that the function is defined using the async def expression.

For example:

define an asynchronous generator
async def async_generator():
for i in range(10)
yield i

Because the asynchronous generator is a coroutine and each iterator returns
an awaitable that is scheduled and executed in the asyncio event loop, we can
execute and await awaitables within the body of the generator.

For example:

define an asynchronous generator that awaits
async def async_generator():
for 1 in range(10)
suspend and sleep a moment
await asyncio.sleep(1)
yield a value to the caller
yield i

Next, let’s look at how we create an asynchronous generator.

How to Create Asynchronous Generator

To use an asynchronous generator we must create the generator.

This looks like calling the generator but instead creates and returns an iterator
object, called an iterable.

For example:

create the iterator
it = async_generator()

This returns a type of asynchronous iterator called an asynchronous generator
iterator.

Next, let’s look at how we can step an asynchronous generator.
How to Step an Asynchronous Generator

One step of the generator can be traversed using the anext() built-in
function, just like a classical generator using the next () function.

The result is an awaitable that can be awaited.

For example:

get an awaitable for one step of the generator
awaitable = anext(gen)

execute the one step of the gen and get the result
result = await awaitable

This can be achieved in one step.

For example:

step the async generator
result = await anext(gen)

Next, let’s look at how we can traverse an asynchronous generator.

How to Traverse an Asynchronous Generator

The asynchronous generator can also be traversed in a loop using the async
for expression that will await each iteration of the loop automatically.

For example:

traverse an asynchronous generator
async for result in async_generator():
print(result)

We may also use an asynchronous list comprehension with the async for
expression to collect the results of the generator.

For example:

async list comprehension with async generator
results = [item async for item in async_generator ()]

Now that we know how to create and use asynchronous generators, let’s look
at a worked example.

Example of Using an Asynchronous Generator

We can explore how to traverse an asynchronous generator using the async
for expression.

In this example, we will create and traverse the asynchronous generator to
completion using an async for loop.

This loop will automatically await each awaitable returned from the
generator, retrieve the yielded value, and make it available within the loop
body so that in this case it can be reported.

This is perhaps the most common usage pattern for asynchronous generators.

The complete example is listed below.

SuperFastPython.com
example of asynchronous generator with async for loop
import asyncio

define an asynchronous generator
async def async_generator():
normal loop
for 1 in range(10):
suspend to simulate doing work
await asyncio.sleep(1)
yield the result
yield 1

main coroutine
async def main():
loop over async generator with async for loop
async for item in async_generator():
print(item)

execute the asyncio program
asyncio.run(main())

Running the example first creates the main() coroutine and uses it as the
entry point into the asyncio program.

The main() coroutine runs and starts the for-loop.

An instance of the asynchronous generator is created and the loop
automatically steps it using the anext () function to return an awaitable. The
loop then awaits the awaitable and retrieves a value which is made available
to the body of the loop where it is reported.

This process is then repeated, suspending the main() coroutine, executing an
iteration of the generator, and suspending, and resuming the main() coroutine
until the generator is exhausted.

This highlights how an asynchronous generator can be traversed using an
async for expression.

©oO~NOO A~ WNEO

Next, let’s look at how to use asynchronous context managers in our asyncio
programs.

How to Use Asynchronous Context Managers

An asynchronous context manager is an object that implements the
__aenter__() and __aexit__ () methods.

Before we dive into the details of asynchronous context managers, let’s
review classical context managers and see how they compare to
asynchronous context managers.

What are Classical and Asynchronous Context Managers

A context manager is an object that implements the _ enter_ () and
__exit__ () methods.

The __enter__ () method defines what happens at the beginning of a code
block, such as opening or preparing resources, like a file, socket, or thread
pool.

The __exit__ () method defines what happens when the code block is exited,
such as closing a prepared resource.

Typically a context manager object is created at the beginning of the with
expression and the __enter__ () method is called automatically. The body of
the content makes use of the resource via the named context manager object,
then the __aexit__ () method is called automatically when the code block is
exited, normally, or via an exception.

For example:

open a context manager

with ContextManager() as manager:
...

closed automatically

This mirrors a try-finally expression.

For example:

create the object
manager = ContextManager ()
try:
manager.__enter__ ()
...
finally:
manager.__exit__ ()

Asynchronous context managers provide a context manager that can be
suspended when entering and exiting.

The __aenter__() and __aexit__ () methods are defined as coroutines and
are awaited by the caller.

This is achieved using the async with expression which we will learn more
about in a moment.

As such, asynchronous context managers can only be used within asyncio
programs, such as within calling coroutines.

Next, let’s take a closer look at how to define an asynchronous context
manager.

How to Define an Asynchronous Context Manager

We can define an asynchronous context manager as an object that
implements the __aenter__ () and __aexit__ () methods.

Importantly, both methods must be defined as coroutines using the async
def expression and therefore must return awaitables.

For example:

define an asynchronous context manager
class AsyncContextManager:
enter the async context manager
async def __aenter__(self):

report a message
print('>entering the context manager')

exit the async context manager

async def __aexit__ (self, exc_type, exc, tb):
report a message
print('>exiting the context manager')

Because each of the methods are coroutines, they may themselves await
coroutines or tasks.

For example:

define an asynchronous context manager
class AsyncContextManager:
enter the async context manager
async def __aenter__(self):
report a message
print('>entering the context manager')
suspend for a moment
await asyncio.sleep(0.5)

exit the async context manager
async def __aexit__ (self, exc_type, exc, tb):
report a message
print('>exiting the context manager')
suspend for a moment
await asyncio.sleep(0.5)

Next, let’s look at how we can create and use an asynchronous context
manager.

How to Use an Asynchronous Context Manager

A asynchronous context manager is used via the async with expression.
This is an extension of the with expression for use in coroutines.

It will automatically await the enter and exit coroutines, suspending the
calling coroutine as needed.

For example:

use an asynchronous context manager
async with AsyncContextManager() as manager:
o,

This is equivalent to something like:

create or enter the async context manager
manager = await AsyncContextManager ()
try:
...
finally:
close or exit the context manager
await manager.close()

An asynchronous context manager cannot be used via the with expression
and a classical context manager cannot be used via the async with
expression. Each expression expects different methods to exist on the target
object.

Notice that we are implementing much the same pattern as a traditional
context manager, except that creating and closing the context manager
involve awaiting coroutines.

This suspends the execution of the current coroutine, schedules a new
coroutine, and waits for it to complete.

As such an asynchronous context manager must implement the
__aenter__() and __aexit__ () methods that must be defined via the async
def expression. This makes them coroutines themselves which may also
await.

Now that we know how to use asynchronous context managers, let’s look at a
worked example.

Example of Using an Asynchronous Context Manager

We can explore how to use an asynchronous context manager via the async
with expression.

In this example, we will create and use the context manager in a normal
manner.

We will use an async with expression and on one line, create and enter the
context manager. This will automatically await the enter method.

We can then make use of the manager within the inner code block. In this
case, we will just report a message.

Exiting the inner code block will automatically await the exit method of the
context manager.

The complete example is listed below.

SuperFastPython.com
example of an async context manager via async with
import asyncio

define an asynchronous context manager
class AsyncContextManager:
enter the async context manager
async def __aenter__(self):
report a message
print('>entering the context manager')
suspend for a moment
await asyncio.sleep(0.5)

exit the async context manager
async def __aexit__ (self, exc_type, exc, tb):
report a message
print('>exiting the context manager')
suspend for a moment
await asyncio.sleep(0.5)

define a simple coroutine
async def custom_coroutine():
create and use the asynchronous context manager

async with AsyncContextManager() as manager:
report the result
print('within the manager')

start the asyncio program
asyncio.run(custom_coroutine())

Running the example first creates the main() coroutine and uses it as the
entry point into the asyncio program.

The main() coroutine runs and creates an instance of our
AsyncContextManager class in an async with expression.

This expression automatically calls the enter method and awaits the
coroutine. A message is reported and the coroutine suspends for a moment.

The main() coroutine resumes and executes the body of the context manager,
printing a message.

The code block is exited and the exit method of the context manager is
awaited automatically, reporting a message and sleeping a moment.

This highlights the normal usage pattern for an asynchronous context
manager in an asyncio program.

>entering the context manager
within the manager
>exiting the context manager

Lesson Review

Takeaways

Well done, you made it to the end of the lesson.

¢ You now know how to define, create and traverse asynchronous iterators
and how they compare to classical iterators.

¢ You now know how to create and use asynchronous generators and how
they compare to classical generators.

e You now know how to define and create asynchronous context
managers and how they compare to classical context managers

e You now know how and when to use the async for expression in
coroutines with asynchronous iterables.

e You now know how and when to use the async with expression for use
with asynchronous context managers.

Exercise

Your task in this lesson is to use what you have learned about asynchronous
iterators.

Develop an asynchronous iterator that traverses some arbitrary data structure.
You can develop an asynchronous generator if you prefer.

Ensure that the coroutine executed each step does some work or simulated
work such as a sleep.

Create and traverse the iterator in the main loop of your asyncio program
using the async for expression.

Update your example to use an asynchronous list comprehension to traverse
the iterator.

This will help make you more comfortable with asynchronous loops and
iteration. There is a lot of general confusion about the async for expression

and you will better understand what it is doing by developing your own
asynchronous iterators and generators.

Share your results online on Twitter, LinkedIn, GitHub, or similar.
Send me the link to your results, I’d love to see what you come up with.
You can send me a message directly via:

e Super Fast Python - Contact Page
https://SuperFastPython.com/contact/

Or share it with me on Twitter via @SuperFastPython.

