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Abstract- Speech enhancement using iterative Wiener filtering has 
been shown to require interframe and intraframe constraints in all-pole 
parameter estimation. In this correspondence, we show that a clean speech 
VQ codebook is more effective in providing intraframe constraints and, 
hence, better convergence of the iterative filtering scheme. Satisfactory 
speech enhancement results are obtained with a small codehook of 128, 
and the algorithm is effective for both white noise and pink noise up to 
0 dB SNR. 

I. INTRODUCTION 
Speech processing systems, viz., speech coders, speech recogniz- 

ers, etc., have traditionally been developed for a noise-free environ- 
ment. The presence of background noise can severely degrade the 
performance of such systems. One way to improve the performance 
of such systems is to develop an enhancement preprocessor that will 
produce speech or its recognition features that are less sensitive to 
background noise. Speech enhancement methods attempt to improve 
either the subjective quality of speech to reduce listener fatigue or 
improve the intelligibility. In many applications, the intelligibility of 
speech is of central importance, and it would be generally acceptable 
to sacrifice quality if the intelligibility could be improved. There 
arc several techniques of speech enhancement [ 3 ] .  The present work 
is an extension of iterative Wiener filtering technique proposed by 
Lim and Oppenheim [5].  This technique is known for its theoretical 
appeal. Its performance, however, is limited because of the difficulty 
in convergence of the iterative algorithm. Hansen and Clements [2] 
have proposed a constrained iterative algorithm that is shown to have 
better convergence properties. The present work is a new approach to 
incorporating constraints, which results in much faster convergence. 
In addition, since the constraints are derived directly from the clean 
speech in an unsupervised learning mode, the new algorithm leads to 
even better speech enhancement. 

11. ITERATIVE WIENER FILTER (IWF) 
This technique is a sequential maximization of the a posteriori 

probability (MAP estimation) of the speech signal and its all-pole 
parameters as originally formulated by Lim and Oppenheim [SI. In 
this method, the speech signal is modeled as the response of an all- 
pole system, and the approach is to solve for the MAP estimate 
of the signal s,  given the noisy signal y = s + d. However, the 
resulting equations for the joint MAP estimate of the all-pole speech 
parameter vector a, gain G, and noise-free speech vector s are 
found to be nonlinear. In order to simplify the solution, Lim and 
Oppenheim proposed a suboptimal iterative solution using sequential 
estimation of a and G, given s,, where s; is the estimated signal 
at the ith iteration. The sequential estimation procedure is linear at 
each iteration and would continue until a criterion of convergence 
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is satisfied. They assumed the a posteriori pdf p ( s  I az.y)  to be 
Gaussian. Consequently, the MAP estimate of s based on maximizing 
the pdf is equivalent to the minimum mean square error (MMSE) 
estimation of s .  Further, as the number of data samples available 
for estimation increases, the procedure for obtaining the MMSE of s 
approaches a noncausal Wiener filter, i.e., s is estimated by filtering y 
through a noncausal Wiener filter. It is shown [5] that this technique 
increases the joint likelihood of a and sz with each iteration and 
leads to the joint MAP estimate. Fig. 1 gives a block diagram of the 
iterative Wiener filter scheme. The transfer function of the noncausal 
Wiener filter [9] is given by 

P d ( w )  is the power spectral density (psd) of the additive noise, and 
Ps(,j) is the psd of the clean speech signal. For the given model 
parameter values of a, and G 

/ I  1' 12 

It may be noted that G is estimated from the energy of the input 
signal. Thus 

. N-1 

(3) 

where CJ: is the variance of noise assumed to be stationary. 

111. CONSTRAINED IWF 

Hansen and Clements [2] performed an extensive investigation of 
the IWF technique for speech with additive white Gaussian noise 
and found some anomalies: 

i) With increasing number of iterations, the individual formants 
of speech consistently decrease in bandwidth. In addition, the 
formant frequencies drift from the correct values. This results 
in unnatural sounding reconstructed speech. 

ii) Pole frequency jitter in the all-pole model is observed between 
successive frames, causing artificial discontinuities in formant 
contours. 

iii) Although the sequential MAP estimation technique should 
theoretically increase the joint likelihood of the speech wave- 
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form and its all-pole parameters, proper convergence ,criteria 
is necessary for optimum results. 

