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Continuous Probabilistic
Transform for Voice Conversion
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Abstract—Voice conversion, as considered in this paper, is make use of prerecorded speech, such as voice mailboxes or
defined as modifying the speech signal of one speaker (sourcemore elaborate text-to-speech synthesizers based on acoustic
speaker) so that it sounds as if it had been pronounced by a it concatenation. In such cases, voice modification would

different speaker (target speaker). Our contribution includes the . _ . .
design of a new methodology for representing the relationship P& @ Simple and efficient way to create the desired variety

between two sets of spectral envelopes. The proposed methoddf voices while avoiding recording of different speakers [32].
is based on the use of a Gaussian mixture model of the sourceAnother reason why the individual voice characteristics are

speaker spectral envelopes. The conversion itself is representedsefy| is that they make it possible to identify the speaker.

by a continuous parametric function which takes into account Voice modification is thus an important aspect of ongoin
the probabilistic classification provided by the mixture model. P P going

The parameters of the conversion function are estimated by Projects in interpreted telephony. Such systems would make
least squares optimization on the training data. This conversion communication between speakers of different languages easier
method is implemented in the context of the HNM (harmonic py first recognizing the sentences uttered by each speaker, and
+ noise model) system, which allows high-quality modifications o transating and synthesizing them in a different language.

of speech signals. Compared to earlier methods based on vector hi lication it is i for th | £ th
quantization, the proposed conversion scheme results in a much I this application it is important for the naturainess of the

better match between the converted envelopes and the targetconversation that the characteristics of each speaker’s voice

envelopes. Evaluation by objective tests and formal listening tests are to be maintained through the whole process. For the same

shows that the proposed transform greatly improves the quality reason, voice conversion techniques would also be needed in
Svaigﬁtsuﬁgsgie%f élgﬁv?rgi\ginfnde;%%?h signals compared with _thg cpntext qf speaking aids for the gpeech impa_lired. Finally,
it is interesting to note that the voice conversion problem

is closely related to other familiar speech research topics

I. INTRODUCTION that involve speaker identity such as speaker adaptation or

EECH signals convey a wide range of informatiorspeaker recognition. The main difference between the latter
mong them, the meaning of the message being utteredgsearch topics and voice conversion is that in the case of
of prime importance. However, secondary information such ¥gice conversion, the final output is a speech signal targeted
speaker identity also plays an important part in oral commfgr a human listener.
nication. Voice modification techniques attempt to transform Previous studies in speaker recognition by humans indicate
the speech signals uttered by a given speaker so as to dfi@t voice individuality should be considered a consequence
the characteristics of his or her voice. As the psychoacoustitcombining several factors. Among these factors, supraseg-
correlates of speaker identity remain largely unknown, it imental speech characteristics such as the speaking rate, the
often convenient to specify the desired modifications of thgtch contour or the duration of the pauses have been shown
voice characteristics with reference to an existing speaker (tioecontribute greatly to speaker individuality [17], [12], [21],
so-called target speaker). This problem—how to modify tHd2]. In many cases, it also appears that specific characteristics
speech of one speaker so that it sounds as if it was uttereddbyhe perceived voice are influenced by the linguistic style of
another speaker—is generally knownvadce conversioffid2]. the speech [9], [17]. In the current state of our knowledge, the
In daily life, the individuality of voices is useful becauseprocessing of such features of speech by an automatic system
it enables us to differentiate between speakers. If all voicgsdifficult because high-level considerations are involved. In
sounded alike it would, for instance, be almost impossible farticular, the fact that both the meaning of the spoken mes-
follow a radio program involving different people. Voice modsage and the intention of the speaker have a strong influence
ification technology has many applications in all systems theh prosodic features clearly hinders their automatic processing
in cases where the text of the speech utterance is not fixed a
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the spectral envelopes [7], [14], [41]. It is generally admitted The method described in this paper is inspired by the
that the overall shape of the envelope together with the formanapping codebook approach and attempts to convert the whole
characteristics are the major speaker-identifying features of #mectral envelope without extracting specific acoustic features.
spectral envelope [15], [17], [23]. However, some uncertainfys in the original work of Abeet al, the present method
remains about the respective contributions of these acouststimates the conversion characteristics using utterances of
features to the individuality of the speaker’s voice. Recettte source and target speakers that have been time aligned by
studies suggest that some effective speaker-specific featyraer application of a dynamic time warping (DTW) procedure.
can also be extracted directly from the speech waveform lim order to increase the robustness of the conversion, the
the time domain [35]. source speaker space is described by a continuous probabil-
In this paper, we focus on the control of the spectral envidy density corresponding to a parametric Gaussian mixture
lope characteristics at the segmental level. More specificaliypdel (GMM). Moreover, the transformation function itself
our aim is to represent by an appropriate model, trainésl “continuous” in the sense that it does not rely on an
from experimental data, the statistical relations between thederlying discrete set of target envelopes. The proposed
spectral envelopes of two different speakers uttering the sanmversion function makes use of the complete description of
text. To differentiate this last problem from the general voiceach component of the GMM, considering these components
conversion task, which would also necessitate a proper analyasscomplete clusters rather than as single vectors, as is the case
and control of the prosodic characteristics, we will refer to the VQ approaches. The parameters of the conversion function
control of the spectral envelope as spectral conversion.  are determined by minimization of the total quadratic spectral
One of the earliest approaches to the spectral conversititortion between the converted envelopes and the target
problem is the mapping codebook method of Abt al. envelopes. The final step is called “incremental learning.” It
[1], [2], which was originally introduced by Shikanet al. is based on the simple observation that a noticeable part of
for speaker adaptation [43]. In this approach, a clusteritige residual mismatch between the transformed envelopes and
procedure—vector quantization (VQ) is applied to the spectithle corresponding target envelopes can be attributed to local
parameters of both the source and the target speakers. €trers in the time alignment path. Some errors in the DTW
two resulting VQ codebooks are used to obtain a mappipgocedure are unavoidable since intrinsic spectral differences
codebook whose entries represent the transformed spedwetiveen the two speakers are mixed with spectral differences
vectors corresponding to the centroids of the source speallge the temporal misalignment. The time alignment path can
codebook. The main shortcoming of this method is the fatttus be improved by reapplying the DTW procedure between
that the parameter space of the converted envelope is limitbe converted envelopes and the target envelopes.
to a discrete set of envelopes. In practice, this restrictionThe spectral conversion method is tested on speech signals
of the variability of the speech envelopes causes a severwlyzed by the harmonie noise model system (HNM) [24],
drop in the quality of the converted speech signal. SevefdH], [46]. The HNM system performs a time-varying har-
variations of this basic scheme have been investigated mmonic plus (modulated) noise decomposition which allows for
order to overcome this limitation, including the use of fuzzgpectral transformations and for time and pitch modifications.
VQ [23]. Most authors agree that the mapping codebodke spectral envelope is determined from the parameters of
approach, although it provides voice conversion effect whi¢the HNM model by application of the regularized discrete cep-
is sometimes impressive, is plagued by its poor quality asttum method [3], [4], using a warped Bark frequency scale.
its lack of robustness [29]. The spectral interpolation aghis technique makes it possible to obtain a representation
proach described in [19] and [20] solves these problem$ the signal spectrum that is accurate enough to allow a
by interpolating between the spectra of several speakersrésynthesis of transparent quality with a number of cepstral
determine the converted spectrum. However, the practical useefficients compatible with the requirements of statistical
of this method is limited by the fact that it requires thdraining. Objective tests and formal listening tests were carried
prerecording by a number of speakers of all the sentenesg and the results show that using the proposed conversion
that need to be converted. Other recent works suggest thataction high-quality voice conversion can be obtained.
possible way to improve the quality of the converted speechThe paper is organized as follows. Fundamentals of the
consists of modifying only some specific aspects of the spectf@ussian mixture model are reviewed in the first part of
envelope, such as the location of its formants [28], [29], [48Rection II. The rest of Section Il is devoted to describing the
Spectral conversion technigues have been also proposedc@nversion function and to the optimization of its parameters.
speaker/environment adaptation that map speech featuressegtion Il briefly describes the analysis/synthesis system used
the same speaker between clean and noisy acoustic spdgesodify the speech signal. Section IV presents the experi-
[16], [30], [33]. In [30], noisy references have been simulatethental results obtained for a conversion task between two
by transforming clean utterances using the linear multipteale speakers as well as results from a formal listening test to
regression (LMR) algorithm with one translation vector andemonstrate the effectiveness of the proposed voice conversion
one rotation matrix for all of the clean acoustic space. In [33chnique.
optimum probabilistic filtering has been used to map noisy
speech features to clean features; the clean feature space is
guantized using the Lloyd algorithm [26] and a conditional In this section, we consider the learning of the spectral
error is minimizedin each VQ region conversion function from experimental data. We consider that