Further Reading

This section provides resources for you to learn more about the topics
covered in this lesson.

e asyncio - Asynchronous I/O.
https://docs.python.org/3/library/asyncio.html

e PEP 525 - Asynchronous Generators.
https://peps.python.org/pep-0525/

e PEP 530 - Asynchronous Comprehensions.
https://peps.python.org/pep-0530/

e Python Compound statements.
https://docs.python.org/3/reference/compound_stmts.html

Next

In the next lesson, we will explore how to synchronize and coordinate
coroutines and how to share data between coroutines.

https://superfastpython.com/contact/
https://twitter.com/SuperFastPython
https://docs.python.org/3/library/asyncio.html
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0530/
https://docs.python.org/3/reference/compound_stmts.html

Lesson 05: Queues and
Synchronization Primitives

In this lesson, we will explore how to share data between coroutines using
queues and how to use concurrency primitives to synchronize and coordinate
coroutines in our asyncio programs.

After completing this lesson, you will know:

e How to use coroutine-safe queues to share data between coroutines.

e How to use mutex locks to protect critical sections from race conditions.

e How to use semaphores to limit concurrent access to a resource for
coroutines.

e How to use an event to signal between coroutines.

e How to coordinate coroutines with wait and notify using a condition
variable.

Let’s get started.

What is Coroutine-Safe

Thread-safe refers to program code that can be executed free of concurrency
errors by multiple threads concurrently.

Primarily, it refers to the fact that the code is free of race conditions.

A race condition is a bug in concurrency programming. It is a failure case
where the behavior of the program is dependent upon the order of execution
by two or more threads. This means the behavior of the program will be
unpredictable, possibly changing each time it is run.

Process-safe refers to program code that can be executed free of concurrency
errors by multiple processes concurrently. It is the concept of thread-safe
applied to processes, where processes are the unit of concurrency instead of
threads.

As such, coroutine-safe is the idea of thread-safe and process-safe applied to
coroutines.

Although two or more coroutines cannot execute at the same time within the
event loop, it is possible for program state and resources to be corrupted or
made inconsistent via concurrent execution.

Coroutine-safe means that code or a program can be executed concurrently
with multiple coroutines and will not result in concurrency failure modes
such as race conditions.

The asyncio module provides a number of concurrency primitives that are
coroutine-safe.

This lesson will focus of ways to share data, protect data, and coordinate
behavior between coroutines that is coroutine-safe.

How to Share Data Between Coroutines with
Queues

A queue can be used to share data between coroutines.

A queue is a coroutine-safe data structure that can be used to share data
between coroutines without a race condition.

The asyncio module provides the asyncio.Queue class for general use, but
also provides a last-in-first-out (LIFO) queue via the asyncio.LifoQueue
class and a priority queue via the asyncio.PriorityQueue class.

A queue is a data structure on which items can be added by a call to put()
and from which items can be retrieved by a call to get().

Coroutine-safe means that it can be used by multiple coroutines to put and get
items concurrently without a race condition.

The Queue class provides a first-in, first-out FIFO queue, which means that
the items are retrieved from the queue in the order they were added. The first
items added to the queue will be the first items retrieved.

Next, let’s look at how to use queues in asyncio programs.

How to Use Asyncio Queues

The asyncio.Queue can be used by first creating an instance of the class.
This will create an unbounded queue by default, that is, a queue with no size
limit.

For example:

created an unbounded queue
gueue = asyncio.Queue()

A maximum capacity can be set on a new Queue via the maxsize constructor

augment.

For example:

created a queue with a maximum capacity
gueue = asyncio.Queue(maxsize=100)

Items can be added to the queue via a call to the put() method. This is a
coroutine that must be awaited, suspending the caller until the item can be
placed on the queue successfully. For example:

add an item to the queue
await queue.put(item)

If a size-limited queue becomes full, new items cannot be added and calls to
put () will suspend until space becomes available.

Items can be retrieved from the queue by calls to get(). This is also a
coroutine and must be awaited, suspending the caller until an item can be
retrieved from the queue successfully.

For example:

get an item from the queue
item = await queue.get()

Now that we know how to use queues, let’s look at a worked example of
sharing data between coroutines.

Example of Producer and Consumer Tasks with a Queue

We can explore an example of sharing data between two coroutines using a
queue.

In this example, we will define a custom task function that takes the queue as
an argument, generates some data, and puts that data on the queue. It is a

producer coroutine.

The main coroutine will create the queue, share it with the new coroutine and
then suspend, waiting for data to arrive on the queue. The main coroutine will
be the consumer coroutine.

The complete example of sharing data between coroutines using a queue is
listed below.

SuperFastPython.com

example of producer/consumer connected via a queue
from random import random

import asyncio

coroutine to generate work
async def producer(queue):
print('Producer: Running')
generate work
for _ in range(10):
generate a value
value = random()
suspend to simulate work
await asyncio.sleep(value)
add to the queue
await queue.put(value)
send an all done signal
await queue.put(None)
print('Producer: Done')

coroutine to consume work
async def consumer(queue):
print('Consumer: Running')
consume work
while True:
get a unit of work
item = await queue.get()
check for stop signal
if item is None:
break
report
print(f'>got {item}')

all done
print('Consumer: Done')

entry point coroutine
async def main():
create the shared queue
gueue = asyncio.Queue()
run the producer and consumers
await asyncio.gather(
producer (queue), consumer (queue))

start the asyncio program
asyncio.run(main())

Running the example first creates the main() coroutine and uses it as the
entry point into the asyncio program.

The main() coroutine runs and the shared asyncio.Queue object is then
created.

Next, the producer coroutine is created and passed the queue instance. Then
the consumer coroutine is started and the main coroutine suspends until both
coroutines terminate.

The producer coroutine generates a new random value for each iteration of
the task, suspends, and adds it to the queue. The consumer coroutine waits on
the queue for items to arrive, then consumes them one at a time, reporting
their value.

Finally, the producer task finishes, a None value is put on the queue and the
coroutine terminates. The consumer coroutine gets the None value, breaks its
loop, and also terminates.

This highlights how the asyncio.Queue can be used to share data easily
between producer and consumer coroutines.

NOTE: Results will vary each time the program is run given the use of
random numbers.

Producer: Running

Consumer: Running
>got 0.7559246569022605

>got 0.965203750033905

>got 0.49834912260024233
>got 0.22783211775499135
>got 0.07775542407106295
>got 0.5997647474647314
>got 0.7236540952500915
>got 0.7956407178426339

>got 0.11256095725867177
Producer: Done
>got 0.9095338767572713
Consumer: Done

Next, let’s look at how we can use mutex locks in our asyncio programs.

How to Protect Critical Sections with a Mutex Lock

A mutual exclusion lock, or mutex lock for short, is a concurrency primitive
intended to prevent a race condition.

A race condition is a concurrency failure case when two coroutines run the
same code and access or update the same resource (e.g. data variables,
stream, etc.) leaving the resource in an unknown and inconsistent state.

Race conditions often result in unexpected behavior of a program and/or
corrupt data.

These sensitive parts of code that can be executed by multiple coroutines
concurrently and may result in race conditions are called critical sections. A
critical section may refer to a single block of code, but it also refers to
multiple accesses to the same data variable or resource from multiple
functions.

Next, let’s look at how we can use mutex locks.

How to Use an Asyncio Lock

Python provides a mutual exclusion lock for use with coroutines via the
asyncio.Lock class.

An instance of the Lock class can be created and then acquired by coroutines
before accessing a critical section, and released after exiting the critical
section.

The acquire() method is used to acquire the lock. It is a coroutine and must
be awaited, suspending the calling coroutine. The lock can be released again
later via the release() method.

For example:

create a lock

lock = asyncio.Lock()
acquire the lock
await lock.acquire()
...

release the lock
lock.release()

Only one coroutine can have the lock at any time. If a coroutine does not
release an acquired lock, it cannot be acquired again.

The coroutine attempting to acquire the lock will suspend until the lock is
acquired, such as if another coroutine currently holds the lock then releases it.

We can also use the lock via the context manager interface via the async
with expression, allowing the critical section to be a block of code within the
context manager and for the lock to be released automatically once the block
of code is exited, normally or otherwise.

For example:

create a lock
lock = asyncio.Lock()
acquire the lock
async with lock:

...

This is the preferred usage of the lock as it makes it clear where the protected
code begins and ends, and ensures that the lock is always released, even if
there is an exception or error within the critical section.

Now that we know how to use mutex locks, let’s look at a worked example.

Example of Using an Asyncio Lock

We can develop an example to demonstrate how to use the mutex lock.

In this example, we will define a target task that takes a lock as an argument
and uses the lock to protect a critical section, which in this case will print a
message and sleep for a moment.

The complete example is listed below.

SuperFastPython.com

example of an asyncio mutual exclusion (mutex) lock
from random import random

import asyncio

task coroutine with a critical section
async def task(lock, num, value):
acquire the lock to protect the critical section
async with lock:
report a message
print(f'>{num} got the lock, sleep for {value}')
suspend for a moment
await asyncio.sleep(value)

entry point
async def main():
create a shared lock
lock = asyncio.Lock()
create many concurrent coroutines
coros = [task(lock, i, random()) for i in range(10)]
execute and wait for tasks to complete
await asyncio.gather(*coros)

run the asyncio program
asyncio.run(main())

Running the example first creates the main() coroutine and uses it as the
entry point into the asyncio program.

The main() coroutine runs, first creating the shared lock.

It then creates a list of coroutines, each is passed the shared lock, a unique
integer, and a random floating point value.

The list of coroutines is passed to the gather() function and the main()
coroutine suspends until all coroutines are completed.