In the original algorithm [SI, the convergence criteria is not specified 
because, according to the MAP formulation, the probability would 
improve monotonically with iterations. However, the true measure 
of speech enhancement is through the perception of 6. Using an 
objective measure of speech perception quality, viz., Itakura-Saito 
(IS) likelihood measure [8], Hansen and Clements [2] experimentally 
determined the optimum number of iterations for best perception of 
enhanced speech. It is found that different classes of speech sounds 
require a different number of iterations for optimum performance. The 
obvious problem with such a criterion is that outside of simulation, 
the clean speech is unavailable, and hence, comparative evaluation is 
not possible. However, simulation results indicated that the number of 
iterations leading to maximum objective quality measure is consistent 
for a specific speech class. 

Hansen and Clements also proposed to incorporate constraints in 
estimating the all-pole model. They suggested the use of speech 
specific constraints in either the LPC based representation or line 
spectral pair (LSP) representation of the all-pole model. Constraints 
are imposed on the estimated vocal tract spectrum at each iteration. 
The constraints applied to a ensure the following: 

i) The all-pole model is stable. 
ii) It possesses speech-like characteristics (poles are in reasonable 

positions with respect to each other and the unit circle), 
iii) The vocal tract characteristics do not vary too much between 

successive frames. 
The procedure for determining G remains the same. The constraints 
have been shown to result in a consistently superior objective 
measure of performance at convergence. Surprisingly, in addition, the 
convergence occurred at the seventh iteration for all sound classes. 
Experiments showed that the f‘optimum” iteration number is also 
satisfactory over a range of SNR’s. However, the same experiments 
also indicate that the performance degrades before or beyond the 
“optimum” number of iterations. 

Considering the above experiments, there is clearly a need for 
a better criteria of convergence. In addition, better convergence 
should lead to a better estimate of a and, thus, better enhancement 
performance. 

IV. CODEBOOK CONSTRAINED IWF 
Speech signals are highly dynamic in nature, and accurate percep- 

tion of phonemes, such as semivowels, stop consonants, nasals, etc., 
depends on the precise changes in the signal spectra. Hence, dynamic 
characteristics should be retained in the enhanced signal. Application 
of interframe constraints to LPC or LSP parameters, such as simple 
smoothing [2],  can be detrimental to intelligibility of enhanced 
speech. Further, the intraframe formant frequency constraints derived 
from acoustic-phonetic knowledge of speech is limited in scope 
because of nonunique mapping of poles to formants and large 
variability among talkers. These difficulties of applying explicit 
human derived knowledge of speech spectra can be overcome using 
unsupervised learning techniques to derive the requisite knowledge. A 
simple approach to this is through pattern clustering of clean speech 
spectra. The time-varying nature of formant frequency contours and 
the strong correlation between formant frequencies can be effectively 
captured using a codebook of formant contour segments [lo]. In 
the present work, we explore the effectiveness of applying only 
intraframe constraint using a codebook approach. 

Let {a} be a set of LPC vectors derived from clean speech data 
of several continuously spoken sentences. The perceptual difference 
between two LPC vectors is well correlated to the IS distortion 
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Iterative speech enhancement based on vector quanuzation of LPC 

measure. A close approximation to the ML measure has been widely 
used in vector quantization [6], [7] ,  viz. 

(4) 

where a, and ay are any two LPC vectors of the same order, i.e., 
[al. a2, . . . . up]’, and R, is the normalized autocorrelation matrix 
corresponding to the LPC vector a,. 

T d(a, .  ay) = (a, - ay) %(a, - ay) 

Using the IS distortion measure, the problem of pattern clustering 
can be stated as follows: Let the variety of valid speech spectra 
be represented by a codebook of LPC vectors { c k ;  1 5 k 5 A’}, 
where h is of the order of 1024 (since such a codebook size has 
been found sufficient in speech coding applications). Each c k  is a 
representative of a cluster of vectors S k  = {ax. 1 5 z 5 A r k }  

such that xVaESk d(a. ck)  is minimum. Now, clustering implies 
finding ci, such that 

is minimum. This is effectively solved using the iterative A-means 
algorithm [6] Over the iterations, the centroid of a cluster is found 
by [61 

r 1-1 r 1 

The matrix R, is positive definite and Toeplitz. Hence, Levinson’s 
algorithm [8] can be used to calculate the centroid. The centroids, 
thus found, represent the most often occurring spectra of speech. In 
addition, the error caused in speech due to quantization of a by the 
nearest neighbor c3,  i.e., 

d(a,  c J )  5 d(a. ck) V k  (8) 

is small for a large size codebook and can be assumed to be 
perceptually not significant. 

