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ABSTRACT

This paper presents a new method for estimating for-
mant frequencies. The formant model is based on a dig-
ital resonator. Each resonator represents a segment of
the short{time power spectrum. The complete spectrum
is modeled by a set of digital resonators connected in
parallel. An algorithm based on dynamic programming
produces both the model parameters and segment bound-
aries that optimally match the spectrum.

The main results of this paper are: 1) Modeling formants
by digital resonators allows a reliable estimation of for-
mant frequencies. 2) Digital resonators can be used ef-
�ciently in connection with dynamic programming. 3)
A recognition test with formant frequencies results in a
string error rate of 4.8% on the adult corpus of the TI
digit string database.

1. INTRODUCTION

An e�cient and compact representation of the time{
varying characteristics of speech o�ers potential bene-
�ts for speech recognition. Therefore a variety of ap-
proachs such as formant tracking [7, 4, 10], articulatory
models [9] and auditory models [5] have been explored.
For formant tracking, methods based on linear predic-
tor analysis (LPC) have received considerable attention.
Root{�nding algorithms are employed to �nd the zeros
of the LPC polynomial or local maxima of the LPC en-
velope are searched using peak{picking techniques. The
problem with root{�nding algorithms is that the deter-
mination of formant frequencies and bandwidths is only
successful for complex{conjugate poles and not for real
poles. Peak{picking techniques are vulnerable to merged
formants and spurious peaks.

The approach described in this paper avoids the above
mentioned problems. In [6], a set of digital formant res-
onators connected in parallel or in cascade has been pro-
posed for speech synthesis. In this paper, we propose to
use digital resonators for formant estimation. We mod-
el the power spectrum by K formant models where each
model represents one segment of the power spectrum.
An algorithm based on dynamic programming produces
the set of formant parameters and segment boundaries
which optimally match the short{time power spectrum of

a speech segment. We have performed recognition tests
using formants on the TI digit string database. Formants
have also been estimated on the same database in [3].

The paper is organized as follows. Section 2 de�nes the
formant model. Section 3 describes the dynamic pro-
gramming algorithm that produces the optimal set of
segment boundaries. Section 4 contains various exper-
imental results including recognition tests.

2. DEFINITION OF FORMANT MODELS

In this section, we present a model for formant estima-
tion which is based on a set of parallel digital resonators.
The frequency range is divided into a �xed number of
segments each of which represents a formant. For the
moment, the segment boundaries are �xed. In Section
3, we will show how they can be optimized by dynamic
programming.

For each segment k with given boundaries, we de�ne a
second{order digital resonator. As in general LPC anal-
ysis [3, pp. 399], we consider the corresponding predictor
polynomial, which is de�ned as the Fourier transform of
the corresponding second{order predictor:

Ak(e
j!) = 1� �ke

j!
� �ke

j2!

with predictor coe�cients �k and �k. jAk(e
j!)j2 can be

written as:

jAk(e
j!)j2 = 1 + �

2
k + �

2
k

�2�k(1� �k) cos!� 2�k cos 2!

= (1 + �k)
2 + �

2
k +

�2k(1� �k)
2

4�k

�4�k

�
cos! +

�k(1� �k)

4�k

�2
:

As can be seen from the above equation, the parameter
�k determines the bandwidth of the resonator. For a res-
onator, we have the constraint �k < 0. jAk(e

j!)j2 has its
global minimum at the resonance or formant frequency
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We denote the beginning point and the end point of seg-
ment k by !k�1 and !k, respectively. Using the predictor



polynomial, we de�ne the prediction error as follows:
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where jS(ej!)j2 denotes the short{time power density
spectrum of the speech signal. To �nd the minimum,
we have to optimize the prediction error over �k and �k
and obtain [3, p. 412]:
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with the autocorrelation coe�cients rk(�) of segment k
for � = 0; 1; 2:

rk(�) := r(!k�1 ;!k)
(�)

=

!kZ
!k�1

jS(ej!)j2 cos(�!)d! :

The minimum error Emin(!k�1; !k) can be expressed as
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So far we have considered the prediction error of a single
segment k only. We now assume that the whole frequency
range is divided into K segments with boundaries !0 =
0; : : : ; !k; : : : ; !K = �. To de�ne the prediction error for
the whole frequency range, we have to sum up the errors
of all segments:

E =

KX
k=1

Emin(!k�1; !k) :

A dynamic programming algorithm for �nding the opti-
mum segment boundaries is described in Section 3.

In our implementation, the discrete short{time power
spectrum jS(i)j2 with discrete frequencies i = 1; : : : ; 2 � I
is computed by a (2 �I){point discrete Fourier transform.
Segment k ranges from frequency index (ik�1 + 1) to ik
(i0 = 0; iK = I). We calculate the autocorrelation coe�-
cients rk(�) using
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The autocorrelation coe�cients can be e�ciently com-
puted using the identity

rk(�) = T (�; ik)� T (�; ik�1) (3)

with look{up tables
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for � = 0; 1; 2 and i = 0; 1; : : : ; I.
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Figure 1: Segmentation by dynamic programming.

3. DYNAMIC PROGRAMMING

ALGORITHM

The task is now to �nd the segment boundaries
i1; : : : ; iK�1 so that

KX
k=1

Emin(ik�1 + 1; ik)

is minimized (i0 = 0; iK = I). Dynamic programming
[1, 2] provides an e�cient solution.