A task coroutine executes, acquires the lock, reports a message, then awaits
the sleep, suspending.

Another coroutine resumes. It attempts to acquire the lock and is suspended,
while it waits. This process is repeated with many if not all coroutines.

The first coroutines resumes, exits the block of code, and releases the lock
automatically via the asynchronous context manager.

The first coroutine to wait on the lock resumes, acquires the lock, reports a
message, and sleeps.

This process repeats until all coroutines are given an opportunity to acquire
the lock, execute the critical section and terminate.

Once all tasks terminate, the main() coroutine resumes and terminates,
closing the program.

NOTE: Results will vary each time the program is run given the use of
random numbers.

>coroutine 0 got the lock, sleeping for 0.35342849008361
>coroutine 1 got the lock, sleeping for 0.78996044707365
>coroutine 2 got the lock, sleeping for 0.10018104240779
>coroutine 3 got the lock, sleeping for 0.75009875150084
>coroutine 4 got the lock, sleeping for 0.54066805101353
>coroutine 5 got the lock, sleeping for 0.53074317625936
>coroutine 6 got the lock, sleeping for 0.44269144160147
>coroutine 7 got the lock, sleeping for 0.79732810383210
>coroutine 8 got the lock, sleeping for 0.49827720719979
>coroutine 9 got the lock, sleeping for 0.18177356607777

Next, let’s look at how we can use semaphores in our asyncio programs.

How to Limit Access to a Resource with a
Semaphore

A semaphore is a concurrency primitive that allows a limit on the number of
coroutines that can acquire a lock protecting a critical section or resource.

It is an extension of a mutual exclusion (mutex) lock that adds a count for the
number of coroutines that can acquire the lock before additional coroutines
will suspend. Once full, new coroutines can only acquire access on the
semaphore once an existing coroutine holding the semaphore releases access.

Internally, the semaphore maintains a counter protected by a mutex lock that
is decremented each time the semaphore is acquired and incremented each
time it is released. When a semaphore is created, the upper limit on the
counter is set. If it is set to 1, then the semaphore will operate like a mutex
lock.

Next, let’s look at how we can create and use a semaphore.

How to Use an Asyncio Semaphore

Python provides a semaphore for coroutines via the asyncio.Semaphore
class.

The Semaphore object must be configured when it is created to set the limit
on the internal counter. This limit will match the number of concurrent
coroutines that can hold the semaphore.

For example, we can set it to 100:

create a semaphore with a limit of 100
semaphore = asyncio.Semaphore(100)

Each time the Semaphore is acquired, the internal counter is decremented.
Each time the Semaphore is released, the internal counter is incremented.

The Semaphore cannot be acquired if it has no available positions (e.g. the
count is zero) in which case, threads attempting to acquire it must suspend
until a position becomes available.

The semaphore can be acquired by calling the acquire() method which must
be awaited.

For example:

acquire the semaphore
await semaphore.acquire()

By default, the calling coroutine will suspend until access becomes available
on the semaphore.

Once acquired, the semaphore can be released again by calling the release()
method.

For example:

release the semaphore
semaphore.release()

The semaphore class supports usage via the context manager, which will
automatically acquire and release the semaphore for us. As such it is the
preferred way to use semaphores in our programs.

For example:

acquire the semaphore
async with semaphore:
o,

Now that we know how to use semaphores, let’s look at a worked example.

Example of Using an Asyncio Semaphore

We can explore how to use a asyncio.Semaphore with a worked example.

In this example, we will start a suite of coroutines but limit the number that
can perform an action simultaneously. A semaphore will be used to limit the
number of concurrent tasks that may execute which will be less than the total
number of coroutines, allowing some coroutines to suspend, wait for access,
then be notified and acquire access.

The complete example is listed below.

SuperFastPython.com

example of using an asyncio semaphore
from random import random

import asyncio

task coroutine
async def task(semaphore, number):
acquire the semaphore
async with semaphore:
generate a random value between 0 and 1
value = random()
suspend for a moment
await asyncio.sleep(value)
report a message
print(f'Task {number} got {value}')

main coroutine
async def main():
create the shared semaphore
semaphore = asyncio.Semaphore(2)
create and schedule tasks
tasks = [asyncio.create_task(task(semaphore, 1))
for 1 in range(10)]
wait for all tasks to complete
_ = awailt asyncio.wait(tasks)

start the asyncio program
asyncio.run(main())

Running the example first creates the main() coroutine that is used as the
entry point into the asyncio program.

The main() coroutine runs and first creates the shared semaphore with an
initial counter value of 2, meaning that two coroutines can hold the
semaphore at once.

The main() coroutine then creates and schedules 10 tasks to execute our
task() coroutine, passing the shared semaphore and a unique number
between 0 and 9.

The main () coroutine then suspends and waits for all tasks to complete.
The tasks run one at a time.

Each task first attempts to acquire the semaphore. If there is a position
available it proceeds, otherwise it waits for a position to become available.

Once acquired, a task generates a random value, suspend for a moment, and
then reports the generated value. It then releases the semaphore and
terminates. The semaphore is not released while the task is suspended in the
call to asyncio.sleep().

The body of the semaphore context manager is limited to two semaphores at
a time.

This highlights how we can limit the number of coroutines to execute a block
of code concurrently.

NOTE: Results will vary each time the program is run given the use of
random numbers.

Task 0 got 0.20369168197618748
Task 2 got 0.20640107131350838
Task 1 got 0.6855263719449817
Task 3 got 0.9396433586858612
Task 4 got 0.8039832235015294
Task 6 got 0.12266060196253203
Task 5 got 0.879466225105295

Task 7 got 0.6675244153844875
Task 8 got 0.11511060306129695
Task 9 got 0.9607702805925814

Next, let’s look at how to use events in asyncio programs.

How to Signal Between Coroutines Using an Event

An event is a coroutine-safe boolean flag that can be used to signal between
two or more coroutines.

It can be useful to coordinate the behavior of many coroutines that can check
the status of the flag, such as to begin processing, or to stop processing and
exit.

Next, let’s look at how to create and use events.

How to Use an Asyncio Event

Python provides an event object for coroutines via the asyncio.Event class.

An Event class wraps a boolean variable that can either be set (True) or not
set (False). Coroutines sharing the Event object can check if the event is set,
set the event, clear the event (make it not set), or wait for the event to be set.

The Event provides an easy way to share a boolean variable between
coroutines that can act as a trigger for an action.

First, an Event object must be created and the event will be in the not set
state.

create an instance of an event
event = asyncio.Event()

Once created we can check if the event has been set via the is_set () method
which will return True if the event is set, or False otherwise.

For example:

check if the event is set
if event.is_set():
do something. ..

The Event can be set via the set() method. Any coroutines waiting on the
event to be set will be notified.

For example:

set the event
event.set()

Finally, coroutines can wait for the event to be set via the wait() method,
which must be awaited. Calling this method will suspend until the event is
marked as set (e.g. another coroutine calling the set () method). If the event
is already set, the wait () method will return immediately.

walt for the event to be set
await event.wait()

Now that we know to use events, let’s look at a worked example.

Example of Using an Asyncio Event

We can explore how to use an asyncio.Event object.

In this example we will create a suite of coroutines that each will perform
some work and report a message. All coroutines will use an event to wait to
be set before starting their work. The main coroutine will set the event and
trigger the new coroutines to start work.

SuperFastPython.com

example of using an asyncio event object
from random import random

import asyncio

task coroutine
async def task(event, number):
wait for the event to be set
await event.wait()
generate a random value between 0 and 1
value = random()

suspend for a moment

await asyncio.sleep(value)

report a message

print(f'Task {number} got {value}')

main coroutine

async def main():
create a shared event object
event = asyncio.Event()
create and run the tasks
tasks = [asyncio.create_task(task(event, 1))

for i in range(5)]

allow the tasks to start
print('Main suspending...')
awalit asyncio.sleep(0)
start processing in all tasks
print('Main setting the event')
event.set()
await for all tasks to terminate
_ = await asyncio.wait(tasks)

run the asyncio program
asyncio.run(main())

Running the example first creates the main() coroutine and uses it as the
entry point into the asyncio program.

The main() coroutine runs and creates and schedules five task coroutines.

It then sleeps, suspending and allowing the tasks to run and start waiting on
the event.

The main coroutine resumes, reports a message then sets the event to True. It
then suspends and waits for all issued tasks to complete.

This triggers all five coroutines. They resume in turn perform their
processing and report a message.

This highlights how coroutines can wait for an event to be set and how we
can notify coroutines using an event.

NOTE: Results will vary each time the program is run given the use of
random numbers.

Main suspending...

Main setting the event

Task 3 got 0.36705703414223256
Task 1 got 0.4852630342496812
Task O got 0.7251916806567016
Task 4 got 0.8104350284043036
Task 2 got 0.9726611709531982

Next, let’s look at how we can use condition variables in asyncio programs.

How to Coordinate Using a Condition Variable

A condition variable, also called a monitor, allows multiple coroutines to wait
and be notified about some result.

A condition can be acquired by a coroutine after which it can wait to be
notified by another coroutine that something has changed. While waiting, the
coroutine is suspended and releases the lock on the condition for other
coroutines to acquire.

Another coroutine can then acquire the condition, make a change in the
program, and notify one, all, or a subset of coroutines waiting on the
condition that something has changed.

The waiting coroutine can then resume, re-acquire the condition, perform
checks on any changed state and perform required actions.

Next, let’s look at how we can create and use condition variables.

How to Use an Asyncio Condition

Python provides a condition variable via the asyncio.Condition class.