Il. TRAINING OF THE CONVERSION FUNCTION
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the available data consists of two sets of paired spectddscribed by its center (mean vecjo) as well as by a char-
vectorsx; andy, corresponding, respectively, to the spectralcteristic spreading around the center of the class (covariance
envelopes of the source and the target speakers. Each spentedtix 3;). The mixture weightg«; } represent the statistical
vector x; (or y,) is a p-dimensional vector of discrete mel-frequency of each class in the observations. The conditional
frequency cepstrum coefficients (MFCC's) (see Section lIfrobability that a given observation vectarbelongs to the
that represent the spectral envelope. The two sets of vectacsustic clas®’; of the GMM is easily derived from (1) by
{x,t = 1,---,n} and {y;,t = 1,---,n} have the same direct application of Bayes’ rule [8] as
lengthn and are supposed to be time-aligned. What is desired QN (x; i, B
. . i s iy 23i)
is a functionF() such that the transformed envelogéx,) PCi | x) = == -
best matches the target envelope for all envelopes in the 2= N (% 1, Bj)
learning set(t = 1,---,n). Substituting (2) in (3) yields the classic expression
The mapping codebook approach of Adeal. reduces this
problem to a lower dimensional problem by specifying thg(ci | %)
conversion function for a reduced set of codebook vectors || 7 2exp [—5(x— )7 (x — )]
obtained by applying a VQ prqcedure to _thf_e source vectqrs: E;":l |2~ 2exp[-L(x — uj)ngfl(x — )] (4)
{x:}. We propose to use a refined description of the statis- .
tical distribution of the source vectors under the form of &he parameters of the GMM are estimated from the set of

continuous probability distribution provided by a GMM. ~ source vectorgx, } using the expectation-maximization (EM)
algorithm [6]. The EM algorithm iteratively increases the like-

A. Gaussian Mixture Model Iihood_of the model parameters by_successive maximizatiqns
. . . ) of an intermediate quantity which, in the case of a GMM, is
The GMM is a classic parametric model used in many,ire\ defined by the conditional probabilities of (4). The

pattern recognition techniques [8] whose efficiency for texi=yy reestimation formulas in the case of Gaussian mixtures
independent speaker recognition has been illustrated by rec be found in [10] or [39]

studies [39], [40], [47]. The GMM assumes that the probability A, jmyortant implementation issue associated with the EM

distribution of the observed parameters takes the followingyiihm s its initialization. The EM algorithm is only guar-
parametric form [8], [39] anteed to converge toward a stationary point of the likelihood

™ function [6], [49]. In practice, the initialization of the EM
p(x) = aiN(x; i, i) (1)  algorithm affects its convergence rate but can also modify the
i=1 final estimate [37]. For GMM speaker models with diagonal
where N(x; i1, X)) denotes thep-dimensional normal distri- covariance matrices, it was found in [38], and [39] that the
bution with mean vectop and covariance matri: defined initialization of the EM algorithm only has a small influence.
by In the present work, the GMM parameters are initialized by
use of a standard binary splitting VQ procedure [36]: the
N(xp,2) = weight, mean vector and covariance matrix of each component
1 -1/2 L Tl are estimated independently using the clusters obtained by
(27r)P/2|2| eXp{ 2(x W ET - () VQ of the source vectorgx.}. Another concern for the
In (1) the termsq; are normalized positive scalar Weighté'mplementation of the EM algorithm is the problem of small-

(S @i = 1 anda; > 0). A fundamental assumption of thevariance components. It is easily verified that the likelihood
=1t g functions do not converge when the norm of any one of the

Iepvariance matrices approaches zero [8]. This means that the

model suited to cases where the sequential aspect of pigsence of a sufficient number of quasiidentical envelopes,
observations (in our case the time ind8xs believed to be can destroy the convergence of the whole model. The methods

irrelevant. The GMM can thus be thought of as a simplifieHsed to counter this effect are analogous to those used in [39].

hidden Markov model (HMM) with Gaussian state-conditional _hen ulsmg _GMM,S with diagonal covariance dmatrlt():es, the
distributions [36] in which all states are connected (ergod agonal variance components are constrained to be greater
‘%an minimal thresholds. The values of these thresholds are

(3)

model) and all the transition probabilities leading to a give

state are equal. In our case, the choice of the GMM isjustifi& osen 50 times smaller than the diagonal elements of the

because we are interested in segmental conversion functiGAYarance matrix of the whole data. When working with full

for which the converted envelope at time incteanly depends covariance matrices, a constant perturbation is systematically
on the source envelope, for the same time index added to all the diagonal elements after each re-estimation

Our primary motivation for using the GMM is its ability to of the covariances matrices. The value of this perturbation is

provide a “soft classification” between the several componerﬁgual to the smallest of the thresholds used in the diagonal

of the mixture density. The term “component” refers to th&3SE:
unimodal Gaussian distributiond/(x; u;, 3;). When used
with speech spectra, the components of the GMM modgl
acoustic classes which represent, to some extent, the varioulh what follows we assume that a Gaussian mixture model
phonetic events [39]. In the GMM, each acoustic class {s, p;, X; for i =,---,m) was fitted to the source vectors

Conversion Function
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{x+,t =1,---,n}. Recall that the GMM also defines underlyhad been done in each VQ region. We now distinguish three
ing classes that correspond to each Gaussian component. paicular types of conversion functions derived from (5).

