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Abstract—We address the problem of estimating the instanta-
neous frequency (IF) of a phase signal using its level-crossing (LC)
information based on front-end auditory processing motivation.
We show that the problem of IF estimation using LC information
can be cast in the framework of estimation from irregularly sam-
pled data. The formulation has the generality of estimating dif-
ferent types of IF without the need for a quasistationary assump-
tion. We consider two types of IF—polynomial and bandlimited;
we use polynomial interpolating functions for the former, and for
the latter, we propose a novel “line plus sum of sines” model. The
model parameters are estimated by linear regression. Considering
the noisy case, LC data for different levels is analyzed, and methods
for combining different estimators from LCs are discussed. Theo-
retical and extensive simulation results show that the performance
of the zero-crossing (ZC) based IF estimator and the level-crossing
based IF estimator with smaller level values is better than those
obtained with higher level values or their combinations. The new
technique reaches the Cramér–Rao bound (CRB) roughly above 4
dB signal-to-noise ratio (SNR), and its performance does not dete-
riorate rapidly with mismatch in the IF order compared with the
other techniques in the literature.

Index Terms—Auditory processing, instantaneous frequency, ir-
regular sampling, level-crossing, zero-crossing.

I. INTRODUCTION

ALMOST all real-world systems are time-varying in
nature. As a result, signals produced by them, such as

speech, music, biomedical, and other natural signals show a
time-varying spectral characteristic. The spectral variability
with time can be decomposed as amplitude variability and fre-
quency variability. Most sources convey information through
modulations of amplitude (AM) and modulations of frequency
(FM) of a steady carrier, which serves as a vehicle to transport
the information contained in the modulations. The basic and
simplest signal processing model of such a source is therefore
an AM-FM [1]–[3] combination or a sum of such combinations.
Analysis of such signals and characterization of their spectral
evolution has been the focus of research for quite sometime.
Most popular tools developed for this purpose are the time–fre-
quency distributions (TFDs) [4]–[6], which represent energy
variations in a joint time–frequency domain. These are de-
signed to satisfy physically appealing notions such as time and
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frequency marginals, instantaneous frequency, and group delay
properties, etc. Most design approaches yield TFDs that do not
satisfy all the desired properties. However, this did not restrict
their utility. There are several applications based on these
distributions, for example, IF estimation and applications to
real-world problems [6]–[9]. The alternative set of approaches
are more intuitive in nature and motivated by biological signal
processing of composite signals such as speech and music
[10]–[12]. For example, a joint time–frequency representation
based on peripheral auditory signal processing models, known
as the Ensemble Interval Histogram (EIH) [10], [11], is well
known among the speech processing community. This is not
designed to satisfy the general properties of a TFD, but aimed at
mimicking the biological functions while processing complex
stimuli using signal processing techniques. A modification of
this approach uses only zero-crossing information [12], [13].
These techniques assume that the signals are quasistationary
(spectrum slowly changing with time) and, hence, can be
analyzed, similar to short-time Fourier transform (STFT) on a
frame-by-frame basis.

Deviating from the above approaches, we address the ques-
tion of accurately estimating the time-varying frequency of a
signal “without making a quasistationary assumption.” Consid-
ering single component phase signals,1 we address the ques-
tion of generalized IF estimation accurately. Keeping the au-
ditory motivation, we use the level-crossing “timing informa-
tion” for estimating time-varying frequency. The new approach
is shown pictorially in Fig. 1. The spike train contains the timing
information of the signal crossing a threshold and is a simple
model of the neuron that fires every time its excitation crosses
a threshold. The timing information is more suitable to handle
nonstationary signals. Estimation of IF from the timing infor-
mation is a problem of reconstruction from irregularly sampled
data for which we have shown an effective solution. Further, the
estimates from various levels is input to a combining network
(denoted by ), which may be linear or nonlinear. The output
of the combining network is a final estimate of the time-varying
frequency of the input mono-component signal.

The organization of the paper is as follows. In Section II,
we present in detail the new technique and show how it can
be generalized to handle a variety of IF laws. In Section III,
we consider the effects of additive white Gaussian noise on
level-crossing information and discuss ways of combining the
various level-crossing-based IF estimators and study their per-
formance as a function of signal-to-noise ratio (SNR). In Sec-

1Phase signals are extensively used in many communication systems such
as RADAR and their IF estimation under noisy conditions is of considerable
practical importance.
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Fig. 1. Auditory motivated technique for estimating time-varying frequency.

Fig. 2. Time-warping (� indicates a zero-crossing).

tions IV and V, we present simulation results comparing the pro-
posed approach with several other popular techniques existing
in the literature. Section VI concludes the paper.