For example:

create a new condition variable
condition = asyncio.Condition()

In order for a coroutine to make use of the Condition, it must acquire it and
release it, like a mutex lock.

This can be achieved manually with the acquire() and release() methods.
The acquire() method is a coroutine and must be awaited.

For example, we can acquire the Condition and then wait on the condition to
be notified and finally release the condition as follows:

acquire the condition
await condition.acquire()
walit to be notified
await condition.wait()

release the condition
condition.release()

The wait () method is also a coroutine and must be awaited.

An alternative to calling the acquire() and release() methods directly is to
use the context manager, which will perform the acquire and release
automatically for us, for example:

acquire the condition
async with condition:
walit to be notified
awalit condition.wait()

We also must acquire the condition in a coroutine if we wish to notify
waiting coroutines. This too can be achieved directly with the acquire and
release methods calls or via the context manager.

We can notify a single waiting coroutine via the notify() method.

For example:

acquire the condition

with condition:
notify a waiting coroutines
condition.notify()

The notified coroutine will stop waiting as soon as it can reacquire the
condition. This will be attempted automatically as part of its call to wait(),
we do not need to do anything extra.

We can notify all coroutines waiting on the condition via the notify_all()
method.

acquire the condition

with condition:
notify all coroutines waiting on the condition
condition.notify_all()

Now that we know how to use condition variables, let’s look at a worked
example.

Example of Using an Asyncio Condition

In this example, we will explore using an asyncio.Condition to notify a
waiting coroutine that something has happened.

We will use a task to prepare some data and notify a waiting coroutine. In the
main coroutine, we will create and schedule the new task and use the
condition to wait for the work to be completed.

The complete example is listed below.

SuperFastPython.com
example of wait/notify with an asyncio condition
import asyncio

task coroutine
async def task(condition, work_list):
suspend for a moment
await asyncio.sleep(1)
add data to the work list
work_list.append(33)
notify a waiting coroutine that the work is done
print('Task sending notification...')
async with condition:
condition.notify()

main coroutine

async def main():
create a condition
condition = asyncio.Condition()
prepare the work list
work_list = []

wait to be notified that the data is ready
print('Main waiting for data...')
async with condition:

create and start the task

_ = asyncio.create_task(

task(condition, work_list))

walit to be notified

await condition.wait()
we know the data is ready
print(f'Got data: {work_list}')

run the asyncio program
asyncio.run(main())

Running the example first creates the main() coroutine which is used as the
entry point into the asyncio program.

The main() coroutine runs and creates the shared condition and the work list.

The main() coroutine then acquires the condition. A new task is created and
scheduled, provided the shared condition and work list.

The main() coroutine then waits to be notified, suspending and calling the
new scheduled task to run.

The task() coroutine runs. It first suspends for a moment to simulate effort,
then adds work to the shared list. The condition is acquired and the waiting
coroutine is notified, then releases the condition automatically. The task
terminates.

The main() coroutine resumes and reports a final message, showing the
updated content of the shared list.

This highlights how we can use a wait-notify pattern between coroutines
using a condition variable.

Main waiting for data...
Task sending notification...
Got data: [33]

Lesson Review

Takeaways

Well done, you made it to the end of the lesson.

¢ You now know how to use coroutine-safe queues to share data between
coroutines.

¢ You now know how to use mutex locks to protect critical sections from
race conditions.

e You now know how to use semaphores to limit concurrent access to a
resource for coroutines.

¢ You now know how to use an event to signal between coroutines.

e You now know how to coordinate coroutines with wait and notify using
a condition variable.

Exercise

Your task for this lesson is to use what you have learned about concurrency
primitives.

Develop a program where multiple tasks add and subtract from a single
shared integer value.

You could have one or more tasks that add one to a balance many times each
in a loop, and one or more tasks do the same by subtracting one from the
same shared global variable.

Have each task that modifies the global balance variable give many
opportunities for other coroutines to run, forcing a race condition.

For example:

coroutine to add to the shared balance
async def add():

global balance

for i in range(10000):

tmp = balance
awalit asyncio.sleep(0)
tmp = tmp + 1
awalit asyncio.sleep(0)
balance = tmp

coroutine to subtract from the shared balance
async def subtract():
global balance
for i in range(10000):
tmp = balance
await asyncio.sleep(0)
tmp = tmp - 1
await asyncio.sleep(0)
balance = tmp

Confirm that the program results in a race condition by running the example
multiple times and getting different results.

Update the example to be coroutine-safe and no longer suffer the race
condition. Try a mutex lock. Also try a semaphore.

It is important that you experience a race condition in asyncio programs.
Many developers falsely believe that race conditions are not possible in
Python or are not something they need to worry about in asyncio with
coroutines. Once you see one for yourself and know how to fix it, you will be
able to bring this confidence with you into your future projects.

Share your results online on Twitter, LinkedIn, GitHub, or similar.
Send me the link to your results, I’d love to see what you come up with.

You can send me a message directly via:

e Super Fast Python - Contact Page
https://SuperFastPython.com/contact/

Or share it with me on Twitter via @SuperFastPython.

Further Reading

https://superfastpython.com/contact/
https://twitter.com/SuperFastPython

This section provides resources for you to learn more about the topics
covered in this lesson.

e asyncio - Asynchronous I/O.
https://docs.python.org/3/library/asyncio.html

e Asyncio Synchronization Primitives.
https://docs.python.org/3/library/asyncio-sync.html

e Asyncio Queues.
https://docs.python.org/3/library/asyncio-queue.html

e Race condition, Wikipedia.
https://en.wikipedia.org/wiki/Race_condition

e Mutual exclusion, Wikipedia.
https://en.wikipedia.org/wiki/Mutual_exclusion

e Semaphore (programming), Wikipedia.
https://en.wikipedia.org/wiki/Semaphore_(programming)

e Monitor (synchronization), Wikipedia.
https://en.wikipedia.org/wiki/Monitor_(synchronization)

e random - Generate pseudo-random numbers.
https://docs.python.org/3/library/random.html

Next

In the next lesson, we will explore how to run commands in subprocesses and
create, read from and write to streams asynchronously.

https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio-sync.html
https://docs.python.org/3/library/asyncio-queue.html
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Semaphore_(programming)
https://en.wikipedia.org/wiki/Monitor_(synchronization)
https://docs.python.org/3/library/random.html

Lesson 06: Subprocesses and
Streams

In this lesson, we will explore how to run commands from an asyncio
program in subprocesses. We will also explore how we can implement socket
programming, such as opening a TCP socket connection then read and write
from it asynchronous using non-blocking 1/0.

After completing this lesson, you will know:

e How to run commands asynchronously as subprocesses directly from
coroutines.

¢ How to run commands asynchronously using the shell from coroutines.

e How to open, read, and write from non-blocking TCP socket
connections.

e How to check the status of webpages asynchronously using streams.

Let’s get started.

How to Run Commands in Subprocesses

The asyncio module provides an API for running commands on the
underlying system asynchronously.

Commands can be called directly or executed via the user’s shell and will
execute in a subprocess.

Asyncio programs can then control the command running in a subprocess by
asynchronously reading data from the subprocess, asynchronously writing
data to subprocess, and killing the subprocess if need be.

Before we explore how to run commands as subprocesses, let’s review a
command, the shell, and why we want to execute commands a subprocesses.

What is a Command and a Shell

A command is a program executed on the command line (terminal or
command prompt). It is another program that is run directly.

Common examples on Linux and macOS are:

1s to list the contents of a directory.
cat to report the content of a file.

date to report the date.

echo to report back a string.

sleep to sleep for a number of seconds.

And so on.

These are just programs that we can execute on the command line as a
command.

We may want to execute a command from our program for many reasons.

For example:

e We may want to change the permissions of a file or change a system
configuration.

e We may want to run a program to check the status of a resource or value
of a system property.

e We may want to start another program in the background or for the user
to interact with.

Many actions performed by external commands may be executed directly by
Python using the standard library API or a third-party library. Sometimes it
can be easier to simply run a purpose-made command directly on the
operating system.

We can execute these commands using the shell.

The shell is a user interface for the command line, called a command line
interpreter.

It will interpret and execute commands on behalf of the user.

It also offers features such as a primitive programming language for
scripting, wildcards, piping, shell variables (e.g. PATH), and more.

For example, we can redirect the output of one command as input to another
command, such as the contents of the /etc/services file into the word count
wc command and count the number of lines:

cat /etc/services | wc -1
Examples of shells on Unix-based operating systems include:

sh

bash

zsh

And so on.

On Windows, the shell is probably cmd . exe.

The shell is already running, it was probably used to start the Python
program. We don’t need to do anything special to get or have access to the

shell.

Next, let’s look at how we can run commands from asyncio as subprocesses.

How to Run a Command in a Subprocess

There are two ways to execute an external program as a subprocess in
asyncio, they are:

e With asyncio.create_subprocess_exec()
e With asyncio.create_subprocess_shell()

Both functions return an asyncio.subprocess.Process object that
represents the command running in a subprocess.

The Process object provides a handle on a subprocess in asyncio programs,
allowing actions to be performed on it, such as waiting and terminating it.

Let’s take a closer look at each of these functions in turn.

How to Run a Command Directly

The asyncio.create_subprocess_exec() function can be called to execute
a command in a subprocess.

It returns a Process object as a handle on the subprocess.

The create_subprocess_exec() function is a coroutine and must be
awaited. It will suspend the caller until the subprocess is started (not
completed).

For example:

run a command in a subprocess
process = await asyncio.create_subprocess_exec(
'echo', 'Hello World')

We can configure the subprocess to receive input from the asyncio program

or send output to the asyncio program by setting the stdin, stdout, and
stderr arguments to the asyncio.subprocess.PIPE constant.