fit between a source vecta;; and each class can be measured Fyll Conversion: This first type simply corresponds to the
in a probabilistic way by the computation of the conditional general case of (5) where the parameters of the GMM and

probabilities given by (4). the parameters of the conversion function are unconstrained.
We now turn to the problem of finding a conversion function
F() that transforms each vector of the source data{se}  Diagonal Conversion:The use of GMM’s with diagonal
into its counterpart in the target data et }. The following  covariance matrices is a common practice that notably
parametric form is assumed for the conversion functfa: reduces the computational load associated with this kind
m of model [39], [47]. In the case of cepstral parameters, this
F(xy) = ZP(Ci | x¢)[vi + L2 (x, - pi)l.  (5) modification is believed to be appropriate since the corre-
i=1 lation between distinct cepstral coefficients is very small

[27], [36]. In our case, the computational load associated
with the training of the conversion function is reduced
when both the covariance matrices of the GM®} and

the conversion matriceB; are constrained to be diagonal.
This simplification is due to the fact that wh&h andI’; are
diagonal, it is easily seen from (5) that the total conversion
error can be separated along each coordinate of the vectors

The conversion functionF is entirely defined by thep-

dimensional vectors/; and thep x p matricesI’;, for ¢ =

1,---,m (Wherem is the number of mixture components).
This form was selected by analogy with the result obtained

in the limit-case where the GMM is reduced to a single class.

Indeed, if it is assumed that the source vectggsfollow

a Gaussian distributiodV(x; i, 3) and that the source and

target vectors are jointly Gaussian, the minimum mean squareas

error (MMSE) estimate of the target vector is given by [22], [5] n

Ely |x=x]=v+IZ7}(x, - p) ©) L

t

S u™ = Fla)®|? )

1 k=1

where E[] denotes expectation, andandI" are, respectively,

where the superscrigtt) denotes theith coordinate of a
the mean target vector

vector. The optimization problem is thus split ingoinde-

v = E[y] pendent scalar optimization problems. The term diagonal
conversion refers to the case where the matriEeandI’;

and the cross-covariance matrix of the source and targetre diagonal.

vectors

. _ AT VQ-Type Conversiontf we omit the correction term that
I'=Elly -v)(x-n)] depends on the difference between the source vegtand

where the superscrigf’ denotes transposition. In the jointly the mean of the GMM componepy; in (5), the conversion

Gaussian case, the optimal conversion function (in the mmsdunction is reduced to

sense) is thus a simple linear transformation given by (6). It m

was decided to extend this result to th_e GMM _b_y weighting Flx) = ZP(Ci | %) 9)

terms that are analogous to the Gaussian conditional expecta- )

tion [terms between brackets in (5)]. These weighting terms

were chosen to be the conditional probabilities that the vectorThis last form of the conversion function is of the type

x; belongs to the different classés Although the conversion used by Abeet al. in the mapping codebook approach in

function of (5) is no longer supported by a proper statistical the sense that the variability of the transformed spectral

model of the source and target vectors, it is useful to keepenvelope is strongly restricted. However, the weighting of

in mind the interpretation of the parametersandI' in the the conversion vectors; by the conditional probabilities

uni-Gaussian case. provides a natural way of interpolating the converted spec-
The parameters of the conversion function are computedtral envelopes: The envelopes are restricted to the various

by least squares optimization on the learning data so as tanterpolation paths between the discrete set of vecigrs

minimize the total squared conversion error rather than just to the vectorg themselves. This conversion
" function will be referred to as VQ-type conversion and

€= Z [y = f(xt)HQ' ©) will be used for comparison purposes later in this paper.

=1 Note that as a first consequence of the reduced variability

of the converted envelopes, the VQ-type conversion is not

As the spectral parameters used in this paper are basically,nsnarent in the case where the source and target envelopes
cepstral coefficients (see Section Iid)¢an also be interpreted are identical

as the total quadratic log-spectral distortion between the con-

verted and the target envelopes. Note that the total squared . = . ) )

error is minimized over all of the acoustic space using tife: OPtimization of the Conversion Function

hypothesis of the GMM. This is in contrast to the approach For the sake of clarity, we will simply denote hy(z) the
used in [33] where the minimization of the conditional erroconditional probabilityP(C; | x;) thatx; belongs to clas§,;.
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1) Full Conversion: Due to the linear nature of the con-The matrix that is to be inverted [leftmost matrix in (15)]
version function given by (5), the least-squares optimizatios symmetric and positive definite so that the normal equa-
of its parameters is equivalent to the solution of the followinions can be solved using the Cholesky decomposition. Note

set of overdetermined linear equations however that the computational load as well as the storage
m requirements associated with the numerical solution of (15)
Ve :Zpt(i) [Vi‘i‘rixi_l(xt_ﬂi)] (10) should not be underestimated since the dimension of the

] leftmost matrix in (15) is(m + m x p)%. For instance, if

. . - . the dimension of th ral parameterspi n
forall t =(1,---,n). It is easily verified that these equanonst, e dimension of the spect al para ete PI= 29 and a

: ) . ) m = 128 components GMM is used, this matrix contains
can be gathered into a single matrix equation as

approximately 7.2x 10° elements. As the number of training

y=P.-v+A.-T vectorsn is in general several orders of magnitude greater than
v the numbern of GMM components, the main computational
— [P : A} - (11) load consists in computing the leftmost matrix of (15) and
' r particularly the block AT A which necessitategm(pm +

. ) ) 1)/2 x » multiplications. Once the matrix has been computed,
wherey is an x p matrix that contains the target spectrajts inversion represents a negligible cost since it consists of

vectors ordered in the following way: (m 4+ pm)® /6 multiplications [34]. For instance, with = 20,
9T m = 128 andn =2.0 x10* (see Section 1V) the computation
y= [yl:---:yn} of the block ATA alone is approximately 20 times more

costly than the inversion of the complete matrix.
P is an x m matrix that features the conditional probabilities 2) Diagonal Conversion:As was noted previously, the op-

pe(7) timization of the conversion function is simplified in the case
where both the covariance matrices of the GM#4 and the
pi1) pu(2) ... pu(m) conversion matrice’; are diagonal (diagonal conversion)
1) p22) ... pa(m) | matricest; are diagor gona’
P p2. . . ] (12) More precisely, it is possible in this case to split the optimiza-
: : : tion problem intop independent scalar minimization problems
(1) pn(2) oo pa(m)d (m) by considering each coordinatg(k = 1, - - -, p) of the vectors

. _ .. separately. Théth coordinate of (10) can be written as
A is an x pm matrix that depends on the conditional

probabilities, the source vectors and the parameters of the N m o . . N
GMM which is defined by blocks as (13), shown at the bottom 3" = Zpt(i) [fyf )(a:§ J—_— ))/ai( )4 )] (16)
of the page, and the two matrices i=1

