
FORMANT FREQUENCY ESTIMATION IN NOISE

Bin Chen and Philipos C. Loizou*

University of Texas at Dallas, Dept. of Electrical Engineering
Richardson, TX 75083
*loizou@utdallas.edu

ABSTRACT

This paper addresses the problem of formant frequency es-
timation of speech signals corrupted by colored noise. The
spectrum is sequentially segmented inot K segments so that
each segment contains a single formant. A segmentation
metric based on Wiener filter theory is proposed for deter-
mining the segment boundaries. A peak-picking algorithm
is used for estimating the formant frequencies in each seg-
ment. Results obtained using vowels embedded in +5 dB
S/N speech-shaped noise, indicated that the proposed algo-
rithm produced formant frequencies which were compara-
ble to those estimated in quiet.

1. INTRODUCTION

Apart from a variety of formant tracking approaches [1][2],
considerable attention has been paid to methods based on
linear prediction analysis (LPC) [3][4]. However, captur-
ing and tracking formants accurately from noisy speech is
not easy, largely because the accuracy of root-finding algo-
rithms based on LPC is sensitive to the noise level.

In [5][6], a set of parallel digital formant resonators has
been proposed for speech synthesis or formant frequency
estimation. In this paper, we propose the use of a sequen-
tial digital resonator model for spectrum segmentation. The
spectrum segmentation is implemented sequentially from
low to high frequencies. For each spectral segment, a dig-
ital resonator is first determined to represent the spectral
segment. A metric based on Wiener filter theory is pro-
posed to determine the segment boundaries. After identify-
ing the spectral segments containing the formants, we apply
a peak-picking algorithm on each spectral segment to find
the formant frequency. This approach was taken since the
LPC-based digital resonators are sensitive to the noise level.
A major advantage of the proposed method is that it deter-
mines the segment boundaries sequentially and avoids the
need for dynamic programming as done in [5] and [7].

This paper is organized as follows. Section 2 describes
the formant estimation model, Section 3 presents the pro-
posed formant frequency estimation algorithm, Section 4

presents the experimental results, and Section 5 gives the
conclusions.

2. FORMANT ESTIMATION MODEL

In this section, a model is described for formant estima-
tion that is implemented using a set of digital resonators.
Each resonator represents a formant in a segment in the fre-
quency domain. The spectrum is divided into segments such
that only one formant resides in each segment. For the con-
venience of representing the digital resonator, the segment
boundaries are assumed to be fixed. In the next section, we
show how to determine the segment boundaries sequentially
using a Wiener-based metric.

Each formant in a spectral segment k is represented by a
second-order prediction filter. The second-order prediction
filter for the formant in the spectral segment k is given by
the all-pole model 1/Ak(z) = 1/(1+akz−1+βkz−2). The
formants can be considered as being generated by a second-
order system driven by white noise. Ak(z) is a whitening
filter that whitens the formant spectrum, i.e., it flattens the
spectrum in segment k. If Ak(z) is used as a notch filter, it
will notch the corresponding formant out of the spectrum.
In our application, we adopt the notch filter definition in [8]

Hk(z) = γ(1 + αz−1 + βz−2) (1)

where α = e−2πB , β = −2e−πB cosω and γ =
1/(1 + α + β) are specified by the notch frequency ω and
the bandwidth B. Note that Ak(z) is similar to Hk(z) ex-
cept for the scalar γ. Thus, we can find the notch filter by
determining the segmental system transfer functionHk(z).

According to [5], the optimum prediction coefficients of
the notch filter are given by:

αoptk =
rk(0)rk(1)− rk(1)rk(2)

rk(0)2 − rk(1)2
(2a)

βoptk =
rk(0)rk(2)− rk(1)2
rk(0)2 − rk(1)2

(2b)

where rk(m) are the autocorrelation coefficients obtained
for segment k



rk(m) = r(wk−1,wk)(m) =
1

π

Z ωk

ωk−1

|S(ejω)|2 cos(mω)dω

(3)
Substituting αoptk and βoptk obtained above to Eq. (1) gives
us the desired notch filterHk(z) of the kth band in the spec-
trum. The scalar γ is independent of minimization of the
prediction error and is determined after the αoptk and βoptk

are found.
As in [5], we use a discrete approximation of the in-

tegral in Eq.(3). The frequency range [0 π] is divided
into I equally spaced intervals ∆ω (= π/I) with grid
πi/I, i = 0, 1, ..., I. Therefore, the segment boundaries
ω0 = 0, ...,ωk, ...,ωK = π are replaced by the indices
i0 = 0, ..., ik, ..., iK = I, and rk(m) is given by

rk(m) =
1

I

ikX
i=ik−1

|S(i)|2 cos
µ
2πmi

2I

¶
(4)

with S(i) = S(ω)|ω=ej(2πi/2I) .The above autocorrelation
sequence is determined for a specific spectral segment [ik−1
ik], and is expected to vary accordingly with the spectral
segment. Experiments showed that the autocorrelation se-
quence does not change much when a strong formant dom-
inates the spectral segment even after the spectral segment
is expanded to include a second formant.