This will set the stdin, stdout, and stderr arguments on the
asyncio.subprocess.Process to be a StreamReader or StreamwWriter and
allow coroutines to read or write from them via the communicate () method in
the Process object, which we will explore further later.

For example:

run a command in a subprocess

process = awalit asyncio.create_subprocess_exec(
'echo', 'Hello World',
stdout=asyncio.subprocess.PIPE)

We can explore how to get a Process instance by executing a command in a
subprocess with the create_subprocess_exec() function.

The example below executes the echo command in a subprocess that prints
out the provided string.

The subprocess is started, then the details of the subprocess are then reported.

The complete example is listed below.

SuperFastPython.com
example of running a command in a subprocess directly
import asyncio

main coroutine
async def main():
run the command in a subprocess
process = awalit asyncio.create_subprocess_exec(
'echo', 'Hello World')
report the details of the subprocess
print(f'subprocess: {process}')

entry point
asyncio.run(main())

Running the example executes the echo command in a subprocess.

A asyncio.subprocess.Process instance is returned and the details are
reported, showing the unique process id (PID).

The echo command then reports the provided string on stdout.

subprocess: <Process 50598>
Hello World

Next, let’s look at an example of creating a subprocess via the shell.

How to Run a Command via the Shell

The asyncio.create_subprocess_shell() function can be called to execute
a command in a subprocess.

The create_subprocess_shell() function will execute the provided
command indirectly via the shell. This is the command line interpreter used
to execute commands on the system, such as bash or zsh on Linux and
macOS or cmd . exe on Windows.

Executing a command via the shell allows the capabilities of the shell to be
used in addition to executing the command, such as wildcards and shell
variables.

The function returns a asyncio.subprocess.Process as a handle on the
subprocess.

The create_subprocess_shell() function is a coroutine and must be
awaited. It will suspend the caller until the subprocess is started (not
completed).

We can explore how to get a Process instance by executing a command in a
subprocess with the create_subprocess_shell() function.

The example below executes the echo command in a subprocess that prints
out the provided string. Unlike the create_subprocess_exec() function, the
entire command with arguments is provided as a single string.

The subprocess is started, then the details of the subprocess are then reported.

The complete example is listed below.
SuperFastPython.com

example of running a cmd in a subprocess via the shell
import asyncio
main coroutine
async def main():
run the command via shell in a subprocess
process = await asyncio.create_subprocess_shell(
'echo Hello World')

report the details of the subprocess
print(f'subprocess: {process}')

entry point
asyncio.run(main())

Running the example executes the echo command in a subprocess.

A asyncio.subprocess.Process instance is returned and the details are
reported, showing the unique process id (PID).

The echo command then reports the provided string on stdout.

subprocess: <Process 51822>
Hello World

Next, let’s look at how we can wait for a subprocess to complete.

How to Wait for a Subprocess
We can wait for a subprocess to complete via the wait () method.
This is a coroutine that must be awaited.

The caller will be suspended until the subprocess is terminated, normally or
otherwise.

If the subprocess is expecting input and is configured to receive input from
our asyncio program via a pipe, then calling wait () can cause a deadlock as
the caller cannot provide input to the subprocess if it is suspended.

For example:

run a command in a subprocess

process = awalt asyncio.create_subprocess_shell(
'sleep 3')

wait for the subprocess to terminate

await process.wait()

Next, let’s look at how we can read and write data from a subprocess.

How to Read and Write Data with a Subprocess

We can read data from a subprocess in asyncio via the communicate()
method.

Reading data from the subprocess requires that the stdout or stderr
arguments of the create_subprocess_shell() or
create_subprocess_exec() functions was set to the PIPE constant.

No argument is provided and the method returns a tuple with input from
stdout and stderr. Data is read until an end-of-file (EOF) character is
received.

The communicate() method is a coroutine and must be awaited.

For example:

run a command in a subprocess
process = await asyncio.create_subprocess_shell(
'echo Hello World', stdout=asyncio.subprocess.PIPE)
read data from the subprocess
data, _ = await process.communicate()

If no data can be read, the call will suspend until the subprocess has

terminated.

We can write data to the subprocess from an asyncio coroutine also via the
communicate() method. Data is provided via the input argument as bytes.

Writing data to the subprocess via the communicate() method requires that
the stdin argument in the create_subprocess_shell() or
create_subprocess_exec() functions were set to the PIPE constant.

For example:

run a command in a subprocess

process = await asyncio.create_subprocess_exec(
'cat', stdin=asyncio.subprocess.PIPE)

write data to the subprocess

_ = await process.communicate(b'Hello World\n")

Next, let’s look at how we can stop a command running in a subprocess.

How to Terminate and Kill a Subprocess

We can stop a subprocess via the terminate () method.

On most platforms, this sends a SIGTERM signal to the subprocess and
terminates it immediately.

For example:

terminate the subprocess
process.terminate()

We can also Kkill a subprocess via the kill() method.

On most platforms, this will send the SIGKILL signal to the subprocess in
order to stop it immediately.

Unlike the terminate() method that sends the SIGTERM signal, the SIGKILL
signal cannot be handled by the subprocess. This means it is assured to stop

the subprocess.

For example:

kill the subprocess
process.kill()

Next, let’s move on from running commands from asyncio and explore how
we can open and use non-blocking I/0 streams.

How to Use Non-Blocking I/0 Streams

Asyncio provides non-blocking I/0 socket programming.
This is provided via streams.

Sockets can be opened that provide access to a stream writer and a stream
reader.

Data can then be written and read from the stream using coroutines,
suspending when appropriate.

Once finished, the socket can be closed.

The asyncio streams capability is low-level meaning that any protocols
required must be implemented manually.

This can include common ASCII-based web protocols, such as:

e HTTP or HTTPS for interacting with web servers.
e SMTP for interacting with email servers.
e FTP for interacting with file servers.

The streams can also be used to create a server to handle requests using a
standard protocol, or to develop our own application-specific protocol.

Now that we know what asyncio streams are, let’s look at how to use them.

How to Open a Socket Connection

An asyncio TCP client socket connection can be opened using the
asyncio.open_connection() function.

This is a coroutine that must be awaited and will return once the socket
connection is open.

The function returns a StreamReader and StreamwWriter object for interacting

with the socket.

For example:

open a connection
reader, writer = await asyncio.open_connection(...)

The asyncio.open_connection() function takes many arguments in order to
configure the socket connection.

The two required arguments are the host and the port.

The host is a string that specifies the server to connect to, such as a domain
name or an [P address.

The port is the socket port number, such as 80 for HTTP servers, 443 for
HTTPS servers, 23 for SMTP and so on.

For example:

open a connection to an http server
reader, writer = await asyncio.open_connection(
'www.google.com', 80)

Encrypted socket connections are supported over the SSL protocol.
The most common example is HTTPS which is replacing HTTP.
This can be achieved by setting the ss1 argument to True.

For example:

open a connection to an https server
reader, writer = await asyncio.open_connection(
'www.google.com', 443, ssl=True)

Next, let’s look at how we can start a TCP server.

How to Start a TCP Server

An asyncio TCP server socket can be opened using the
asyncio.start_server() function.

This is a coroutine that must be awaited.

The function returns an asyncio.Server object that represents the running
server.

For example:

start a tcp server
server = awalt asyncio.start_server(...)

The three required arguments are the callback function, the host, and the port.

The callback function is a custom function specified by name that will be
called each time a client connects to the server.

The host is the domain name or IP address that clients will specify to connect.

The port is the socket port number on which to receive connections, such as
21 for FTP or 80 for HTTP.

For example:
handle connections

async def handler(reader, writer):
o,

start a server to receive http connections
server = awalt asyncio.start_server(
handler, '127.0.0.1', 80)

Next, let’s look at how we can write data to a stream.

How to Write Data with the Streamwriter

We can write data to the socket using an asyncio.Streamwriter.
Data is written as bytes.
Byte data can be written to the socket using the write() method.

For example:

write byte data
writer.write(byte_data)

Alternatively, multiple lines of byte data organized into a list or iterable can
be written using the writelines() method.

For example:

write lines of byte data
writer.writelines(byte_lines)

Neither method for writing data suspends the calling coroutine.

After writing byte data it is a good idea to drain the socket via the drain()
method.

This is a coroutine and will suspend the caller until the bytes have been
transmitted and the socket is ready.

For example:

write byte data
writer.write(byte_data)

wait for data to be transmitted
await writer.drain()

String data can be converted into byte data for transmission by encoding it.
This can be achieved using the encode() method on the string which will
return byte data encoded with the default UTF8 encoding, ready for

transmission.

For example:

encode string data to byte data for transmission
byte_data = string_data.encode()

Next, let’s look at how we can read data from a stream.

How to Read Data with the StreamReader

We can read data from the socket using an asyncio.StreamReader.

Data is read in byte format, therefore strings may need to be encoded before
being used.

All read methods are coroutines that must be awaited.

An arbitrary number of bytes can be read via the read() method, which will
read until the end of file (EOF).

read byte data
byte_data = await reader.read()

Additionally, the number of bytes to read can be specified via the n argument.

This may be helpful if we know the number of bytes expected from the next
response.

For example:

read byte data
byte_data = await reader.read(n=100)

A single line of data can be read using the readline() method.

This will return bytes until a new line character '\n' is encountered, or EOF.

This is helpful when reading standard protocols that operate with lines of
text.

read a line data
byte_line = await reader.readline()

Additionally, there is a readexactly() method to read an exact number of
bytes otherwise raise an exception, and a readuntil() that will read bytes
until a specified character in byte form is read.