II. NOTION OF TIME-WARPING

Consider an arbitrary, bounded IF law ,
. We need not consider negative frequencies as they

are only conceptual. The corresponding phase function
is monotonically increasing. Now, con-

sider the frequency modulated signal ,
with IF, , and no amplitude modulation. The inphase and
quadrature components of this complex signal carry identical
information about the IF, and hence, we confine our discussion
to one of them, say, sin . A plot of versus

shows a sinusoidal signal that appears warped in the
time domain, as shown in Fig. 2. For increasing/decreasing IF,
the successive cycles of the sinusoid get closer/farther, respec-
tively. However, when plotted against , appears as

a constant frequency sine wave. This is true for any nonlinear
, which causes warping.

If we define as the set of zero-crossing (ZC)
instants of over an interval denoted by

, we get , ,
where is the total number of ZCs within the interval.2

Instead, if we choose them as level- crossing (LC) instants
( denotes level value), , where

, we get sin , , where
is the total number of level- -crossing instants in .

Thus, by detecting the level-crossing instants and putting them
in one-to-one correspondence with the instantaneous phase
values, we automatically achieve phase unwrapping.3 Thus, by

2The only ambiguity in the assignment of T to f�(t ); 0 � j � N g is
in the choice of the initial phase, i.e., �(t ) is arbitrarily set to zero, and the
successive phase values are assigned relative to it. For IF estimation, even this
ambiguity does not exist because of the derivative operation.

3This may be contrasted with the discrete-time approaches to phase compu-
tation where phase unwrapping problems occur because of the use of the ARC
TANGENT function.
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considering the ZC/LC instants of , we obtain specific
points on the IP function. A similar result also holds for .
Thus, ZC/LC instants can be viewed as irregularly sampled
information about obtained from either or .
Next, we need to perform interpolation under an assumed
model to obtain a complete description of the IF for all time
within the observation window.

It may be noted that the ZC/LC instants are not uniformly
spaced. Interpolating these points to find the IP and IF at any
other point within the window is a problem within the domain of
irregular sampling [14], [15]. The algorithms for reconstruction
from irregular samples can be broadly classified as constrained
or unconstrained techniques. Standard interpolation techniques
fall into the class of constrained techniques. In the unconstrained
type, we seek a solution that describes the IP in an overall least
squares sense, because, usually, the number of model parame-
ters to be estimated is lesser than the data size available. The un-
constrained approach is also useful when additive noise perturbs
the ZC/LC information. Finding and
assigning sin , , we can
perform least-squares curve fitting using a set of interpolating
functions. A priori information about the nature of IF can help
us choose the type of interpolating functions. For polynomial
IF, a polynomial curve-fitting approach is suitable. For bandlim-
ited IF, a novel model called the “line plus sum of sines” (LPS)
model is proposed. In the examples presented in this paper, the
nature of IF variation is assumed to be known so that the correct
model can be chosen. In the absence of errors due to noise in
the signal, ZC/LC instant estimation errors, or model mismatch
errors, accurate IF estimation can be done using the proposed
approach. However, in the presence of above errors, the uncon-
strained method is found to be effective and useful. IF estima-
tion based on ZCs and LCs is henceforth referred to as ZC-IF
and LC-IF estimation, respectively.

In the discussion so far, we have considered only analog
signals. The complex signal , in general, has infinite
bandwidth. For the convenience of digital processing, we
assume that is essentially bandlimited to the frequency
range rad/s. When sampled at a rate of samples/s
sampling period , we get

and sin ( denotes the real part,
and denotes the imaginary part). Let the sampling pe-
riod be normalized to unity, without loss of generality; thus,

, and sin . We only ob-
serve discrete-time signals from which we estimate the ZC/LC
information corresponding to its continuous-time counterpart
and then go on to estimate . The models for IP and IF are
written in continuous-time for the convenience of defining the
IF as the derivative of the IP.

In general, the ZC/LC instants do not coincide with the sam-
pling instants. Therefore, we first oversample the received signal
(to get , where is the oversampling factor) and check to
see if is satisfied. If this is true,
then the continuous-time counterpart has a level- -crossing
in the interval . For detecting ZCs, oversampling
is not required assuming alias-free sampling. The ZC/LC instant
may be estimated iteratively to a desired degree of accuracy by
using bandlimited interpolation [16] and a bisection approach,

similar to that used in root-finding problems [17]. It has been
found experimentally that oversampling by a factor of two (i.e.,

) followed by bisection approach (about three to five it-
erations) is accurate enough for IF estimation.