3. PROPOSED FORMANT FREQUENCY
ESTIMATION ALGORITHM IN NOISE

So far we described a formant frequency model for a sin-
gle spectral segment k. That is, we assumed that the seg-
ment boundaries were known. In this section, we propose a
segmentation metric, motivated by Wiener filter theory, that
identifies the boundaries of theK segments of the spectrum
containing theK formants.

Suppose that the input to a Wiener filter is a signal with
an additive noise, i.e., x(n) = s(n) + n(n), and the desired
signal is the noise, i.e., d(n) = n(n). From the orthogonal-
ity principle, we know that

E[e(n)x(n− l)] = 0 (5)

= rnn(l)−
∞X
k=0

hw(k)rxx(l − k)

where hw(n) is the Wiener filter, e(n) is the estimation er-
ror, and rnn(l) and rxx(l) are the autocorrelation sequences
of the noise and noisy speech signal respectively. For a
given notch filter h(n), we can produce the prediction resid-
ual w(n) of the clean signal as

w(n) =
M−1X
k=0

h(k)s(n− k) (6)

where h(0) = 1, andM = 3. Now, if we replace the Wiener
filter hw(n) in Eq.(5) with the notch filter h(n), we get:

E[e(n)x(n− l)] (7a)

= rnn(l)−
M−1X
k=0

h(k)rxx(l − k)

Since x(n) = s(n) + n(n), we get from Eq. (7a):

E[e(n)x(n− l)] =

rnn(l)−E[w(n)x(n− l)]−
M−1P
k=0

h(k)rnn(l − k) 6= 0
(7b)

Note that Eq. (7b) is no longer equal to zero since the notch
filter h(n) in Eq.(7b) is not the optimum Wiener filter. Since
the prediction residualw(n) is independent of the noisy sig-
nal x(n), the second termE[w(n)x(n−l)] in Eq.(7b) ought
to be zero. In practice, however, w(n) becomes white only
if h(n) whitens s(n)̇. As the upper boundary of a segment
expands, the notch filter h(n) will gradually become more
and more matched with the formant in the segment, and
E[w(n)x(n − l)] will become smaller and smaller. When
E[w(n)x(n− l)] reaches its minimum, or E[e(n)x(n− l)]
attains its maximum, the whole formant will be matched and
contained in the segment. As mentioned earlier, the notch
filter h(n) will not change much even if the next formant
is included. That is, E[e(n)x(n − l)] reaches a maximum
and saturates thereafter. The point at which the maximum
is reached is indicative of a segment boundary. We there-
fore use the energy of E[e(n)x(n− l)] as the segmentation
metric.

The third term
P
h(k)rnn(l − k) in Eq.(7b) may also

become small as h(n) changes. In order to offset the effect
of this undesired term, we add the term

P
h(k)rnn(l − k)

in Eq.(7a). The final segmentation metric then becomes:

Ek[e(n)x(n− l)] (8)

= rknn(l)−
M−1X
m=0

hk(m)r
k
xx(l −m)

+
M−1X
m=0

hk(m)r
k
nn(l −m)

where hk(m) and rk(m) represent the notch filter and
the autocorrelation sequence calculated from the kth spec-
tral segment [ωk−1 ωk] respectively. The energy of
E
k [e(n)x(n − l)] is used as the segmentation metric and

is denoted by

Eex(ωk−1,ωk) =
M−1X
l=0

Ek[e(n)x(n− l)] (9)

The metric saturation point, which is also the segment
boundary point, is defined to be the point at which the fol-
lowing condition is satisfied:



¯̄̄̄
Eex(wk+m)−Eex(wk)

Eex(wk)

¯̄̄̄
< ε (10)

where Eex(wk) denotes Eex(ωk−1,ωk) for simplicity. The
delay index m is used to ensure that there is a long enough
saturation period before a true saturation point is detected.
Empirically, m should be selected such that the saturation
period is no less than 300 Hz. The constant ε is empirically
determined. Figure 1 shows an example of the segmentation
of a noisy vowel spectrum.

Once the segmentation of the formant region is deter-
mined, we considered peak-picking the spectrum. The basic
idea is to segment the noise spectrum to have only one for-
mant in each segment, and then for each segment, peak-pick
the spectrum to get an estimate for the formant frequency of
the noisy speech spectrum.