Data that is read from the stream can be decoded from bytes into string data
using the decode () method and the default UTF8 encoding.

For example:

decode byte data into string data
string data = byte_data.decode()

Next, let’s look at how we can close an open TCP socket connection.

How to Close the Socket Connection

The socket can be closed via the asyncio.StreamwWriter.

The close() method can be called which will close the socket. This method
does not suspend.

For example:

close the socket
writer.close()

Although the close () method does not suspend, we can wait for the socket to
close completely before continuing on.

This can be achieved via the wait_closed() method.

This is a coroutine that can be awaited.

For example:

close the socket
writer.close()

wait for the socket to close
await writer.wait_closed()

We can check if the socket has been closed or is in the process of being
closed via the is_closing() method.

For example:

check if the socket is closed or closing
if writer.is_closing():
o,

Now that we know how to open and use asyncio streams, let’s look at a
worked example of checking the status of webpages asynchronously.

Example of Checking Webpage Status

We can develop an example of checking the HTTP status of multiple
webpages concurrently using non-blocking I/0.

This can be achieved by issuing an HTTP GET request to each webpage and
reading the first line response which will contain the status of the webpage.

This requires first opening a socket connection to the HTTPS server on port
443 using SSL. We must then formulate the HTTP GET request that includes
the URL we desire and the host name. The string request must then be
encoded into byte data before being transmitted.

We can then read the first line of the response from the server, decode it and
return it as the HTTP status of the server. The TCP socket can then be closed.
This assumes the servers exist and that we can connect to it.

This process can be wrapped into a coroutine and executed concurrently for
each website URL that we wish to query.

Tying this together, the complete example is listed below.

SuperFastPython.com

example of checking the status of multiple webpages
import asyncio

import urllib.parse

get the http status of a webpage

async def get_status(url):
split the url into components
url parsed = urllib.parse.urlsplit(url)
open the connection, assumes https
reader, writer = await asyncio.open_connection(

url_parsed.hostname, 443, ssl=True)
send GET request
query = f'GET {url_parsed.path} HTTP/1.1\r\n" \
f'Host: {url_parsed.hostname}\r\n\r\n'

write query to socket
writer.write(query.encode())
wait for the bytes to be written to the socket
await writer.drain()
read the single line response
response = awalit reader.readline()
close the connection
writer.close()
decode and strip white space
status = response.decode().strip()
return the response
return status

main coroutine
async def main():
list of top 10 websites to check
sites = ['https://www.google.com/"',
"https://www.youtube.com/',
"https://www.facebook.com/"',
"https://twitter.com/',
'https://www.instagram.com/"',
"https://www.baidu.com/",

'https://www.wikipedia.org/"',
"https://yandex.ru/"',
"https://yahoo.com/"',
"https://www.whatsapp.com/"']
create all coroutine requests
coros = [get_status(url) for url in sites]
execute all coroutines and wait
results = await asyncio.gather(*coros)
process all results
for url, status in zip(sites, results):
report status
print(f'{url:25}:\t{status}')

run the asyncio program
asyncio.run(main())

Running the example first creates the main() coroutine and uses it as the
entry point into the program.

The main() coroutine runs, defining a list of the top 10 websites to check.

A list of get_status() coroutines is created in a list comprehension, one
coroutine per URL to check.

The asyncio.gather() function is then called, passing the coroutines and
suspending the main() coroutine until they are all done.

The coroutines execute, querying each website concurrently and returning
their status.

The main() coroutine resumes and receives an iterable of status values. This
iterable along with the list of URLs is then traversed using the zip() built-in
function and the statuses are reported.

This highlights how we can open, write to, and read from multiple TCP
socket connections concurrently using non-blocking 1/0.

https://www.google.com/ : HTTP/1.1 200 OK
https://www.youtube.com/ : HTTP/1.1 200 OK
https://www.facebook.com/: HTTP/1.1 302 Found

https:
https:
https:
https:
https:
https:
https:

//twitter.com/
//www.instagram.com/:
//www.baidu.com/
//www.wikipedia.org/:
//yandex.ru/ :
//yahoo.com/
//www.whatsapp.com/:

HTTP/1.
HTTP/1.
HTTP/1.
HTTP/1.
HTTP/1.
HTTP/1.
HTTP/1.

RRrRRRRRR

200
302
200
200
302
301
302

OK
Found
OK
OK
Moved
Moved
Found

Lesson Review

Takeaways

Well done, you made it to the end of the lesson.

¢ You now know how to run commands asynchronously as subprocesses
directly from coroutines.

¢ You now know how to run commands asynchronously using the shell
from coroutines.

* You now know how to open, read, and write from non-blocking TCP
socket connections.

e You now know how to check the status of webpages asynchronously
using streams.

Exercise

Your task for this lesson is to expand upon the example that checks website
status.

Update the example to check the status of specific webpages you read often.

Further update the example to read the entire HTTP header for each URL and
report details from the header, at least the number of characters. This can be
achieved by reading lines until the first double new line is encountered.

Further update the example to read the HTTP body of the response and report
interesting details, such as the number of characters. The body begins right
after the header finishes with a double new line.

The structure of HTTP response messages is very simple. The Wikipedia
page for HTTP contains examples of request and response messages if you
are stuck.

This is an important exercise as it will force you to get comfortable reading
data from socket connections and interpreting the messages in the context of

an application domain.
Share your results online on Twitter, LinkedIn, GitHub, or similar.
Send me the link to your results, I’d love to see what you come up with.

You can send me a message directly via:

e Super Fast Python - Contact Page
https://SuperFastPython.com/contact/

Or share it with me on Twitter via @SuperFastPython.

Further Reading

This section provides resources for you to learn more about the topics
covered in this lesson.

e asyncio - Asynchronous I/O.
https://docs.python.org/3/library/asyncio.html

e Asyncio Subprocesses.
https://docs.python.org/3/library/asyncio-subprocess.html

e Asyncio Streams.
https://docs.python.org/3/library/asyncio-stream.html

e Hypertext Transfer Protocol, Wikipedia.
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Next

In the next lesson, we will explore how to draw upon everything we have
learned and develop an asynchronous and concurrent port scanning program
using asyncio.

https://superfastpython.com/contact/
https://twitter.com/SuperFastPython
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio-subprocess.html
https://docs.python.org/3/library/asyncio-stream.html
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Lesson 07: Port Scanner Case Study

Asyncio coroutines can be used to scan multiple ports on a server
concurrently. This can dramatically speed up the process compared to
attempting to connect to each port, one by one. In this lesson, we will explore
how to develop a concurrent port scanner with asyncio.

After completing this tutorial, you will know:

e How to open a socket connection to each port sequentially and how slow
it can be.

e How to execute coroutines concurrently to scan ports and wait for them
to complete.

¢ How to scan port numbers concurrently and report results dynamically
as soon as they are available.

Let’s get started.

Develop an Asyncio Port Scanner

We can connect to other computers by opening a socket, called socket
programming.

Opening a socket requires both the name or IP address of the server and a
port number on which to connect.

For example, when our web browser opens a web page on python.org, it is
opening a socket connection to that server on port 80 or 443, then uses the
HTTP protocol to request and download (GET) an HTML file.

Socket programming or network programming is a lot of fun.

A good first socket programming project is to develop a port scanner. This is
a program that reports all of the open sockets on a given server.

A simple way to implement a port scanner is to loop over all the ports we
want to test and attempt to make a socket connection on each. If a connection
can be made, we disconnect immediately and report that the port on the
server is open.

Historically, having many open ports on a server was a security risk, so it is
common to lock down a public-facing server and close all non-essential ports
to external traffic. This means scanning public servers will likely yield few
open ports in the best case or will deny future access in the worst case if the
server thinks we’re trying to break in.

As such, although developing a port scanner is a fun socket programming
exercise, we must be careful in how we use it and what servers we scan.

Next, let’s look at how we can open a socket connection on a single port.

How to Open a Socket Connection on a Port

We can open a socket connection in asyncio using the
asyncio.open_connection() function.

This takes the host and port number and returns a StreamReader and
Streamwriter for interacting with the server via the socket.

The asyncio.open_connection() function is a coroutine and must be
awaited. It will return once the connection is open.

For example:

open a socket connection
reader, writer = asyncio.open_connection(
"python.org', 80)

If a connection can be made, the port is open. Otherwise, if the connection
cannot be made, the port is not open.

The problem is, how do we know a connection cannot be made?

If a port is not open, the call may wait for a long time before giving up. We
need a way to give up after a time limit.

This can be achieved using the asyncio.wait_for () function.

This is a coroutine that will execute an awaitable and wait a fixed interval in
seconds before giving up and raising an asyncio.TimeoutError exception.

We can create the coroutine for the asyncio.open_connection() function
and pass it to the wait_for () coroutine.

This will allow us to attempt to make a socket connection on a given port for
a fixed interval, such as one or three seconds.

For example:

create coroutine for opening a connection
coro = asyncio.open_connection('python.org', 80)
execute the coroutine with a timeout

try:
open the connection and wait for a moment
_ = await asyncio.wait_for(coro, 1.0)
#
except asyncio.TimeoutError:
#

If the connection can be made within the time limit we can then close the
connection.

This can be achieved by calling the close() method on the Streamwriter
object returned from asyncio.open_connection().

For example:

close connection once opened
writer.close()

Otherwise, if the asyncio.TimeoutError exception is raised, we can assume
that the port is probably not open.

We can tie all of this together into a coroutine function that tests one port on
one host and returns True if the port is open or False otherwise.