A. Polynomial IF Model

For polynomial IF, we can model the IP function as
. The coefficients are esti-

mated using a least squares fit to and .
We define a cost function as a measure of total approximation
error at the LC instants as

(1)

where , and , where
denotes the transpose operator. Minimizing the cost function

with respect to yields the optimum coefficient vector, using the
level- -crossing information, which is denoted by and given
by

(2)

where is a column vector whose element is
sin , and is a matrix whose row is .

The IF can be easily obtained using .

B. Harmonic IF Model

Polynomial IF law forms a large class of IF variations that
occur in many practical situations. However, there are other
kinds of IF that are not compactly modeled by polynomial vari-
ations; these are functions that can be modeled by a finite set
of harmonically related trigonometric sine/cosine functions. In
physical systems, since the IF corresponds to the dynamics of
a physical parameter, it can be safely assumed to be a bandlim-
ited function and, hence, the harmonic IF model. Since the IP is
monotonically increasing, we cannot go in for a straightforward
trigonometric polynomial, i.e., finite sum of sines/cosines model
as adopted in [15]. We introduce a linear trend in addition to the
sum of sines model, called the “line plus sum of sines” (LPS)
model for IP [18]. This is equivalent to a sum of harmonically
related cosines model for IF.

We model the IP and the IF as follows:

sin (3)

(4)

where , being the observation interval of .
Outside the interval, the specific model used above implies odd-
symmetric, periodic extension of IP and, therefore, even-sym-
metric, periodic extension of IF. This minimizes Gibb’s oscil-
lations due to model order truncation, which is a practical ne-
cessity. When the actual IF of a physical process is only known
to be essentially bandlimited, the LPS model provides a viable
alternative to the polynomial model.
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Fig. 3. Cubic polynomial IF estimation. (a) ZC-IF. (b) LC-IF (` = 0:25); “sum of sines” IF estimation. (c) ZC-IF. (d) LC-IF (` = 0:25).

We specify a cost-function as a measure of total approxima-
tion error of the IP at the level- -crossing instants by the model
chosen above as follows:

(5)

where , and
sin sin sin

sin , . Taking
the gradient of with respect to and setting it to zero
will yield the optimum (in the least squares sense4) coefficient
vector for the th-order IP denoted by . Thus, we obtain

(6)

In matrix form, this is written as , where
, ; can be found by ma-

trix inversion. Using in (4), the IF can be estimated.

C. Illustrations

We illustrate the performance of ZC and LC approaches to IF
estimation using the models described above considering two
examples: a phase signal with a polynomial IF given by

4A nice study of linear least squares estimation with emphasis on order re-
cursion, order selection and computational efficiency can be found in [19] and
the references therein.

and another with a
“sum of sines” IF given by sin

sin , , . We assume
that the nature of the underlying IF variation is known a priori
so that the appropriate model is employed. Estimating the IF
when the underlying model is not known a priori is reported
separately [20]. The ZC-IF and LC-IF estimates (corresponding
to an arbitrarily chosen level value of 0.25) are shown in Fig. 3. It
is found that the proposed approaches perform very accurate IF
estimation. The error in IF estimation due to various mismatches
and effect of noise are discussed in the next section.

III. EFFECT OF ADDITIVE NOISE

Consider corrupted with complex Gaussian noise ,
whose power spectral density for

and zero otherwise; is thus the variance of noise. The
received signal is given by . Following
the analysis in [21], we can write with
var where var denotes variance. can be written
as , where and are the in-phase
and quadrature components of , respectively. We can write

(7)
under high-SNR assumption . In addition,
var var . With the above as-
sumptions and approximations, we can write

(8)
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Fig. 4. Quadratic polynomial IF estimation and performance improvement of ZC-IF estimator with TV filtering. (a) Squared bias. (b) Variance. (c) Mean square
error (MSE), all in decibels, as a function of SNR (in decibels), at the center of the window (ENH refers to signal enhancement due to TV filtering).

can thus be treated as additive phase noise. The phase
noise is real, zero-mean, and Gaussian distributed5 with a spec-
tral density for and zero oth-
erwise. when sampled at a rate of samples/s yields un-
correlated Gaussian distributed phase noise samples. The im-
plication of this result is that, under a high-SNR assumption,
the sampled instantaneous phase function gets additively cor-
rupted with white noise. The additive phase noise property jus-
tifies least squares approach to IF estimation. The phase pertur-
bation of (8) gets reflected as ZC/LC perturbation in the signal
domain, which is discussed further in the next section.