In the iterative Wiener filtering algorithm at each iteration the LPC 
vector a is estimated from the estimated speech 6. The random errors 
in formants of a due to noise in s can be corrected in a perceptual 
sense by choosing the codebook vector cz closest to a ,  i.e., 

d(a.  c.)  5 d(a. c k )  Vk. (9) 



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 4, NO. 5 ,  SEPTEMBER 1996 

E 4- 
g 3.. 

385 

Since c ,  has been estimated from clean speech, it satisfies the 
assumption of clean signal power spectrum for the Wiener filter in 
(2), i.e., 

/ I  P 

The rest of the iterative algorithm can be continued until b reaches a 
stationary point as in the original IWF algorithm. 

V. EXPERIMENTS 
The design of the LPC codebook needs a large number of vectors 

for training. The data used for codebook design is recorded speech 
sentences of eight male and four female speakers for a duration of 
about 170 and 135 s, respectively. The LPC parameters are extracted 
using a quasistationary analysis with consecutive frames overlapping. 
These LPC parameters are directly used for training the quantizer 
using the distortion measure of (4). The IC-means algorithm [6] with 
a splitting codebook initialization approach is used for the codebook 
design. Some of the parameters in the preprocessing are sampling 
frequency = 8 kHz, LPC model order p = 10, frame window width 
lVw = 20 ms, and successive frame overlap = 15 ms. 

For the purpose of simulation, the pseudo-random numbers 
with Gaussian distribution are used as the interfering noise. The 
Box-Muller method [9] is used to generate the random number 
sequence. Stationary white Gaussian noise is added to the clean 

speech signal to get the noisy signal. The variance of the noise to be 
added determines the SNR of the signal, i.e., y ( n )  = . ( T I )  + m u ( n  j 
and 

where N is the total number of samples in the test utterance. The 
noisy signal y is processed as successive quasistationary frames 
of duration 20 ms. Codebook constrained iterative Wiener filtering 
(Fig. 2) is applied to each frame independently to obtain a succession 
of frames of 8. The Wiener filtering is based on MMSE criterion, 
which suggests the use of MSE between the estimated signal and the 
clean speech signal (which is known in the experiment) as a measure 
of performance of the enhancement algorithm. The MSE in relation 
to signal power can be defined as the segmental SNR, which is often 
used to measure the performance of speech coders. 

For the overall speech signal, an average performance is defined as 

SNR-segavg = E { SNR-seg} (13) 

where the expectation is over all the speech frames. The SNR- 
seg-avg is a good measure of the perceptual speech quality. 
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TABLE I 
WHITE NOISE PERFORMANCE: SNR-seg-avg, AVERAGED OVER NINE SETENCES, OBTAINED 

FOR DIFFERENT SPEECH ENHANCEMENT ALGORITHMS AT THREE LEVELS OF INPUT SNR 

hipur SNR=lO dB Inpiit SNR=WB hiput SNR=OdB 
(sNR_seg_Ovg = 1 00 dB) 6NR-seg-avg = -3 3 dB) 

CCIWF(CB=512) 1 7.14dB 1 3.39dB 1 -0.26dB 
~- 

CCIWF(CB=256) I 7.06dB 1 3.37dB 1 -032dB 

CCIWF(CB=128) I 700dB 1 330dB I -037dB 

Spectral Subtraction 1 0 02 dB I -1 79 dB I -3.96 dB 

The codebook constrained iterative enhancement algorithm was 
run on nine sentences totaling about 10 s of speech comprised of two 
male and two female speakers with a British and an Indian accent. 
The only parameter varied in the algorithm is the codebook size Ii. 
While designing the codebook using the splitting approach, optimum 
code books of size 128, 256, 512, and 1024 are all saved. The nine 

sentences are corrupted with various levels of noise corresponding to 
SNR = 0, 5, and 10 dB. 

A. White Noise Results 
Fig. 3 shows the performance of the new algonthm with regard 

to convergence. Interestingly, in about 75% of cases the algorithm 
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Input SNR=lO dB 
(SNR-seg-avg = -1.0 dB) 

Input SNR=O dB 
(SNR-seg-avg = -11 dB) 

1.51  dB 3.28 dB 

4.93 dB -2.12 dB 

CCIWF (CB=5 12) 

CCIWF (CB=256) 

12.44 dB 4.91 dB -2.71 dB 

12.48 dB 4.95 dB -2.79 dB 

‘CCIWF (CB=128) 

Spectral Subtraction. 