We introduce an auxiliary quantity F (k; i) which is de-
�ned as the error of the best segmentation of the fre-
quency interval [1; i] into k segments. By decomposing
the frequency interval [1; i] into two frequency intervals
[1; j] and [j + 1; i] and using the optimality in the def-
inition of F (k; i), we obtain the recurrence relation of
dynamic programming:

F (k; i) = min
j

[F (k � 1; j) +Emin(j + 1; i)] : (5)

As Equation (5) shows, the best segmentation of the fre-
quency interval [1; j] into k�1 segments is utilized to de-
termine the partition of the frequency interval [1; i] into
k segments. Figure 1 gives an illustration of the dynamic
programming Equation (5).

The optimum segment boundaries are obtained along
with the minimum error F (K;I) by recursively applying
Equation (5). Table 1 summarizes the complete algo-
rithm. The �rst step is to �ll the look{up tables de�ned
by Equation (4). Then the values of Emin(j + 1; i) for
0 < j + 1 < i and 1 � i � I are calculated using Equa-
tions (2) and (3). The algorithm employs a backpointer
array B to obtain the segment boundaries. After the
segmentation process, the formant frequencies for each
segment are calculated by Equation (1). The number of
operations in the inner loop of the algorithm is K � I2=2.

4. EXPERIMENTAL RESULTS

4.1. Formant Estimation

We have tested the formant model on the TI digit string
database. First we perform a signal pre{emphasis by cal-
culating the �rst{order di�erence of the sampled speech



Table 1: Dynamic programming algorithm for �nding the
segment boundaries.

initialisation: compute Emin(j; i) for j < i

for each frequency i from 1 to I do

for each segment k from 1 to K do

F (k; i) =1

for each frequency j from 1 to i� 1 do

if F (k � 1; j) + Emin(j + 1; i) < F (k; i)

F (k; i) = F (k � 1; j) + Emin(j + 1; i)

B(k; i) = j

traceback: i(K) = I

for each segment k from K to 1 do

i(k � 1) = B(k; i(k))

calculate '(k) and �(k)

Figure 2: Spectrum and formant models for frame 95 of
digit string 73 by male talker AH.

signal. Every 10 ms, a 20{ms Hamming window is ap-
plied to overlapping speech segments and the short{time
power spectrum is computed by a 1024{point fast Fourier
transform. The frequency range from 0 to 5 kHz is used.
We �x the number of formants to K = 4. There is no
smoothing of the formant frequencies.

Figure 2 depicts the short{time power spectrum of a
speech frame from the 'ee' sound in 'three' together with
the formant models that were obtained. In Figure 2,
the four formant frequencies and the segment boundaries
are represented by vertical lines. The bandwidths of the
formants are relatively small, which we attribute to the
segmentwise formant de�nition.

Figure 3 shows the spectrogram (after local energy nor-
malisation) of the digit 'three' together with the esti-
mated formant frequencies. There is a good agreement
between the formant frequencies and the spectrogram.

Figure 4 shows a histogram for each of the four formant

Figure 3: Spectrogram and formant contours of the word
'three' (frames 77-107 of digit string 73 by talker AH; the
arrow marks frame 95 shown in Figure 2).

Figure 4: Histogram of formant frequencies over male
training speakers of TI digit string database.

frequencies that were generated using the utterances of
the male training speakers of the TI digit string database.
For the histogram, the silence frames in the acoustic sig-
nal were omitted.

4.2. Formant{Based Recognition

The estimated formant frequencies were used to form the
acoustic vectors for recognition experiments on the TI
digit string database. The recognition system is based
on hidden Markov models with continuous observation
densities. Its characteristic features are [11]: 1) gender{
dependent word models for 11 English digits including
'oh' and gender{dependent silence models; 2) 357 states
plus 1 state for silence per gender; 3) single Laplacian
densities with state dependent deviation vectors; 4) max-
imum likelihood training in the Viterbi approximation.

The signal analysis is performed every 10 ms. For each
time frame t, the acoustic vector y(t) consists of signal



Figure 5: Formant{based reference for 'three'.

energy and four formant frequencies. This vector y(t)
is augmented by �rst{order derivatives. The resulting
acoustic vector is x(t) = [y(t); y(t) � y(t � �t)]T with
�t = 3 � 10 ms.

Figure 5 shows the male reference model for the digit
'three' that was obtained by training. In addition to
the formant frequency contours, Figure 5 also shows the
absolute deviation of the Laplacian models represented
by a gray stripe.

Table 2 gives recognition results for both formants and
cepstrum on the TI digit string database. For both types
of acoustic vectors, Table 2 shows the word error rates,
string error rates and the number of components of the
acoustic vector. For the cepstrum, the acoustic vector
consists of 16 cepstral coe�cients, 16 �rst{order deriva-
tives and 16 second{order derivatives [11]. As can be seen
in Table 2, promising recognition results were obtained
for the formants. In particular, it should be noted that
the number of components of the acoustic vector is sig-
ni�cantly smaller for the formants than for the cepstrum.
Furthermore, there was no smoothing or other postpro-
cessing of the formant trajectories. To the best of our
knowledge, this is one of the few recognition systems that
are based solely on formant contours. Considering that
this work started only recently, we see room for further
improvements in formant-based speech recognition in the
future.

Table 2: Recognition errors for formants and cepstrum
(TI digit string database).

Acoustic Number of Word error String error
vector components rate [%] rate [%]

Formants 2�5 1.7 4.8

Cepstrum 3�16 0.6 1.8

5. CONCLUSIONS

This paper has presented a new approach to formant es-
timation: 1) The short{time power spectrum is decom-
posed into segments each of which is modeled by a digital
resonator. 2) The segment boundaries are optimised by
dynamic programming.

The estimated formant frequencies have been analysed
using spectrograms and histograms. In a recognition test
on the adult corpus of the TI digit string database, a
string error rate of 4.8% has been achieved with four
formant frequencies and signal energy.
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