A. Perturbation Analysis

Consider the quadrature component of the noisy phase signal.
Let , denote an arbitrary amplitude level. Let de-
note the th-level- -crossing instant in the presence of noise.
Let the corresponding level-crossing instant for the clean signal
be with denoting the perturbation in the LC
instant. Thus, we have

sin (9)

sin (10)

We model the perturbation as a zero-mean, uncorrelated
random variable [13]. Consider

(11)

Using a second-order Taylor series approximation to evaluate
the expectations involved, we obtain, after simplification (as-
suming stationary additive noise, high SNR, and )

(12)

5Juxtapose this result with that in [22], where the phase noise is shown to have
a Tikhonov probability density function. In [22], the wrapped phase is consid-
ered, whereas in the present analysis, we have the unwrapped phase and, hence,
the difference.

Clearly, is nonstationary. The dependence of the variance
of the perturbation of the LC instant on the level value is explicit.
The expression also indicates that the higher level-crossing in-
stants at lower frequencies have larger variance compared to
lower level-crossing instants at higher frequencies. The above
analysis is a generalization of the results in [12] and [13] to
time-varying signals. For the simpler case of a constant-fre-
quency sinusoid, is least in the case of ZC instants
and it increases with increasing level value. Equation (12) also
suggests that since the noise variance of different LC instant
perturbations is different for different levels, it would be ap-
propriate to perform LC-IF estimation differently for each level
and then combine them appropriately. This is discussed in Sec-
tion III-E.

B. ZC-IF Estimation

Consider IF estimation using ZC information. To study the
performance of the proposed approach, a phase signal with a
quadratic IF given by

, is generated with .
A normalized sampling period of unity is assumed. Complex
white Gaussian noise of a suitable variance is added to generate
a signal of a desired SNR. Since polynomial IF is considered, the
IF is estimated as explained in Section II-A, using the quadrature
component. For each SNR chosen, 100 Monte-Carlo trials are
run to compute the statistics of the estimator. SNR is varied from

4 to 24 dB in steps of 2 dB. The squared bias , variance
, and mean square error (MSE ) of

the IF estimator at the center of the observation window
are plotted as a function of the SNR in Fig. 4 (see legend

“ ”). For the sake of uniformity across all SNRs and trials,
is used in the simulations. It can be seen that the ZC-IF

estimator is nearly efficient beyond SNR dB in the sense
that it lies quite close to the CRB. The derivation of the CRB is
outlined in Appendix I.

C. Performance Improvement

A typical FM receiver has a front end that consists of a band-
pass filter and a limiter [3]. The bandpass filter serves to cut off
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Fig. 5. Quadratic polynomial IF estimation; performance comparison of different ENH-LC-IF estimators. (a) Squared bias. (b) Variance. (c) MSE, all in decibels,
as a function of level, with SNR (in decibels) as the parameter.

out-of-band noise that can otherwise cause distortion in the de-
modulated message. The limiter retains only ZCs for demodu-
lation. We adopt a similar front-end to improve the performance
of the proposed IF estimator. Since we are dealing with nonsta-
tionary signals and the spectrum of out-of-band noise changes
with time, we use an STFT-based time-varying (TV) bandpass
filter prior to IF estimation. A limiter used in conventional FM
receivers is not used here because we also explore the use of LC
information for IF estimation (Section III-D).

Consider the following specification for the TV bandpass
filter (the notation means that is discrete and is continuous):

for
otherwise

(13)

where is the center frequency of the filter at time , and
is the spread/bandwidth about . The output of such a

system to an input, is given by

(14)

where is the window function used in obtaining
the STFT of denoted by and defined as

. The TV bandpass filter
center frequency is estimated as .
The bandwidth factor can be chosen as the width of the
main lobe about ; this is fixed, depending on the analysis
window. More insights into the TV filtering process are given
in [23], [24], and the references therein.

The experiment of quadratic IF estimation is repeated with
the above preprocessing step. The results are shown in Fig. 4
(see legend “ ”). It can be seen that the threshold
SNR of the estimator has been reduced by about 4 dB. Noting
this advantage, henceforth, in all simulations, we perform
ZC/LC-IF estimation on whenever noise is present. The
case of polynomial IF is considered only for the sake of il-
lustration; the conclusions reached in this section hold for

bandlimited IF as well. In the absence of any a priori informa-
tion, we found that a wideband spectrogram gives a reasonable
improvement in SNR. Therefore, a 17-point Hamming window
is used in all simulations.