I T where the superscriptk) denotes thekth coordinate (for
v e i ) do® and ™ are thekth
(mxp) instancey, " for vector y;), ando;” and~;"™" are the
and diagonal elements of matricex; and I';. Proceeding as
o T before yields a matrix formulation of the optimal value of
= |:I‘1:I‘2:---:I‘nl:| the parameters analogous to (14)
((mxp)xp)
are the unknown parameters of the conversion function. The| PTp @ PTA® ) PTy®)
form of (11) is that of a standard least-squares problem whose| : A R o
. . . . e k k k
solution is given by the normal equations [25], [22] ABTp 1 AWTA® ~ (k) AW yk)
PT [v ] [PT 17)
| p s All- || =]y @4 inwhichthe matrixA®) is defined as (18), shown at the
AT | |AT bottom of the next pagey*) denotes the vector
or
. 1 - - _ k) _ [, T
PP | PTA v PTy vy =[P (19)
: el = (15) o o
T _ T r ATy and the matrixP is as defined in (12). Moreover, as we only
AP ATAl - B consider thekth coordinate, the unknown parameters of the
(D6~ ) S p0 - )y pi(m)(a — ) E5
A - |P2Dx —lul)TEfl p2(2)(x2 —.M2)T§32_1 o p2(m)(x2 —-an)TEle (13)
(D = ) ET P20 — p2)T BT pa(m) (% = 1) TERE | )
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conversion function are reduced in (17) to the two vectors on the voiced portions of the signal. In voiced frames, the

&) _ 1) )1 T amplitudes and the phases of the sinusoids composing the
v = [y ](mxl) harmonic part are estimated by minimizing a weighted time-
and domain least-squares criterion. This time-domain technique
k) — (&) LT combined with the relatively short duration of the analysis
’Y [,71 9 77771 ](rnxl)'

frame in voiced parts of the signal (two pitch periods) provides
Note that (17) only yields the values of one coordinate @ very good match between the harmonic part and the speech
the conversion parameters (vectoss and diagonal elementssignal. The noise part is modeled by an all-pole filter estimated
of matricesI';). Thus, (17) should thus be applied for eacfrom 40 ms of signal located around the center of the analysis
coordinatek = 1,-.-,p where p is the dimension of the frame.
parameter space. Note that all the matrices featured in théThe synthesis is also performed in a pitch-synchronous way.
block-defined matrix on the left-hand part of (17) will need’he harmonic part is synthesized directly in the time-domain
to be recomputed from one coordinate to the next excegt a sum of harmonics. The fundamental frequency of this
PTP which only involves the scalar terms(4) (conditional harmonic signal is constant over the duration of the synthesis
probability associated with vector; and clas<;). Note that frame, whereas the amplitudes and phases of the harmonics are
as was the case for full conversion, the main computatioriaearly interpolated between two successive frames. The noise
load consists of computing the leftmost matrix of (17). Thpart is obtained by filtering a unit-variance white Gaussian
computation of this matrix implie§m(m + 1) + m?) x n noise through an all-pole filter. If the frame is voiced, the
multiplications. Even if we consider that the entire computanoise part is filtered by a highpass filter with cutoff frequency
tion has to be redong times, we end up with a number ofequal to the maximum voiced frequency. In voiced portions
operations that is divided by a factgy4 compared to the of the signal, the noise part is modulated by a triangular-
case of full conversion. like time-domain envelope synchronized with the pitch period.
3) VQ-Type ConversionThe optimization of the conver- This modulation of the noise part was shown to be necessary
sion function in the case of VQ-type conversion is easilyn order to preserve the naturalness of some speech sounds,
obtained as a special case of (17) by omitting the diagomalch as voiced fricatives. Thanks to the pitch-synchronous
matrix elementsI'*). The kth coordinate of the unknown scheme of HNM, time-scale and pitch-scale modifications are
conversion vectorg; is given by quite straightforward [46]. The main part of the modification
procedure consists in computing the positions of the synthesis

v = (PTP)'PTy®. (20)  frames given the positions of the analysis frames and the
desired pitch and time scale modifications. A continuous model
1. I MPLEMENTATION OF THE CONVERSION SYSTEM of the spectral envelope is estimated from the HNM parameters
and this model is used to recompute the amplitude of the
A. Brief Overview of the AnalySiS/SyntheSiS Model harmonics in the case of p|tch modifications.

The voice conversion system is based on the use of the
harmonic+ noise model (HNM) which allows high-quality
modifications of speech signals. HNM is only briefly reviewe: Spectral Parameters
in this section since a detailed presentation of this model isPreliminary voice conversion tests conducted with the HNM
available in [24], [44], and [46]. system led us to conclude that the conversion of the noise part
HNM performs a pitch-synchronous harmonie noise is a rather delicate task. In practice, the spectral envelopes
decomposition of the speech signal. For voiced sounds, #&sociated with the noise part exhibit large variations and
speech spectrum is divided into two bands delimited by tltee corresponding GMM components are characterized by
so-called maximum voiced frequency. Both the pitch of thiarge variances and significant overlap. In these conditions,
signal and the maximum voiced frequency are determinéite conversion function obtained is not very effective except
beforehand using a time-domain pitch detector [45]. The lowtar the general features of the spectrum such as its average
band of the spectrum (below the maximum voiced frequencgigcrease with frequency. Moreover, the contribution of the
is represented solely by harmonically related sine waves. Theise part to the individuality of the speaker was found to be
upper band is modeled as a noise component modulated byyafar less important than that of the harmonic part.
time-domain amplitude envelope. HNM is a pitch-synchronous In this paper, the conversion methodology presented in
system where both the position and the duration of th&ection Il is applied to the transformation of the harmonic
analysis/synthesis frames are set at a pitch synchronous g of the signal. As a consequence, only the voiced frames

p1<1>(x§’;> —uﬁ’;))/ai’;) pi(2) x%’j —ué’j /aé’j o pu(m) x%’j —uﬁ?)/aﬁ?
po(1) (@8 — 1) o™ pa2) (@) — SN o8 pa(m) (@) — i) fo

Ak = (18)

) : S : k : k k
o (D) (@ = 1) /o™ pa@) (@l = 1) 108 pa(m) (@8 = 1) 0 ] ey
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Fig. 1. Block diagram of the learning procedure.

are used for training the conversion function. As a furth€R?2) is equivalent to the solution of a linear systen{o#- 1)
simplification the maximum voiced frequency was fixed at equations [4]. The cepstral parameters obtained are similar
constant value of 4 kHz. The conversion of the noise partts the usual MFCC’s [36] except for the fact that they are
simply achieved by the use of two different correction filterebtained from the minimization of a discrete set of frequency
(one for voiced frames and one for unvoiced frames). Thesenstraints. Such parameters were originally mentioned in
correction filters, implemented as sixth-order all-pole filter§13] as discrete MFCC’'sand are known to provide a better
model the difference between the average noise spectra of ¢neelope fit (at the specified frequency points) than LPC-based
source and target speaker. The distinction between voiced amethods [3].
unvoiced frames appears to be necessary because the averagke synthetic signals obtained by use of the envelope rep-
characteristics of the noise part are very different in the twesentation or by a direct synthesis from the HNM parameters
cases. are generally indistinguishable provided that the oydef the

The aim of the spectral conversion function is thus toepstrum is greater than 16. For lower values of the cepstrum
transform the harmonic part of speech which is supposedder, some smoothing of the envelope occurs, in particular
to extend between 0 and 4 kHz (for voiced frames). Tha the high-frequency range. In order to maintain an accurate
spectral envelope corresponding to the voiced part of speecléscription of the characteristics of the spectral envelope, an
computed from the amplitudes of the harmonics by the discreieder of p = 20 was used throughout our voice conversion
regularized cepstrum method using a warped frequency scakperiments. In the present study, the first cepstrum coefficient
[3], [4]. The main steps of the envelope estimation procedueg was omitted as a form of energy normalization. In practice,

are as follows. it was found that it is not advisable to includgin the training
1) The amplitudes of the harmonies, (k = 1,..-,L) Parameters because it biases the classification achieved by the
determined by the HNM analysis are expressed in tgMM. The spectral parameters are thudimensional vectors
log domain. which contain the discrete MFCC coefficients ¢, - - -, ¢p.