The above segmentation algorithm requires access to the
autocorrelation sequence of the clean signal, which we do
not have. To estimate the clean autocorrelation sequence,
we considered pre-processing the signal by the spectral sub-
traction algorithm [9] to get an estimate of the enhanced
signal spectrum. The autocorrelation sequence is obtained
using Eq.(4) but with S(i) being replaced with the enhanced
speech spectrum.

3.1. Proposed Algorithm

The proposed algorithm is outlined below:
Initialization:

k = 1; ik−1 = 0; ik = 1;
K = desired number of formants

Step 1. Loop (for segment k):
(1) Calculate r(ik)xx (l) and r(ik)nn (l) using Eq. (4)
(2) Use Equations (2a), (2b) and (4) to calculate the

notch filter h(ik)(n)
(3) Use Equations (8) and (9) to estimate

Eex(ωk−1,ωk)
(4) if Eex(ωk−1,ωk) reaches a saturation point (ac-

cording to Eq. 10), then:
kth boundary = ik
Peak-pick spectrum to estimate formant fre-

quency.
go to Step 2

end
(5) ik = ik + 1

End
Step 2. k = k + 1

ik−1 = ik
if k > K, stop
else, go to Step 1

In our implementation, the autocorrelation sequence of
the noise, rnn(l) , was estimated using the first few speech-
absent frames of the noisy speech signal. The speech sig-

/oo/ /ah/ /ey/ /iy/
LPC SEF LPC SEF LPC SEF LPC SEF

F1 14.8 50.7 11.8 41.2 11.0 47.9 13.9 44.2
F2 18.8 81.7 15.6 63.7 16.2 45.7 9.5 89.6
F3 25.5 137 21.8 156 21.9 83.4 18.5 69.9

Table 1. Standard deviations (Hz) of formant frequency
errors for synthetic vowels using the proposed algorithm
(SEF) and the LPC algorithm. The formant frequencies of
the LPC algorithm were obtained in quiet, while the fre-
quencies of the SEF algorithm were based on vowels em-
bedded in +5 dB speech-shaped noise.

nal was processed using 10-ms duration Hamming windows
with 50% overlap between adjacent frames, and the spec-
trum in Eq. 4 was obtained using the FFT.

4. EXPERIMENTAL RESULTS

The proposed formant frequency estimation algorithm was
evaluated using real and synthetic vowels. Four natural
vowels, /u/, /a/, /ei/ and /i/, corrupted by speech-shaped
noise at +5 dB S/N were used for evaluation. The vowels
were contained in the words “hood”, “hod”, “hayed” and
“heed” and were produced by a male speaker. The esti-
mated formant tracks are shown in Figure 2. For compar-
ative purposes, we also estimated the formant frequencies
of these vowels in quiet using two other methods based on
LPC(16th order) and dynamic programming [5]. As can be
seen, our estimated formant frequencies are comparable to
the estimated formant frequencies in quiet.

The same vowels were also synthesized using the Klatt
synthesizer [6], and corrupted by a +5dB speech-shaped
noise. Each test consisted of 200 trials in which the F1 was
varied ±200 Hz and the F2 and F3 frequencies were varied
±150 Hz around the center of the corresponding formant
frequencies. Standard derivations were measured of the dif-
ferences between the true formant frequencies and the es-
timated formant frequencies. The results are tabulated in
Table 1. For comparative purposes, we also list the standard
deviations of the formant frequencies of the same vowels
estimated in quiet using the LPC method. Results indicated
that the estimation of the F1 frequency was more accurate
than the estimation of the F2 and F3 frequencies.

5. SUMMARY AND CONCLUSIONS

A new method for estimating formant frequencies in noise
was proposed based on sequential determination of spec-
tral segments and formant frequencies. The spectrum was



Fig. 1. The top panel shows values of the segmentation met-
ric as a function of frequency. Saturation point was esti-
mated to be 1100 Hz. Bottom panel shows the noisy spec-
trum of the vowel /ey/. In this example, the F1 region was
determined to be 0-1100 Hz.

Fig. 2. Formant tracks for four vowels in +5 dB S/N es-
timated using the proposed formant frequency estimation
algorithm (SEF). For comparison, we superimpose the for-
mant tracks of the vowels estimated in quiet by the LPC and
dynamic programming based algorithms (Dyn) [5].

sequentially segmented into K segments using a new seg-
mentation metric based on Wiener filter theory. No specific
assumptions were required for the statistics of the noise.
Experimental results showed that the estimated formant fre-
quencies of vowels embedded in +5 dB speech-shaped noise
were comparable to the formant frequencies estimated in
quiet.
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