D. LC-IF Estimation

We repeat the simulations of Section III-B for LC-IF
estimation. Based on the unity amplitude phase signal as-
sumption, ten level values were chosen equispaced between
0 and 0.9, both inclusive. To make a comparative observa-
tion, the squared bias, variance, and MSE at the center of
the window are plotted in Fig. 5 with SNR as the parameter.
We also show similar results in Fig. 6 for a “sum of sines” IF

sin sin ,
(parameters first chosen arbitrarily and later modified to ensure
that ). was used in the simulations.
For the sake of uniformity in comparison across all SNRs and
realizations, a fixed-order, , is used in the Monte-Carlo
analysis. From these plots, we observe that for moderate to high
SNRs, ENH-ZC-IF and ENH-LC-IF estimators with low-level
value exhibit similar performance characteristics. In general,
at any SNR, the performance of ENH-LC-IF estimators is
the same (for low level value) or worse (for high level value)
compared with ENH-ZC-IF estimation. As SNR increases, the
ENH-LC-IF estimators corresponding to the higher level values
become more reliable.

E. Combined Estimators

Keeping the foregoing discussion in mind, it would be
natural to ask the following question: Can different LC-IF
estimators be combined to get an estimator that possibly
offers improved performance than the individual estima-
tors? We attempt to answer this question by considering some
combinations.

1) The simplest combination would be a weighted
average, i.e., define a new IP estimator as

, where is the total number
of levels, and is the IP estimate from the th
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Fig. 6. “Sum of sines” IF estimation; performance comparison of different ENH-LC-IF estimators. (a) Squared bias. (b) Variance. (c) MSE, all in decibels, as a
function of level, with SNR (in decibels) as the parameter.

level-crossing6 information. The IF can be estimated
as . With the individual es-
timators assumed approximately unbiased, for to
be unbiased as well, we must have with
each to make the resulting estimator positive.
Equal weightage, i.e., mean of all estimators, implies
that, irrespective of the variance in each LC estimate,
the confidence in all estimators is the same. Intuitively,
this is not expected to offer any improvement in per-
formance and might result in an estimator with poorer
performance than any of those being combined.

2) The result of Section III-A can be used to find optimal
weights in a minimum variance sense, i.e., we can find
weights, such that var ,
where is the least, subject to the
constraints and , .

The problem of LC-IF estimation is essentially one
of fitting a curve to the data sets

and sin
. The same can be recast, using a first-order Taylor

series approximation, to a problem of curve fitting to
the data sets and

sin , where
is a zero-mean uncorrelated random vari-

able and has variance . Although it is
strictly not true, we assume that , for different ,
are independent of each other. We have var

[by ignoring differences in the ob-
servation matrix, (see Section II-A), which is dif-
ferent for different levels]. The problem of finding op-
timal weights can be solved easily using the method
of Lagrange multipliers. The optimal weights, which
are denoted by , can be found to be

, . This
choice of weights assures the minimum possible vari-

6We explain the notation followed: L is the total number of equispaced levels
between 0 and 1 (including 0, excluding 1), and ` is a level value and takes
values 0; 1=L; 2=L; . . . ; (L� 1)=L; the corresponding level index is denoted
by l, which takes values 0; 1; 2; . . . ; L � 1. Thus, ` = l=L, i.e., the l level
value is `.

ance for under the assumptions made. However,
it may be noted that the variance cannot go below the
CRB.

3) Define median
, where is the IF estimate from the th

level-crossing information.
The performance of the proposed combinations was studied and
the results are summarized in Fig. 7(a) and (b) for the examples
considered earlier. It is clear that ENH-ZC-IF estimation is the
best. This is followed by the median. The performance improve-
ment with the median combination is due to the fact that outlier
estimates that usually correspond to higher level values, and of
higher variance, are rejected by the median. Any robust combi-
nation with an outlier rejection property can also be used instead
of the median.

Apart from the above combinations, ad hoc combinations
were also tried by choosing the weights as shown in Fig. 7(c).
The choice of the weights is motivated by the observation
that the ENH-LC-IF estimators with level value close to zero
performed similar to the ENH-ZC-IF estimator. In such a
case, assuming independent ENH-LC-IF estimators, using such
weights should give us an estimator with a variance smaller
than any of the individual estimators. However, from Fig. 7(c),
where the variance is plotted for the quadratic IF example, it
turns out that, at best, the combined estimator achieves the
performance of the ENH-ZC-IF estimator, indicating that our
assumption of independence of various ENH-LC-IF estimators
was not strictly true. The same is true for the “sum of sines”
IF example as well.