2) The frequencies of the harmonics are converted to a Bark
frequency scale using the analytical formulas reportetl |earning Procedure

in [50]. The obtained valuesy;, (k = 1,---,L) are : , . -
normalized in order to ensure that the upper limit of The complete learning procedure is depicted in Fig. 1. Note

that for the training of the conversion function, the source and
the bar_ld (4 kHz) corresponds to_a valuelg on the target signals are analyzed with a fixed 10 ms frame rate in
normalized warped frequency axis. . : .
. order to allow time-alignment by the DTW algorithm. Recall
3) The real cepstrum parametets (i = 1,---,p) that : L
represent the envelops, b that we only consider the time-intervals where the frames
P (w) by corresponding to both signals are marked as voiced.

P The optimization of the conversion function (rightmost
log|Se(w)| = co+2 > _ ¢i cos(wi) (21) block in Fig. 1) makes use of the time-aligned spectral en-
=1 velopes{x;} (source) and{y.} (target) as well as the pa-

are obtained by minimizing the following least squaregameters of the GMM as estimated by the EM algorithm.
criterion in the log-spectral domain Once a conversion function has been obtained, the process
L can be iterated by reestimating the time-alignment between
) 2 the converted envelopes and the target envelopes. lterative
kz_:l Mogfar) = Se(w)lI” + Rl5e(w)] (22) procedures have also been used in the literature for speaker-

adaptive training in continuous speech recognition [11]. These

where R[] is a penalty functional which only dependspptional “incremental learning” steps are only intended to

on the shape of the envelope (and not on the constraifé$ine the time alignment path. The GMM estimation and the

ar)- least squares (LS) optimization are of course always performed
The form of R[] is chosen so as to penalizes rapid variationssing the source envelopes (and not the converted envelopes).
in the spectral envelop€.(w) [4]. The use of a penalty func- However, the LS optimization has to be entirely recomputed
tional guarantees that the envelope obtained is well-behaumtause the two sets of envelopgs,} (source) and{y:}
independent of any frequency constraints. The minimization ofiange with the time-alignment.
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Fig. 2. Block diagram of the voice conversion system (not including the training of the spectral conversion furtgticanalysis time-instantst?:
synthesis time-instants.

D. Voice Conversion System A. Obijective Test

Once the spectral conversion function has been estimatedyve studied the three types of conversion functions in-
the voice transformation is performed as indicated in Fig. #oduced in Section Il (full, diagonal and VQ-type) as well
The input of the system consists of speech signals samptel the original VQ-mapping approach of Alst al. [1].
at 16 kHz. Note that for voice transformation, the HNMrig. 3(b) presents the average rms log-spectral distortion as
analysis is performed pitch-synchronously because this madeasured on the test corpus for these four methods as a
enables higher quality time-scale and pitch-scale modificamction of the number of GMM components (or number
tions [46]. These modifications are PSOLA-like in that thegf centroids in the case of VQ-mapping). The distortion
mostly consist in recomputing the pitch-synchronous synthesias normalized by the initial average distortion between the
instants [31]. However, an important difference with the usuako speakers. The rightmost points on Fig. 3(b) (12el)
nonparametric TD-PSOLA (time domain pitch-synchronousorrespond to the use of a 128 GMM component with one
overlap-add) processing is that the amplitude of the harmoniteration of the incremental learning steps (by refinement
are computed explicitly using the converted spectral envelope the time-alignment path). Fig. 3(a) shows the distortion
(in the 0—4 kHz band and for voiced frames). The noise partligtweenthe converted and the source paramet@rsrmalized
modified with two different fixed filters (so-called correctiveas previously).
filters) depending on whether the frame is voiced or not. The rms log-spectral distortion is computed using the

In the present system, we do not consider the problem wérped frequency scale as
matching the prosodic characteristics of both speakers. As a
consequence, the prosodic modifications performed are merely ) L )
intended to match the average fundamental frequency and irns = 2Z[cl(k) — e2(k)]
articulation rhythm of both speakers. However, in (the rather k=1
artificial) case where the same sentence uttered by the two _/ llogS1 (w(w)) — log Sz (w(w))]

3

= 20w (23)

speakers is available, the HNM system can also be used to —x 27

impose the pitch and time contours of the target speaker on ) ] .
the converted speech signals. wherew() is the frequency warping function. In our casé)

represent a normalized Hz to Bark frequency scale conversion.
The obtained warped distortion is generally believed to be
more perceptually relevant [36]. Note that the cepstral coeffi-

IV. RESULTS AND DISCUSSION cient ¢(0) is omitted in (23) because it is not affected by the

Our conversion methodology was tested on a conversiGANversion f_unctlon. ) ) _
task between two male voices using a large amount of training! '€ Variations of the distortion curves of Fig. 3 may appear
data. The signal data base was provided by the Centre Natio@@!l: Put it is necessary to keep in mind the following.
d’Etudes des &lecommunications (CNET) and consisted of 1) They pertain to time-aligned signal frames. In the present
short phonetic units uttered in context by the two speakers. case, the initial average rms log-spectral distortion be-
This data base covers all the diphones of the French language tween the source and target envelopes is 8.2 dB. So that a
and corresponds to approximately 20 000 training vectors (3.5 4 dB reduction of the distortion is indeed an appreciable
min of speech) once the unvoiced frames have been discarded. difference.
An independent corpus of about one minute of voiced speect?) The rms distortion is generally much lower than what
signals was used to evaluate the performances of the proposed We would expect by visual inspection of the envelopes:
method. Note that the training data is made of approximately ~ for example the rms log-spectral distortion between the
1500 independent signal portions with an average duration of dotted and the solid line envelopes of Fig. 4 is only 8.4
150 ms. Each of these signal portions corresponding to the two ~ dB.
speakers were aligned independently using a DTW procedurélhe most striking feature of Fig. 3 is the fact that with the
with relaxed endpoint constraints [36]. diagonal or the full conversion method the distortion between
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Fig. 3. Average warped rms log-spectral distortion for the different types of frequency (kHz)

conversion as a function of the number of GMM components. The 0 dB value (b)
refers to the initial distortion between the source and target envelopes. The ) . ) )
label 128 corresponds to the case where the time-alignment path is refingd: 4. Envelope conversion for a 128 GMM (a) with diagonal conversion
a posteriori (incremental learning). (a) Distortion between the converted afd (b) with full conversion. Dotted line: source envelope. Dashed line:
the source envelopes. (b) Distortion between the converted and the tafg¥tverted envelope. Solid line: target envelope.
envelopes. Dash-dot line: VQ-mapping. Dashed line: VQ-type conversion.
Dotted line: diagonal conversion. Solid line: full conversion.