The test_port_number () coroutine function below implements this.

returns True if a connection can be made
async def test_port_number(host, port, timeout=3):
create coroutine for opening a connection
coro = asyncio.open_connection(host, port)
execute the coroutine with a timeout
try:
open the connection and wait for a moment
_,writer = await asyncio.wait_for(coro, timeout)
close connection once opened
writer.close()

indicate the connection can be opened
return True

except asyncio.TimeoutError:
indicate the connection cannot be opened
return False

Next, let’s look at how we can scan a large number of ports, one by one.

How to Scan a Range of Ports on a Server (slow)

We can scan a range of ports on a given host.
Many common internet services are provided on ports between 0 and 1,024.

The viable range of ports is 0 to 65,535, and we can see a list of the most
common port numbers and the services that use them in the file
/etc/services on POSIX systems.

We can scan a range of ports by repeatedly calling our coroutine developed in
the previous section, and report any ports that permit a connection as open.

The main() coroutine function below implements this reporting any open
ports that are discovered.

main coroutine
async def main(host, ports):
report a status message
print(f'Scanning {host}...")
scan ports sequentially
for port in ports:
if await test_port_number(host, port):
print(f'> {host}:{port} [OPEN]")

Finally, we can call this function and specify the host and range of ports.

In this case, we will port scan python.org (out of love for Python, not
malicious intent).

define a host and ports to scan
host = 'python.org'

ports = range(1, 1024)

start the asyncio program
asyncio.run(main(host, ports))

We would expect that at least port 80 would be open for HTTP connections.

Tying this together, the complete example of port scanning a host with
asyncio is listed below.

SuperFastPython.com
example of an asyncio sequential port scanner
import asyncio

returns True if a connection can be made
async def test_port_number(host, port, timeout=3):
create coroutine for opening a connection
coro = asyncio.open_connection(host, port)
execute the coroutine with a timeout
try:
open the connection and wait for a moment
_,Writer = await asyncio.wait_for(coro, timeout)
close connection once opened
writer.close()
indicate the connection can be opened
return True
except asyncio.TimeoutError:
indicate the connection cannot be opened
return False

main coroutine
async def main(host, ports):
report a status message
print(f'Scanning {host}...")
scan ports sequentially
for port in ports:
if await test_port_number(host, port):
print(f'> {host}:{port} [OPEN]")

define a host and ports to scan
host = 'python.org'

ports = range(1, 1024)

start the asyncio program
asyncio.run(main(host, ports))

Running the example attempts to make a connection for each port number
between 1 and 1,023 (one minus 1,024) and reports all open ports.

In this case, we can see that port 80 for HTTP is open as expected, and port
443 is also open for HTTPS.

The program works fine, but it is painfully slow.

On my system, it took about 51 minutes. This makes sense. If we test 1,023
ports and most ports are closed then we expect to wait 3 seconds on each
attempt or 1,023%31,023 \times 3 which equals 3,069 seconds. Converting
this to minutes 306960\frac{3069} {60} equals about 51.15 minutes.

> python.org:80 [OPEN]
> python.org:443 [OPEN]

The benefit of asyncio is that it can execute coroutines concurrently,
specifically coroutines that perform non-blocking 1/0.

Next, we will look at how to run coroutines concurrently to speed up this port
scanning process.

How to Scan Ports Concurrently (fast)

We can scan ports concurrently using asyncio.
Each port can be tested concurrently in a separate coroutine.

Opening a connection will suspend the caller, allowing other coroutines to
run. Those coroutines attempting to connect to a port that is not open will
remain suspended until the time out elapses, allowing other coroutines to run.

This can be implemented by creating one coroutine for each port to scan, then
execute all coroutines concurrently and wait for them to complete. This can
be achieved using the asyncio.gather () function.

It requires first creating the coroutines. With one coroutine per port, this
would be a collection of more than 1,000 coroutines. We can achieve this
using a list comprehension.

For example:

create all coroutines
coros = [test_port_number(host, port) for port in ports]

Next, we can execute all of these coroutines concurrently using the
asyncio.gather() function.

This function takes awaitables as arguments and will not return until the
awaitables are complete. It does not take a list of awaitables, therefore we
must expand our list into separate expressions using the star (*) operator.

For example:

execute all coroutines concurrently
results = await asyncio.gather(*coros)

This will execute all coroutines concurrently and will return an iterable of

return values from each coroutine in the order provided.

We can then traverse the list of return values along with the list of ports and
report the results.

Recall that we can traverse two or more iterables together using the built-in
zip() function.

For example:

report results
for port,result in zip(ports, results):
if result
print(f'> {host}:{port} [OPEN]")

Tying this together, the complete example is listed below.

SuperFastPython.com
example of a concurrent port scanner using gather
import asyncio

returns True if a connection can be made
async def test_port_number(host, port, timeout=3):
create coroutine for opening a connection
coro = asyncio.open_connection(host, port)
execute the coroutine with a timeout
try:
open the connection and wait for a moment
_,writer = await asyncio.wait_for(coro, timeout)
close connection once opened
writer.close()
indicate the connection can be opened
return True
except asyncio.TimeoutError:
indicate the connection cannot be opened
return False

main coroutine
async def main(host, ports):
report a status message

print(f'Scanning {host}...")

create all coroutines

coros = [test_port_number(host, port)
for port in ports]

execute all coroutines concurrently

results = await asyncio.gather(*coros)

report results

for port,result in zip(ports, results):
if result

print(f'> {host}:{port} [OPEN]")

define a host and ports to scan
host = 'python.org'
ports = range(1, 1024)

start the asyncio program
asyncio.run(main(host, ports))

Running the example executes the main() coroutine as the entry point into
our asyncio program.

A list of coroutines is first created.
The coroutines are then all executed concurrently using asyncio.gather ().

This suspends the main() coroutine until all coroutines are completed. Each
coroutine tests one port, attempting to open a connection and suspending it
until either the connection is open or the timeout is elapsed.

Once all tasks are completed the main() coroutine resumes and all results are
reported.

Two open ports are reported the same as before.

The big difference is the speed of execution. In this case, it takes about 3.1
seconds, compared to more than 50 minutes in the previous example.

That is about 3,063 seconds faster or a 989x speed-up, i.e. nearly 1000-times
faster.

Scanning python.org...

> python.org:80 [OPEN]
> python.org:443 [OPEN]

Next, let’s look at how we can report results as soon as they are available,
rather than after all coroutines complete.

How to Report Scan Results Dynamically

In the previous example, we executed the coroutines concurrently and
reported the results after all tasks had been completed.

An alternative approach would be to report results as the tasks are completed.

This would allow the program to be more responsive and show results to the
user as they are available.

We could achieve this by having the test_port_number () coroutine report
its result directly.

Another approach is to traverse coroutines in the order they are completed, as
they complete.

This can be achieved using the asyncio.as_completed() function.

This function takes a collection of awaitables. If they are coroutines, they are
issued as tasks.

The function then returns an iterable of the coroutines that are yielded in the
order that they are completed.

We can traverse this iterable directly, we do not need to use the async for
expression reserved for asynchronous iterables.

For example:

execute coroutines and handle results as they complete
for coro in asyncio.as_completed(coros):
check the return value from the coroutine
...

The downside is that we don’t have an easy way to relate the coroutine to the
port that was tested. Therefore, we can update our test_port_number()
coroutine to return whether the port is open and the port number that was

tested.

For example:

returns True if a connection can be made
async def test_port_number(host, port, timeout=3):
create coroutine for opening a connection
coro = asyncio.open_connection(host, port)
execute the coroutine with a timeout
try:
open the connection and wait for a moment
_,Writer = await asyncio.wait_for(coro, timeout)
close connection once opened
writer.close()
indicate the connection can be opened
return True, port
except asyncio.TimeoutError:
indicate the connection cannot be opened
return False, port

We can then traverse the coroutines in the order they are completed and get
the details of the port and whether it is open from each and report it.

For example:

execute coroutines and handle results as they complete
for coro in asyncio.as_completed(coros):
check the return value from the coroutine
result, port = await coro
if result:
print(f'> {host}:{port} [OPEN]")

This will execute all coroutines concurrently and will report open ports as
they are discovered, rather than all at the end.

Tying this together, the complete example is listed below.

SuperFastPython.com
example concurrent port scanner using as_completed
import asyncio

returns True if a connection can be made
async def test_port_number(host, port, timeout=3):
create coroutine for opening a connection
coro = asyncio.open_connection(host, port)
execute the coroutine with a timeout
try:
open the connection and wait for a moment
_,writer = await asyncio.wait_for(coro, timeout)
close connection once opened
writer.close()
indicate the connection can be opened
return True, port
except asyncio.TimeoutError:
indicate the connection cannot be opened
return False, port

main coroutine
async def main(host, ports):
report a status message
print(f'Scanning {host}...")
create all coroutines
coros = [test_port_number(host, port)
for port in ports]
execute coroutines and handle results dynamically
for coro in asyncio.as_completed(coros):
check the return value from the coroutine
result, port = await coro
if result:
print(f'> {host}:{port} [OPEN]")

define a host and ports to scan
host = 'python.org'

ports = range(1, 1024)

start the asyncio program
asyncio.run(main(host, ports))

Running the example executes the main() coroutine as the entry point into
the asyncio program.

A list of coroutines is first created.

The coroutines are then passed to the asyncio.as_completed() function.

This wraps each in another coroutine and executes them all concurrently and
independently.

It returns immediately with an iterable of coroutines.
Internally, it awaits and yields coroutines as they are completed.

The return value from each coroutine is retrieved and results are reported as
they are made available.