To summarize the results, the ENH-ZC-IF estimator and
the ENH-LC-IF estimators with small level-values exhibit
similar performance. This implies robustness of ZC and low
level-crossing information compared with higher level-crossing
information (which is also substantiated by the analysis in
Section III-A). Linear and nonlinear combinations, such as me-
dian, of different ENH-LC-IF estimators, at best, offer the same
performance as ENH-ZC-IF estimator/low-level ENH-LC-IF
estimator. The lack of improvement in performance of the com-
bined estimator is due to the fact that the different ENH-LC-IF
estimators are probably not mutually independent.
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Fig. 7. Variance of different combinations of IF estimators as a function of SNR (in decibels). (a) Quadratic polynomial IF. (b) “Sum of sines” IF. (c) Quadratic
polynomial IF. = f1=8; 1=8;1=8;1=8;1=8;1=8;1=8;1=8;0; 0g, = f1=4; 1=4;1=4;1=4;0; 0; 0; 0; 0; 0g, = f1=2; 1=2;0; 0; 0; 0; 0; 0; 0; 0g. In
(a) and (b), stands for minimum variance combination.

Fig. 8. Cubic polynomial IF estimation. Performance comparison of different techniques. (a) Squared bias (in decibels), (b) variance (in decibels), and (c) MSE
(in decibels) versus SNR (in decibels) at the center of the window.

IV. PERFORMANCE ANALYSIS AND COMPARISON

In this section, we compare the performance of the new
approach with some popular techniques in the literature.
For the purpose of comparison, we choose the ENH-ZC-IF
estimator. Among the TFD-based approaches, we choose
polynomial Wigner–Ville distribution (PWVD) [25]; among
the non-TFD-based approaches, we choose Kay’s regression
method [21] and the discrete polynomial-phase transform
(DPT) approach [26], [27] for comparison. By far, these are
the most popular techniques in the literature on IF estimation.
For the sake of uniformity across techniques, range of SNRs,
and realizations, we assume that the order of the IF is known
a priori. The performance of the techniques when the order is
unknown will be investigated later.

We consider cubic polynomial IF given by
, , where

. Complex white Gaussian noise of a required vari-
ance is added to the phase signal to achieve a desired SNR. For
ZC-IF estimation, only the quadrature componentof the resulting
noisy phase signal is used, whereas all other techniques use the
complex noisy signal itself. In Section III-C, it was shown that

time-varying filtering results in improved IF estimation perfor-
mance; hence, for an even comparison, we use the same front-end
forall techniques.The prefixENH isused todenote thesame.One
hundred Monte-Carlo realizations of the noisy signal are gener-
ated, and IF estimation is performed for each realization. From
this, the bias, variance, and MSE of the IF estimators are com-
puted.Thesequantitiescorrespondingtothecenterofthewindow,
as a function of SNR, are displayed in Fig. 8. From the figure,
it is clear that ENH-ZC-IF and ENH-PWVD follow the CRB
closely above 4 dB SNR. Below 4 dB SNR, both ZC-IF and ENH-
PWVD perform equally well and are better than the other tech-
niques. The MSE plots show that above 4 dB, all techniques per-
form nearly identically, whereas ENH-ZC-IF and ENH-PWVD
are better in the low SNR region. The performance of all the tech-
niquesasa functionof time is shownforSNR dB (close to the
knee-SNR for ENH-ZC-IF) in Fig. 9, from which we observe that
ENH-ZC-IF and ENH-PWVD are much better than ENH-KAY
andENH-DPT.ENH-PWVDhasavarianceclosetotheCRBonly
at the center of the window; elsewhere, it is slightly away from
the bound. This is true even for high SNRs. Amongst ENH-ZC-IF
and ENH-PWVD, the former is marginally superior at low SNRs.
At high SNRs, ENH-ZC-IF, ENH-KAY, and ENH-DPT exhibit



1458 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 4, APRIL 2005

Fig. 9. Cubic polynomial IF estimation (SNR = 2 dB). Performance comparison of different IF estimation techniques. (a) Squared bias (in decibels), (b) variance
(in decibels), and (c) MSE (in decibels) as a function of the sample index.

variance close to the CRB throughout the window, unlike ENH-
PWVD. From the bias characteristics, we find that the least bias
is exhibited by the ENH-ZC-IF estimator. The PWVD- and DPT-
based IF estimators, though theoretically unbiased, practically
exhibit small nonzero bias due to finite nonzero error in peak-
picking, even with zero-padded discreteFourier transform (DFT)
computation. Such errors also arise in detecting ZCs, but the sub-
sequent least squares regression seems to reduce that error and,
hence, lower bias compared with other techniques. From Fig. 9,
we also observe that the number of valleys of the CRB within the
observation window is equal to the order of the IF polynomial.