20), for full conversion it ism x (p+p?) (420 x m). So that a

m/8 component full conversion involves®2 x m parameters
the source and the converted envelopes steadily increasempared tol0 x m parameters for the diagonal conversion
with the number of GMM components [solid line and dottediith an m components GMM. It is expected, however, that
line curves on Fig. 3(a)]. This is in total contrast with théull conversion should be much more effective than diagonal
behavior for VQ-based conversion, be it VQ-mapping (dasbenversion in cases where the spectral vectors contain strongly
dot line) or VQ-type conversion (dotted line), where theorrelated coefficients.
distortion between the source and the converted envelopeIhe comparison of the distortions associated with the two
starts from a very high value and decreases slowly as tlightmost points of each of the curves of Fig. 3(b) (labels
number of centroids increases. In VQ-based conversion, tt28 and 128) confirms the effictiveness of an additional
spectral transformation induces unwanted spectral distortimmremental learning step. We observed that further iterations
due to the discretization of the parameters space. The only wiigi not lead to significant improvements. However, it is
to improve this aspect in VQ-based method is by increasing timeportant to consider that in our case the time-alignment errors
number of centroids. In this respect, the VQ-style conversiame limited by the fact that DTW is only applied to short
does not seem to perform any better than the standard V&nal portions (150 ms on average) that have been manually
mapping method. This last observation indicates that tked-pointed.
limitations of VQ-based approaches can not be overcome byFig. 4(a) displays an example of envelope conversion with
mere interpolation between the transformed centroids. Finallliagonal conversion and Fig 4(b) displays an example of
the observed difference between the behaviors of the V@avelope conversion with full type conversion. In this exam-
based method and diagonal or full conversion method sh@le, the warped rms log-spectral distortion is, respectively,
the importance of the correction term in (5) that depends &4 dB between the source (dotted line) and target (solid
(%t — fhs)- line) envelopes, 4.8 dB between the target envelope and

When looking at Fig. 3(b), it is clear that for a fixed numbethe envelope converted by diagonal conversion [dashed line

of GMM components, it is full conversion (solid line) thaton Fig. 4(a)], and 2.2 dB between the target envelope and
provides the largest spectral distortion reduction (betweéme envelope converted by full conversion [dashed line on
converted and target envelopes). However, we note that fig. 4(b)]. Note that the envelope is represented using a linear
performances of diagonal conversion usingracomponent frequency scale. The influence of the warped frequency scale
GMM is comparable to that of full conversion usingna/8 used for the cepstral parameters can be observed by noting
component GMM. This observation was verified for valuethat the spectral resolution of the envelope is best in the
of m up to 1024 (the highest value @& that was tested in low-frequency range (below 1.5 kHz), which is particularly
the case of diagonal conversion). If we think in terms of thepparent for the source envelope (dotted line).
total number of parameters used for the conversion function,Fig. 5 presents the frame rms log spectral distortion mea-
diagonal and full conversion do not appear to be very differerstured for one second of natural speech. As before, the 0 dB
For diagonal conversion the total number of parameters\ialue refers to the initial average distortion between the source
m X 2p (or 40 x m in our case since the dimensipris set to and target envelopes. In Fig. 5(a) which corresponds to the use
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of VQ-mapping, it is observed that the reduction of the log
spectral distortion by the conversion is very non uniform: The
shapes of the distortion curves before (dash-dot line) and aftera| - | - b
(solid line) conversion are rather different. The VQ-mapping
makes it possible to achieve an average distortion reduction’|”
of 3.9 dB but the distortion after conversion [solid line curve .
on Fig. 5(a)] frequently presents “spikes” where the distortion T ss M2 M1 al ST
reduction is much lower. In contrast, Fig. 5(b) shows that the Fig. 7. Opinion test.
full conversion provides a more regular reduction of the log
spectral distortion. With full conversion, the average distortion
reduction is 4.9 dB and the reduction is almost always greatgjeech by using 64 GMM (always using the full conversion
than 2 dB. approach). A and B were either the target or the source
speaker. Speakers A and B uttered the same sentence which, in
general, was different from the sentence uttered by X. Subjects
were asked to select either A or B as being most similar to
The quality of the proposed conversion method was algo Table | summarizes the results from this test giving the
assessed during formal listening tests on sentences uttgpetcentage of correct answers. A correct answer means that
by the source and the target speakers. In order to evaludite converted/modified speaker was recognized as the target
only the spectral conversion aspect and thus demonstratégaker. This table shows that when we modified only the
the efficiency of the proposed method for modifying spectrarosody of the source speaker the identity of the speaker was
envelopes, the prosody of the source speaker has been alte@dperceived as changed. However, when we applied the
to match as closely as possible the prosody of the targenversion function using 16 GMM the percentage of correct
speaker. Prosodic modifications were carried out using HNMnswers increase notably. This continues to increase when the
Then, the conversion function was applied on the modifiglumber of components is increased to 64. The last column of
speech, using full conversion for a 16 GMM and a 64 GMMhe Table | refers to the score of the correct answers using 64
The evaluation has been carried out using three continuou€iiM and when X, A and B utter the same sentence. The task
uttered sentences of about 4 s duration each. Three kindobthe listeners was easier in this case and this is reflected in
listening tests have been designed; XAB test, preference tst higher score.
and opinion test. Twenty listeners participated in each of these?) Preference TestTo compare the quality of the con-
experiments. verted signal using different numbers of GMM components
1) XAB Test: To evaluate the accuracy of the conversion, @ preference test was designed. In this test, pairs of converted
set of triads were presented to the listeners using the XA#peech with 16 and 64 GMM components were presented to
method. X was either the prosodic only modified speecthe subjects. The listeners were asked to give their preference
the converted speech by using 16 GMM or the convertdédr each pair of converted speech. Listeners preferences are

B. Formal Listening Test
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shown in Fig. 6. The overall quality of the converted signals ACKNOWLEDGMENT

was considered as ‘“rather natural” although some of thetne authors wish to thank anonymous reviewers as well as
listeners reported a muffling effect when the number of GMM gcpoeter for their critical review and their help in improving

components was small. our paper. The authors are indebted to J. Laroche for his

3) Opinion Test:In an effort to evaluate the overall perfor-¢ .oy ragement and his continuous support during this work.
mance of the proposed method, an opinion test was designed.