The example shows the same ports and executes in about the same time as
the previous concurrent examples, except the program is more responsive.

Ports are shown as open almost immediately, as opposed to after all ports in
the range have been checked and timed out.

Scanning python.org...
> python.org:80 [OPEN]
> python.org:443 [OPEN]

Lesson Review

Takeaways

Well done, you made it to the end of the lesson.

e You now know how to open a socket connection to each port
sequentially and how slow it can be.

¢ You now know how to execute coroutines concurrently to scan ports and
wait for them to complete.

e You now know how to scan port numbers concurrently and report
results dynamically as soon as they are available.

Exercise

Your task for this lesson is to extend the above example for port scanning.

1. Update the example to test a different range of port numbers.

2. Update the example to test the program on a different host that has more
than two ports open.

3. Update the concurrent example to use asyncio.wait() instead of
asyncio.gather().

4. Update the example to limit the number of concurrent tasks using a
fixed sized queue or a semaphore.

5. Update the example so that if an HTTP or HTTPS port is open that it
reports the HTTP status for the port.

It is important that you know how to use the non-blocking I/O aspect of
asyncio in conjunction with the tools provided in the asyncio module. The
above example and these extensions will help you get comfortable with these
tools in this specific use case.

Share your results online on Twitter, LinkedIn, GitHub, or similar.

Send me the link to your results, I’d love to see what you come up with.

You can send me a message directly via:

e Super Fast Python - Contact Page
https://SuperFastPython.com/contact/

Or share it with me on Twitter via @SuperFastPython.

Further Reading

This section provides resources for you to learn more about the topics
covered in this lesson.

e asyncio - Asynchronous I/O.
https://docs.python.org/3/library/asyncio.html

e Asyncio Streams.
https://docs.python.org/3/library/asyncio-stream.html

e Network socket, Wikipedia.
https://en.wikipedia.org/wiki/Network_socket

e Computer network programming, Wikipedia.
https://en.wikipedia.org/wiki/Computer_network_programming

e Port scanner, Wikipedia.
https://en.wikipedia.org/wiki/Port_scanner

Next

This was the last lesson, next we will take a look back at how far we have
come.

https://superfastpython.com/contact/
https://twitter.com/SuperFastPython
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio-stream.html
https://en.wikipedia.org/wiki/Network_socket
https://en.wikipedia.org/wiki/Computer_network_programming
https://en.wikipedia.org/wiki/Port_scanner

Conclusions

Look Back At How Far You’ve Come

Congratulations, you made it to the end of this 7-day course.
Let’s take a look back and review what you now know.

e You discovered how to define, create, and run coroutines and how to use
the async/await expressions.

e You discovered how to create asynchronous tasks, query their status,
cancel them and add callback functions.

¢ You discovered how to run many coroutines concurrently in a group and
handle their results.

® You discovered how to wait for many coroutines to complete, meet a
condition, or timeout.

¢ You discovered how to define, create and use asynchronous iterators,
generators, and context managers.

¢ You discovered how to use the async for and async with expressions
in asyncio programs.

e You discovered how to synchronize and coordinate coroutines with
locks, semaphores, events and condition variables.

e You discovered how to share data between coroutines using coroutine-
safe queues.

e You discovered how to run, read, and write from subprocesses and
streams with coroutines.

¢ You discovered how to develop a concurrent and dynamically updating
port scanner using non-blocking 1/0.

You now know how to use the asyncio module and bring coroutine-based
concurrency to your project.

Thank you for letting me help you on your journey into Python concurrency.

Jason Brownlee, Ph.D.
SuperFastPython.com
2022.

https://SuperFastPython.com

Resources For Diving Deeper
This section lists some useful additional resources for further reading.

APIs

e Concurrent Execution API - Python Standard Library.
https://docs.python.org/3/library/concurrency.html

e multiprocessing API - Process-based parallelism.
https://docs.python.org/3/library/multiprocessing.html

e threading API - Thread-based parallelism.
https://docs.python.org/3/library/threading.html

e concurrent.futures API - Launching parallel tasks.
https://docs.python.org/3/library/concurrent.futures.html

e asyncio API - Asynchronous I/O.
https://docs.python.org/3/library/asyncio.html

Books

e High Performance Python, Ian Ozsvald, et al., 2020.
https://amzn.to/3wRD5MX

e Using AsynclO in Python, Caleb Hattingh, 2020.
https://amzn.to/31Np2ml

e Python Concurrency with asyncio, Matt Fowler, 2022.
https://amzn.to/3LZvxNn

e Effective Python, Brett Slatkin, 2019.
https://amzn.to/3GpopJ1

e Python Cookbook, David Beazley, et al., 2013.
https://amzn.to/3MSFzBv

e Python in a Nutshell, Alex Martelli, et al., 2017.
https://amzn.to/3m7SLGD

https://docs.python.org/3/library/concurrency.html
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/concurrent.futures.html
https://docs.python.org/3/library/asyncio.html
https://amzn.to/3wRD5MX
https://amzn.to/3lNp2ml
https://amzn.to/3LZvxNn
https://amzn.to/3GpopJ1
https://amzn.to/3MSFzBv
https://amzn.to/3m7SLGD

Getting More Help

Do you have any questions?

Below provides some great places online where you can ask questions about
Python programming and Python concurrency:

e Stack Overview.
https://stackoverflow.com/

e Python Subreddit.
https://www.reddit.com/r/python

e LinkedIn Python Developers Community.
https://www.linkedin.com/groups/25827

e Quora Python (programming language).

https://www.quora.com/topic/Python-programming-language-1

Contact the Author

You are not alone.

If you ever have any questions about the lessons in this book, please contact
me directly:

e Super Fast Python - Contact Page
https://SuperFastPython.com/contact/

I will do my best to help.

https://stackoverflow.com
https://www.reddit.com/r/python
https://www.linkedin.com/groups/25827/
https://www.quora.com/topic/Python-programming-language-1
https://superfastpython.com/contact/

About the Author

Jason Brownlee, Ph.D. helps Python developers bring modern concurrency
methods to their projects with hands-on tutorials. Learn more at
SuperFastPython.com.

Jason is a software engineer and research scientist with a background in
artificial intelligence and high-performance computing. He has authored
more than 20 technical books on machine learning and has built, operated,
and exited online businesses.

Photo of Jason Brownlee

https://SuperFastPython.com

Python Concurrency Jump-Start
Series

Save days of debugging with step-by-step jump-start guides.

Python Threading Jump-Start.
https://SuperFastPython.com/ptj

Python ThreadPool Jump-Start.
https://SuperFastPython.com/ptpj

Python ThreadPoolExecutor Jump-Start.
https://SuperFastPython.com/ptpe;

Python Multiprocessing Jump-Start.
https://SuperFastPython.com/pmj

Python Multiprocessing Pool Jump-Start.
https://SuperFastPython.com/pmpj

Python ProcessPoolExecutor Jump-Start.
https://SuperFastPython.com/pppej

Python Asyncio Jump-Start.
https://SuperFastPython.com/paj

https://SuperFastPython.com/ptj
https://SuperFastPython.com/ptj
https://SuperFastPython.com/ptpj
https://SuperFastPython.com/ptpj
https://SuperFastPython.com/ptpej
https://SuperFastPython.com/ptpej
https://SuperFastPython.com/pmj
https://SuperFastPython.com/pmj
https://SuperFastPython.com/pmpj
https://SuperFastPython.com/pmpj
https://SuperFastPython.com/pppej
https://SuperFastPython.com/pppej
https://SuperFastPython.com/paj
https://SuperFastPython.com/paj

	Python Asyncio Jump-Start
	Copyright
	Preface
	Introduction
	Who Is This For
	Book Overview
	Lesson Structure
	Code Examples
	Practice Exercises
	How to Read
	Learning Outcomes
	Getting Help

	Lesson 01: Asyncio Concurrency
	What are Coroutines
	What is Asynchronous Programming
	Welcome to Asyncio
	Asyncio Hello World Example
	When to Use Asyncio
	Lesson Review

	Lesson 02: Coroutines and Tasks
	How to Create and Run Coroutines
	How to Create and Run Tasks
	How to Use Asyncio Tasks
	Lesson Review

	Lesson 03: Collections of Tasks
	How to Run Many Tasks as a Group
	How to Wait for Many Tasks
	How to Wait For a Task With a Timeout
	How to Handle Tasks In Completion Order
	How to Run Blocking Tasks
	Lesson Review

	Lesson 04: Iterators, Generators, and Context Managers
	How to Use Asynchronous Iterators
	How to Use Asynchronous Generators
	How to Use Asynchronous Context Managers
	Lesson Review

	Lesson 05: Queues and Synchronization Primitives
	What is Coroutine-Safe
	How to Share Data Between Coroutines with Queues
	How to Protect Critical Sections with a Mutex Lock
	How to Limit Access to a Resource with a Semaphore
	How to Signal Between Coroutines Using an Event
	How to Coordinate Using a Condition Variable
	Lesson Review

	Lesson 06: Subprocesses and Streams
	How to Run Commands in Subprocesses
	How to Use Non-Blocking I/O Streams
	Lesson Review

	Lesson 07: Port Scanner Case Study
	Develop an Asyncio Port Scanner
	How to Open a Socket Connection on a Port
	How to Scan a Range of Ports on a Server (slow)
	How to Scan Ports Concurrently (fast)
	How to Report Scan Results Dynamically
	Lesson Review

	Conclusions
	Look Back At How Far You’ve Come
	Resources For Diving Deeper
	Getting More Help

	About the Author
	Python Concurrency Jump-Start Series