V. DISCUSSION

We discuss certain characteristics of the proposed IF esti-
mator vis-a-vis other techniques in the literature. The asymp-
totic bias and variance analysis is given in Appendix II.

A. Threshold Effect

The LC-IF estimator, like many other nonlinear estima-
tors, exhibits “threshold effect,” i.e., beyond a particular SNR
(“threshold/knee-SNR”), the variance of the estimator closely
follows the CRB, whereas below the threshold SNR, the per-
formance deteriorates rapidly. The threshold SNR is 4 dB for
linear IF and 6 dB for quadratic and cubic IF. This implies
that with increase in the order of the polynomial, the threshold

SNR does not increase rapidly. On the contrary, for the DPT
approach, the threshold SNR increases by about 6 dB whenever
the order is incremented by one [28].

B. Identifiability

In parameter estimation from sampled phase signals, the issue
of identifiability arises in two different contexts.

1) The signal is a function of the pa-
rameters . Assuming a normal-
ized sampling period of unity, we get a discrete-time
signal , which is also a function of the parameters

. However, the parameter set
for arbitrary integer

also yields the same signal . This ambiguity arises
because of aliasing of the polynomial phase param-
eters [29]. This is concerned with uniform sampling
and cannot be taken care of at the parameter estima-
tion level, however accurate the estimation technique
may otherwise be.

2) Starting with uniformly sampled signals, approaches
such as the DPT, which use the discrete-time Fourier
transform (DTFT), give rise to ambiguous parameter
estimates. The constraints on the parameters such that
these ambiguities do not arise is discussed in [27]. If
any of the parameters violates the constraint, the DPT
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Fig. 10. Quadratic polynomial IF estimation performance comparison of (a) ENH-DPT and (b) ENH-ZC-IF techniques as a function of SNR (in decibels) and
model order of the IP.

approach yields inaccurate results, even if the IF lies
in the normalized frequency range [0, 0.5]. Since the
present technique does not use DTFT, such ambigu-
ities do not arise. To illustrate this point, consider a
phase signal with cubic polynomial IF given by

,
, where . The IF lies in the range

[0, 0.5]. However, since all parameters do not obey the
constraints, the DPT approach fails to estimate the IF
correctly, whereas the ZC/LC technique can accurately
estimate the IF.

C. Knowledge of IF Order

The simulations in Section IV were carried out assuming a
priori knowledge of the order of the polynomial IF only to elim-
inate the effects of order mismatch in the analysis. In practice,
we may not know the true order, and hence, the performance
of the IF estimator will depend on the assumed model order. To
study the effect of order mismatch on the performance of the two
techniques ENH-ZC-IF and ENH-DPT, an experiment was con-
ducted. A phase signal with a quadratic polynomial IF (same as
in Section III-B) was generated. Complex white Gaussian noise
was added to achieve a desired SNR. The SNR was varied from
5 to 25 dB in steps of 5 dB. For every SNR, 100 Monte-Carlo
trials were run to obtain the statistics of the estimator. The IP
model order was varied from 3 (actual order) to 7. An average
IF estimation error measure was used to study the effect of the
assumed order on the performance of the estimators. It is de-
noted by and defined as

(15)

where is the total number of realizations (100 in the present
experiment), and is the data size. It may be noted that this
error is different from the model fitting error in (1) and (5). is

plotted on a decibel scale in Fig. 10 for different SNRs and or-
ders. From the plots, it is clear that at all SNRs, the ENH-ZC-IF
technique shows gradual increase in error as order is increased
(over-fitting) and/or SNR is decreased. On the other hand, the
ENH-DPT technique shows a steep increase in error for high
orders and low SNRs. We thus conclude that ZC-IF estimation
is less sensitive to order mismatch than DPT.

VI. CONCLUSIONS

We have addressed the problem of estimating generalized
polynomial and bandlimited IF from the corresponding phase
signal, taking an auditory front-end processing motivation.
Unlike other zero-crossing-based approaches, it is shown that
without the need for a quasistationary assumption, the signal
level-crossing information can be effectively used for IF estima-
tion from both clean and noisy signals. It is found that ZC and
LC-IF estimators with low-level value are the best among all
LC-IF estimators, and their IF estimation performance is close
to the CR bound. The proposed approach is general enough to
handle a variety of IF laws. A detailed comparison with other
techniques in the literature is also shown. In this paper, we have
demonstrated the utility of ZC/LC instant information, which
is different from the conventional ZC/LC rate [30]/interval
information, for time-varying signal parameter estimation. The
link between irregular sampling and level-crossing analysis for
time-varying signal parameter estimation holds promise for
further research.