Pairs of speech signals, including all possible combinations of
original speaker, target speaker, “prosodic modified” speaker
and converted speaker using 16 and 64 GMM components,
were presented to the listeners. Different sentences weld M. Abe, S. Nakamura, K. Shikano, and H. Kuwabara, “Voice conversion
used to make these pairs. Listeners were asked to rate the through vector quantization,” iRroc. IEEE Int. Conf. Acoustics, Speech,

N . . Signal Processing1988, pp. 655-658.
similarity of each pair of speakers on a scale with ten valueg;] , “Voice conversion through vector quantizatiod,” Acoust. Soc.

between zero for “identitical” and nine for “very different.” Jpn, vol. E-11, pp. 71-77, Mar. 1990.

. . O. Capg, J. Laroche, and E. Moulines, “Regularized estimation of
Fig. 7 presents the results from this test. The SymbOIS us cepstrum envelope from discrete frequency pointsPrioc. IEEE ASSP

in this figure stand for the distances: “TT,” target-target, Workshop on Applications of Signal Processing to Audio and Acoustics
“SS,” source-source, “M2,” converted speaker using 64 GM Mononk, NY, Oct. 1995.

“ ,, . 4] O. Cape and E. Moulines, “Regularization techniques for discrete
components-target, “M1, converted speaker using 16 GM cepstrum estimationJEEE Signal Processing Lettvol. 3, pp. 100-102,

components-target, “PT,” prosodic modified speaker-target, Apr. 1996.
and “ST,” source-target. For each of the distances the medidpl C- Chatfield and A. J. Collinsintroduction to Multivariate Analysis.

. . o . London, U.K.: Chapman & Hall, 1980.
value is given (noted by “x”) as well as the variation of [s] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood

the decisions using as estimator the mean absolute deviation from incomplete data via the EM algorithm]? R. Stat. Soc. Brol. 39,

. - . 1-22 and 22-38, 1977.
rather than the standard deviation. This figure clearly shows t 8 g‘_’ Doddington, “Speaker recognition—Identifying people by their

efficiency of the proposed method and confirm the results of " voices,” inProc. IEEE vol. 73, pp. 1651-1664, 1985.

the first test. Modifying only the prosody of the source speakef8] E- O-YDulfa Vs_fl‘d PigE%SHaf‘?a“em Classification and Scene Analysis
. . . ew YOorK: liey, .

perceived speaker identity does not change markedly. Thg w. Endres, w. Bambach, and G.dster, “Voice spectrograms as a

distance “PT” is very close to that of “ST.” However, applying ~ function of age, voice disguise, and voice imitatiod,” Acoust. Soc.

i i i ifi i Amer, vol. 49, pp. 1842-1848, 1971.
the conversion function after the prosodic modifications, t B.'S. Everitt and D. ). HancEinite Mixture Distributions London,

converted speech approaches the score which is obtained whehy k : chapman & Hall, 1981.
same speakers are compared_ Also, Clearly when the numBél M.-W. Feng, F. Kubala, R. Schwartz, and J. Makhoul, “Iterative normal-
of GMM components was increased the results were much ization for speaker-adaptive training in continuous speech recognition,”

; X : in Proc. IEEE ICASSP-8%p. 612-615.
better (at the cost of using more data during the learning] s. Furui, “Research on individuality features in speech waves and
step). automatic speaker recognition techniqueSgeech Communvol. 5,
. . pp. 183-197, 1986.
Furth(_ar studies are currer_1tly be'”g conducted to measure T. Galas and X. Rodet, “Generalized functional approximation for
conversion effect due to various choices of spectral parameters. source-filter system modeling,” Rroc. EurospeechGenoa, Italy, 1991,
pp. 1085-1088.
[14] H. Gish and M. Schmidt, “Text-independent speaker identification,”
IEEE Signal Processing Magvol. 11, pp. 18-32, Oct. 1994.
[15] U. G. Goldstein, “Speaker-identifying features based on formant tracks,”
V. CONCLUSION J. Acoust. Soc. Amervol. 59, pp. 176-182, 1975.
[16] Y. Gu and J. S. Mason, “Speaker normalization via a linear transforma-
The method proposed for the conversion of the spectral tion on a perceptual feature space and its benefits in ASR adaptation,” in
envelopes of speech is more robust and efficient than methods ;’g%izggmp- Conf. Speech Communication and Technolt889, pp.
based on VQ. This improvement is a consequence of the ysf H. Hollien, The Acoustics of Crime—The New Science of Forensic

of a continuous probabilistic model of the source envelopes. It  Phonetics New York: Plenum, 1990.

- : ; ] K. ltoh and S. Saito, “Effects of acoustical feature parameters on
also appears that the design of the conversion function pla{§7§ perceptual speaker identityRev. Electr. Commun. Labszol. 36, pp.

an important part. The most efficient conversion functions 135-141, 1988.
(diagonal and full types) are those that take into account tH&] N. lwahashi and Y. Sagisaka, “Speech spectrum transformation by

SO . speaker interpolation,” iRroc. IEEE Int. Conf. Acoustics, Speech, Signal
variability of the source spectral envelopes that are associated Processing 1994,

with each mixture component. The use of diagonal matricg®] N. Iwahashi and Y. Sagisaka, “Speech spectrum conversion based on

for the GMM and for the conversion function does not degrade speaker interpolation and multi-functional representation with weighting
by radial basis function networks,Speech Communvol. 16, pp.

the conversion performances, given that a sufficient number of 139 151 Fep. 1995,
mixture components are used. This last result would probalift] C. C. Johnson, H. Hollien, and J. W. Hicks, “Speaker identification

not hold for spectral parameters that are more correlated gtli'giggssel'gcgtjd temporal speech features,”Phonet. vol. 12, pp.

than cepstrum coefficients. The efficiency of the incrementgb) s M. Kay, Fundamentals of Statistical Signal Processing: Estimation
learning procedures points out the difficulty of determining a  Theory Englewood Cliffs, NJ: Prentice-Hall, 1993.

. Al g ; iA23] H. Kuwabara and Y. Sagisaka, “Acoustic characteristics of speaker
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tive tests and formal listening tests confirmed the effectivenegs] J. Laroche, Y. Stylianou, and E. Moulines, “HNS: Speech modification
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voice conversion can be obtained by combining the proposge; ¢ | Lawson and R. J. Hansoolving Least-Squares Problems

continuous probabilistic transform with the HNM for speech. ~ Englewood Cliffs, NJ: Prentice-Hall, 1974.

REFERENCES




142

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]
[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]
[49]

[50]

IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 6, NO. 2, MARCH 1998

Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer
design,” IEEE Trans. Communyvol. 28, 1980.

N. Merhav and C.-H. Lee, “On the asymptotic statistical behavior ¢
empirical cepstral coefficients,[EEE Trans. Acoust., Speech, Signal
Processing vol. 41, pp. 1990-1993, 1993.

H. Mizuno and M. Abe, “Voice conversion based on piecewise line¢
conversion rule of formant frequency and spectrum tilt,Piroc. IEEE
Int. Conf. Acoustics, Speech, Signal Processit@p4.