converged within three iterations and, in most cases, within five 
iterations. In addition, the number of iterations at convergence is 
found to be not related to speech type or input segmental SNR, 
unlike in the Hansen-Clements algorithm [2]. The enhancement 
performance of the new algorithm is shown in Fig. 4. It can be 
seen that the low level regions of the speech signal have very 
poor segmental SNR (<-lo dB), and high-level regions have good 
segmental SNR ( > l o  dB), averaging to the required SNR level. The 
improvement in SNR-seg is large at low level regions than at high 
level regions. The 1-2 dB improvement at high-level regions may not 
be perceptually significant. However, in the 0-5 dB SNR-seg range, 
an improvement of 2-3 dB contributes significantly to the perceptual 
quality. These regions usually correspond to the transitional parts of 
speech comprising consonants, hence, leading to improved intelligi- 
bility of enhanced speech. The low-level regions (<0 dB SNR-seg) 
correspond to regions of closure in stop consonants or weak fricatives. 
While there may not be much hope of estimating the correct signal 
spectrum in these regions, one can only expect improvement by way 
of attenuating the noise to the original signal level. This is evident 
from the theoretical performance limit shown in the figure, which is 
obtained using the clean speech model parameters a and C: in the 
Wiener filter. For speech segments in the 0-5 dB SNR-seg range, the 
slightly higher values of the theoretical limit than the performance 
obtained using the CCIWF algorithm indicates the further scope for 
improvement. 

Table I summarizes the relative performance of CCIWF over all 
the utterances compared with the spectral subtraction algorithm [ 11. 
Considering the improvement in SNR-seg-avg between input and 
output, we can see that the CCIWF algorithm provides about 6-dB 
improvement even for the 0-dB SNR signal. For the 10-dB case, the 
spectral subtraction method results in a reduction in SNR-seg-avg. 
The reduction in SNR-seg-avg is a good indicator of the lack of 
improvement in intelligibility using that method. The uniform 6-dB 
improvement in SNR- seg-avg using CCIWF is better compared 
with the 4-5-dB SNR enhancement results of the recent HMM- 
based algorithm [I 11. The HMM-based algorithm performed poorly 
for SNR less than 10 dB, whereas the performance of CCIWF is 
satisfactory even at 0 dB SNR. The performance of CCIWF for 
different code books indicates that the algorithm is not sensitive 
to the size of the codebook. However, the enhancement due to the 
1024 codebook is found to be perceptually better than that due to 
the 128 size codebook, particularly at low SNR. The SNR-seg-avg 
achieved using the unquantized clean speech LPC vector Wiener 
filtering (CSLWF) is also shown in the table. This sets the upper limit 

12.53 dB 4.91 dB -2.67 dB 

10.9 dB 1.61 dB -7.79 dB 

to the enhancement performance of the Wiener filter formulation. It 
can be seen that there is scope for improving the SNR-seg-avg by 
another 5 dB through better estimation of the LPC vector from the 
noisy data. In addition, perceptually, the CSLWF-enhanced speech 
shows very good intelligibility and listenability. 

B. Pink Noise Results 
The stationary white noise considered in the previous section is 

quite restrictive, and in many applications, the noise is nonwhite 
as well as nonstationary. To determine the effectiveness of CIWF 
algorithm for practical applications, Hansen and Clements [2] have 
tested for nonwhite noise of an aircraft. In this experiment, pink noise 
generated using an analog noise generator and digitized using an A/D 
converter is used. The power spectral density (psd) of noise is found 
to have a first-order AR characteristic. One speech sentence of about 
3.5 s from the previous set of nine test sentences is chosen. Pink noise 
is added at SNR levels of 0, 10, and 20 dB. A higher SNR value is 
included because pink noise is harder for enhancement than white 
noise. For the Wiener filter in CCIWF, the a priori computed psd of 
pink noise is used. For comparison, the noisy signal is also enhanced 
using the spectral subtraction method as well as the CSLWF method. 

Table I1 shows the average segmental SNR for the single sentence. 
In comparison with Table I, it can be seen that the overall performance 
of CCIWF is as good as that in the case of white noise corruption. 
The input-to-output improvement in segmental SNR is at least 6 
dB in all cases. Even at 0 dB SNR, there is an enhancement of 
about 8 dB, which is surprisingly better than the white noise case. As 
before, even a small codebook of size 128 provides a performance 
comparable with that of 1024. In contrast, the spectral subtraction 
method provides only about 2-3 dB improvement. The number of 
iterations for convergence of the CCIWF algorithm for the case of 
pink noise is only slightly more than that for white noise: about 85% 
of the frames within five iterations and 99% within eight iterations. 