APPENDIX I
CRAMÉR–RAO LOWER BOUND

A. Polynomial Model

In this Appendix, we briefly outline the derivation of the CRB
in the level-crossing framework. For a detailed discussion on
performance bounds for general nonuniform and random sam-
pling schemes, see [31]. Consider the phase signal
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in zero-mean, complex additive Gaussian noise of vari-
ance to yield the noisy signal . The instantaneous phase
is given by . To perform IF estimation, we
need to estimate . Consider the set of level-
crossing instants . Correspondingly,
we have , . In vector
form, this can be written as , each of dimension

. The mean of the data vector, which is denoted
by , is . The covariance matrix has
as the th row, th column entry. The matrix is not perfectly
diagonal but is diagonally dominant, i.e., the diagonal elements
are the maximum elements in a given row and column. The cor-
responding Fisher information matrix is a square matrix of
size . The th row, th column entry of is
given by the following ( denotes Hermitian transpose):

(16)

where the th row, th column entry of is given by
( is the Kronecker delta), ,

, , , and the approximation in the
last step is that , being the identity
matrix. The variance bound on the th parameter estimate is
given by .

The IF is given by and the
CRB is given by

CRB (17)

where , and is ob-
tained from by removing its first row and column (indicated
by the subsubscript ).

This bound is signal-specific, i.e., it depends on the level-
crossing instants that are specific to that signal and depend on
the actual IF. It is not general enough to be used across different
kinds of IF even if they are of the same polynomial order. To
compute the bound accurately also requires exact knowledge of
the actual IF, which may not be available in practice. From a
practical viewpoint, we can forgo the specificity and exactness
of the bound. A general bound, even if approximate, will be
practically useful. This can be done by extending the analysis in
[32] to yield a large sample approximation on any IF estimator

as

CRB

(18)

where is the observed data size, and is the order of the IP.
, where ! denotes factorial. Simulations

show that the above bound is general and can be used to assess
the performance of a wide variety of polynomial IF estimators.

B. Harmonic Model

A similar analysis for the LPS model will yield signal
specific bounds. An approximate bound can be derived for
the LPS model as well. The entries in the Fisher information
matrix can be computed as follows: ,

, , ,
, . The approximate

bound is given by CRB , where
,

.

APPENDIX II
BIAS-VARIANCE ANALYSIS

In this Appendix, we study the conditions under which the
LC-IF estimator becomes unbiased and consistent.

Let the actual model for the IP be given by
. Let the model chosen be

and its estimate be given by . If ,
there is no model mismatch; otherwise, there is a mis-
match between the actual and the estimated model. The LCs

are estimated from the noisy signal.
Under a high-SNR assumption, we assume that they are per-
turbed due to noise, i.e., the instants can be written as

, where are the
level- -crossing instants of . The coefficients are esti-
mated in a least squares sense by a th-order polynomial fit to
the data sets, and

sin . Using a first-order
Taylor series approximation, the problem can be recast to one
of fitting a curve to the data sets
and . Define
as a column vector whose th element is sin
and as a column vector whose th element is .
The estimated optimum order coefficient vector can be
written as , where

. In the absence of noise, . The
estimate of instantaneous phase is given by , where

and the estimate of the instantaneous
frequency is given by , where

is the th element of . The bias of the IF estimator, which
is denoted by is given by

(19)

(20)

where . The matrix is obtained by
prefixing an all-zero row and column to a identity matrix.
The statistical bias component is essentially due to
additive noise. The expected value of
is zero (see Section III-A and E). The residual component in
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bias is the modeling bias that arises mainly due to model order
mismatch and is given by

(21)

If the model order is chosen correctly, i.e., , then modeling
bias equals zero.

The expression for variance of the LC-IF estimator, which is
denoted by , is given by

(22)

(23)

Simplifying using the results in Section III-A, we get

(24)

where is the variance of noise. As , , and
. Thus, the LC-IF estimator is consistent with

respect to the increase in SNR.
The variance expression can be further simplified by noting

that the th element of the matrix is given by
, , .

Since the columns of are linearly independent, the matrix
is always invertible [19]. The matrix entries consist of

countably finite sums of unevenly spaced real numbers and
closed-form solutions are not possible.

Under the asymptotic condition of large data size (i.e.,
), the matrix becomes diagonally domi-

nant with entries given by

. Using this large-sample approximation, we
can write the asymptotic variance as

(25)

As , , , . Hence, the
LC-IF estimator is also consistent with respect to increase in
the data size.
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