, “Voice conversion algorithm based on piecewise linear conve
sion rule of formant frequency and spectrum til§peech Commun. Department at Ecole Sapeure des Ingenieurs
vol. 16, pp. 153-164, Feb. 1995. en Electronique et Electrotechnique, Paris, where
C. Mokbel and G. Chollet, “Speech recognition in adverse environmenigs worked as an Assistant Professor of electrical engineering. From August
Speech enhancement and spectral transformations,Proe. IEEE 1996 until July 1997, he was with AT&T Laboratories—Research, Murray Hill,
ICASSP-91 pp. 925-928. B NJ, as a consultant in text-to-speech synthesis. In August 1997, he Jomed
E. Moulines and J. Laroche, “Techniques for pitch-scale and timergT | aps—Research as a Senior Technical Staff Member. His current

scale transformation of speech, Part I: Nonparametric meth&®ech esearch focuses on speech synthesis, statistical signal processing, speech
Commun, vol. 16, Feb. 1995.

Yannis Stylianou (S'92-M'95) was born in
Kounavous, Crete, Greece, on November 29,
1966. He received the Dipl. degree in electrical
engineering from the National Technical University
of Athens, Greece, in 1991, and the M.Sc. and
Ph.D. degrees in signal processing from the Ecole
Nationale Suprieure des @&leécommunications,
Paris, France, in 1992 and 1996, respectively.

In September 1995, he joined the Signal

E. Moulines and Y. Sagisaka, Ed&bice Conversion: State of the Art
and Perspectives (Special Issue of Speech Communicatidmster-
dam, The Netherlands: Elsevier, vol. 16, Feb. 1995.

L. Neumeyer and M. Weintraub, “Probabilistic optimum filtering for
robust speech recognition,” iAroc. IEEE Int. Conf. Acoustics, Speech,
Signal ProcessingAdelaide, Australia, 1994, pp. 417-420.

W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Flannery,
Numerical Recipes in @2nd Ed. Cambridge, U.K.: Cambridge Univ.
Press, 1994.

T. F. Quatieri, C. R. Jankowski, Jr., and D. A. Reynolds, “Energy ons|
times for speaker identificationJEEE Signal Processing Lettvol. 1,
Nov. 1994.

L. R. Rabiner and B.-H. Juandgrundamentals of Speech Recognition
Englewood Cliffs, NJ: Prentice-Hall, 1993.
R. A. Redner and H. F. Walker, “Mixture densities, maximum likelihooc
and the EM algorithm,'SIAM Rev.. vol. 26, pp. 195-239, Apr. 1984.

D. A. Reynolds, “A Gaussian mixture modeling approach to tex
independent speaker identification,” Ph.D. dissertation, Georgia In
Technol., Atlanta, Aug. 1992.

transformation, and low bit rate speech coding.
Dr. Stylianou is a member of the Technical Chamber of Greece.

Olivier Cappé (S'92-M'93) was born in Villeur-
banne, France, in 1968. He received the M.Sc.
degree in electrical engineering from the Ecole
Supgrieure d’Electrici¢, Paris, France, in 1990, and
the Ph.D. degree in signal processing from the Ecole
Nationale Supfieure des @&&communications
(ENST), Paris, in 1993. His Ph.D. dissertation dealt
with noise reduction for degraded audio recordings.
From 1995 to 1996, he was with the Centre Na-
tional d’Etudes des @lecommunications (CNET),
where he worked on speech and speaker recognition.

D. A. Reynolds and R. C. Rose, “Robust text-independent speakge is now with the Centre National de la Recherche Scientifique (CNRS)

identification using Gaussian mixture speaker modelEEE Trans.
Speech Audio Processingol. 3, pp. 72-83, Jan. 1995.

at ENST-URA 820. His current research interests are in statistical modeling
applied to various signal processing problems including noise reduction,

R. C. Rose and D. A. Reynolds, “Text independent speaker identificgpeech processing, and blind identification.

tion using automatic acoustic segmentation,”Aroc. IEEE Int. Conf.
Acoustics, Speech, Signal Processih§90, pp. 293-296.

A. E. Rosenberg and F. K. Soong, “Recent research in automatic speaker
recognition,” Advances in Speech Signal Processi8g Furui and M.
Sondhi, Eds. New York: Marcel Dekker, 1991, pp. 701-738.

M. R. Sambur, “Selection of acoustic features for speaker identification,”
IEEE Trans. Acoust., Speech, Signal Processvg. ASSP-23, pp.
176-182, 1975.

K. Shikano, K. Lee, and R. Reddy, “Speaker adaptation through vec-
tor quantization,” inProc. IEEE Int. Conf. Acoustics, Speech, Slgna
Processing 1986, pp. 2643-2646.

Y. Stylianou, “Harmonic plus noise models for speech, comblne
with statistical methods, for speech and speaker modification,” Ph.
dissertation, Ecole Nat. Sapeure Elecommun., France, Jan. 1996.
, “A pitch and maximum voiced frequency estimation techniqut
adapted to harmonic models of speech,”Aroc. IEEE Nordic Signal
Processing SympHelsinki, Finland, Sept. 1996.

Y. Stylianou, J. Laroche, and E. Moulines, “High-quality speech mod
fication based on a harmonig noise model,” inProc. EUROSPEECH
Madrid, Spain, 1995.

Dr. Cappe received the IEEE Signal Processing Society’s Young Author
Best Paper Award in 1995.

Eric Moulines (M'91) was born in Bordeaux,
France, in 1963. He received the M.S. degree
from Ecole Polytechnique in 1984, and the Ph.D.
degree in signal processing from Ecole Nationale
Supgrieure des @&Ecommunications (ENST) in
1990.

From 1986 until 1990, he was a Member of
the Technical Staff at CNET, working on signal
processing applied to low bit rate speech coding
and text-to-speech synthesis. Since 1990, he has
been with ENST, where he is currently a Professor.

B. L. Tseng, F. K. Soong, and A. E. Rosenberg, “Continuous probhlis teaching and research interests include statistical signal processing

bilistic acoustic map for speaker recognition,”Bmoc. IEEE Int. Conf.
Acoustics, Speech, Signal Processihg92, pp. 11-161-I11-164.

and speech processing. Currently, he is engaged in research in various
aspects of statistical signal processing including, among others, smgle and

H. Valbret, E. Moulines, and J. P. Tubach, “Voice transformation usingiultichannel ARMA filtering and modeling, blind signal processing for
PSOLA techniques,3peech Communol. 11, pp. 175-187, June 1992. digital communications, characterization and estimation of point processes

C. F. J. Wu, “On the convergence properties of the EM algorithAnyi.
Stat, vol. 11, pp. 95-103, 1983.

with application to high bit rate data traffic modeling, low bit rate speech
coding, and speech transformation.

E. Zwicker and E. Terhardt, “Analytical expressions for critical-band Dr. Moulines is an Associate Editor @dpeech Communicatioand the

rate and critical bandwidth as a function of frequency;,’Acoust. Soc.
Amer, vol. 68, pp. 1523-1525, 1980.

IEEE TRANSACTIONS ON SIGNAL PrROCESSING He is a member of the IEEE
committees on Speech and Statistical and Array Processing.