Fig. 5 shows a comparison of the SNR-seg plots for the different 
enhancement methods, revealing some of the characteristics of the 
new algorithm, The clean signal power in Fig. 5(a) fluctuates more 
than 40 dB, and the SNR-seg of the input signal in Fig. 5(b) follows 
the same trend. The CCIWF output consistently enhances the mid- 
SNR regions, which helps to improve stop consonant perception. The 
low-SNR valleys also get enhanced, increasing the SNR-seg-avg. The 
spectral subtraction algorithm, instead, shows a moderate improve- 
ment, uniformly retaining the SNR profile of the input signal. In the 
case of the CSLWF method, all the low-SNR valleys are pulled up 
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Fig 5 
(b) Input noisy signal SNR-seg (c) Clean signal LPC Wiener filter output (d) 128 size CCIWF output. (e) Spectral subtraction output 

to a uniform level of 0 dB. This is an interesting case showing the 
upper limit to enhancement for very low SNR segments The 0-dB 
upper limit can be explained as shown in the Appendix. However, 
for mid-SNR and high-SNR segments, the performance is similar to 
that of the CCIWF algorithm. 

Input and output signal SNR-seg for the utterance “it never rains, but it pours in Bombay at least,” at 0 dB SNR (a) Clean signal segmental power 

VI. CONCLUSION 

Lack of proper convergence Criteria i s  not a limitation to the 
Lim and Oppenheim iterative Wiener filtering algonthm for speech 
enhancement. Proper constraints have to be applied to the parameter 
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estimation from the noisy signal. As shown in this correspondence, 
the clean speech derived codebook constrained approach is very 
effective. In addition, we have shown the enhancement performance 
limit using the clean speech parameters and accordingly, very low 
SNR segments can be improved only upto 0 dB SNR. Other segments 
with moderate and high SNR can only be slightly improved using 
further improvement in parameter estimation. 

APPENDIX 
The iterative Wiener filtering can be expressed as 

where 

and 
r o  1 

is estimated from $,-I U S , - l ( w )  (Fourier transform pair). In 
addition, Y(w) ts y = s + gd, where U; = 1 and SNR = u : / g 2 .  
For very low SNR, g 2  )> g z .  

Considering such a low SNR case and clean speech LPC vector 
Wiener filtering where iterations become redundant, we can write 

Defining the estimation error signal spectrum as E ( w )  = S ( w ) - S ( w )  
and substituting for Y ( w )  = S ( w )  + gD(w),  we get 

Now, let us consider the error signal power. Substituting for P , ( w )  
and P d ( w ) ,  we get 

where O(w) are the respective phase spectra. Further simplifying, we 
get 

The second term within the modulus is negligible because g >, 1 for 
the case of very low SNR considered here. Thus, E ( w ) I 2  z lS(w)1*, 
which implies a 0 dB segmental SNR of the output enhanced signal. 
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Modeling Acoustic Transitions in Speech by Modified 
Hidden Markov Models with State Duration and 

State Duration-Dependent Observation Probabilities 

Y. K. Park, C. K. Un, Fellow, ZEEE, and 0. W. Kwon 

Abstract-We propose a modified hidden Markov model (MHMM) that 
incorporates nonparametric state duration and state duration-dependent 
observation probabilities to reflect state transitions and to have accurate 
temporal structures in the HMM. 

In addition, to cope with the problem that results from the use of 
insufficient amount of training data, we propose to use the modified 
continuous density hidden Markov model (MCDHMM) with a different 
number of mixtures for the probabilities of state duration-independent 
and state duration-dependent observation. We show that this proposed 
method yields improvement in recognition accuracy in comparison with 
the conventional CDHMM. 

I INTRODUCTION 
It is well known that one major weakness of the conventional 

hidden Markov model (HMM) is its inaccurate modeling of state 
durations and state transitions [I]. The conventional HMM treats the 
spectral modeling and the duration modeling as being separate or 
loosely connected [l]. However, we note that transient portions, as 
well as steady portions of speech signal, play an important role in 

Manuscript received March 23, 1994, revised March 3, 1996 The associate 
editor coordinating the review of this paper and approving it for publication 
was Prof John H L Hansen 

The authors are with the Communication Research Laboratory, Department 
of Electrical Engineering, Korea Advanced Institute of Science and Tech- 
nology, 373- 1 Kusong-Dong, Yusong-Ku, Taejon 30.5701, Korea (e-mail. 
ckun@eekaist kist  ac kr) 

Publisher Item Identifier S 1063-6676(96)067 17-X. 

1063-6676/96$05.00 0 1996 IEEE 


