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The purpose of this study was to examine the role of formant frequency movements in vowel
recognition. Measurements of vowel duration, fundamental frequency, and formant contours were
taken from a database of acoustic measurements of 1668 /hVd/ utterances spoken by 45 men, 48
women, and 46 children@Hillenbrand et al., J. Acoust. Soc. Am.97, 3099–3111~1995!#. A
300-utterance subset was selected from this database, representing equal numbers of 12 vowels and
approximately equal numbers of tokens produced by men, women, and children. Listeners were
asked to identify the original, naturally produced signals and two formant-synthesized versions. One
set of ‘‘original formant’’ ~OF! synthetic signals was generated using the measured formant
contours, and a second set of ‘‘flat formant’’~FF! signals was synthesized with formant frequencies
fixed at the values measured at the steadiest portion of the vowel. Results included:~a! the OF
synthetic signals were identified with substantially greater accuracy than the FF signals; and~b! the
naturally produced signals were identified with greater accuracy than the OF synthetic signals.
Pattern recognition results showed that a simple approach to vowel specification based on duration,
steady-stateF0 , and formant frequency measurements at 20% and 80% of vowel duration accounts
for much but by no means all of the variation in listeners’ labeling of the three types of stimuli.
© 1999 Acoustical Society of America.@S0001-4966~99!04406-9#

PACS numbers: 43.72.Ar, 43.71.Es, 43.72.Ja@JH#
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INTRODUCTION

There is a long tradition of representing vowels by
single spectral cross section taken from the nucleus of
vowel. The essence of this approach was summarized ni
by Tiffany ~1953!:

It has been commonly assumed or implied that the
sential physical specification of a vowel phoneme co
be accomplished in terms of its acoustic spectrum
measured over a single fundamental period, or ove
short interval including at most a few cycles of the fu
damental frequency. That is to say, each vowel has b
assumed to have a unique energy vs frequency distr
tion, with the significant physical variables all account
for by an essentially cross-sectional analysis of the vo
el’s harmonic composition.~p. 290!.

The potential limitations of this static approach to vow
quality were recognized by Tiffany, who noted that vow
duration and changes over time in formant frequencies
the fundamental frequency (F0) may play a role in vowel
perception~see also similar comments by Potter and Ste
berg, 1950; Peterson and Barney, 1952; and Stevens
House, 1963!. While the role ofF0 contour and duration
received a fair amount of attention in early accounts of vow
recognition ~e.g., Ainsworth, 1972; Bennett, 1968; Blac
1949; Stevens, 1959; Tiffany, 1953!, it has only been more
recently that the role of formant frequency movements
been examined systematically.

Evidence from several studies suggests that formant
quency movements do, in fact, play an important role
3509 J. Acoust. Soc. Am. 105 (6), June 1999 0001-4966/99/105(
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vowel perception. For example, Strangeet al. ~1983! and
Nearey and Assmann~1986! showed high identification rate
for ‘‘silent center’’ stimuli in which the vowel centers wer
gated out, leaving only brief onglides and offglides~see also
Jenkinset al., 1983; Parker and Diehl, 1984!. Nearey and
Assmann ~1986! showed that it was not simply spectr
movement that was required, but a specific pattern of sp
tral change throughout the course of the vowel. Brief e
cerpts of naturally produced vowels excised from nucle
and offglide segments were presented to listeners in th
conditions:~1! natural order~nucleus followed by offglide!;
~2! repeated nucleus~nucleus followed by itself!; and ~3!
reverse order~offglide followed by nucleus!. Identification
error rates for the natural-order signals were comparabl
those for the original, unmodified vowels, while th
repeated-nucleus and reverse-order conditions produ
much higher error rates.

There is also evidence that vowels with static forma
patterns are not particularly well identified. Hillenbrand a
Gayvert~1993a! synthesized 300-ms monotone vowels w
stationary formant patterns from theF0 and formant mea-
surements of each of the 1520 tokens in the Peterson
Barney ~1952! /hVd/ database~2 repetitions of 10 vowels
spoken by 33 men, 28 women, and 15 children!. The 27%
identification error rate for these steady-state synthetic
nals was nearly five times greater than the error rate repo
by Peterson and Barney for the original utterances. Syn
sizing the signals with a falling pitch contour resulted in
highly significant but relatively small drop in the error rat
These results suggest that the duration and spectral ch
35096)/3509/15/$15.00 © 1999 Acoustical Society of America
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information that was removed from these stimuli by t
steady-state synthesis method plays an important role
vowel recognition. Similarly high identification error rate
were reported by Fairbanks and Grubb~1961! for naturally
produced sustained vowels.

Evidence implicating a role for spectral change a
comes from studies using statistically based pattern clas
ers. For example, Assmannet al. ~1982! trained a linear dis-
criminant classifier with:~a! steady-stateF0 and formant in-
formation alone; and~b! steady-state information plu
formant slopes and duration. The pattern classification mo
that incorporated dynamic information provided more ac
rate predictions of error patterns produced by human lis
ers ~see also Nearey and Assmann, 1986; Parker and D
1984!. Hillenbrandet al. ~1995! trained a quadratic discrimi
nant classifier onF0 and formant measurements from /hV
utterances spoken by 45 men, 48 women, and 46 child
The pattern classifier was trained on various combination
acoustic measurements, with formant frequencies sam
either at steady state or at 20% and 80% of vowel durat
The classifier was much more accurate when it was trai
on two samples of the formant pattern. For example, withF1

and F2 alone, the classification accuracy was 71% for
single sample at steady state and 91% for two samples o
formant pattern. Two-sample parameter sets including ei
F0 or F3 produced classification accuracies approach
those of human listeners. Adding vowel duration to the
rameter set also improved classification accuracy, altho
the effect was relatively small if the formant pattern w
sampled twice.

While the pattern classification evidence is clearly r
evant, it needs to be kept in mind that demonstrating th
pattern classifier is strongly affected by spectral chang
not the same as showing that human listeners rely on spe
change patterns. As Nearey~1992! noted, pattern classifica
tion results have only an indirect bearing on perception
less the classification results are compared to human list
data~see also Shankweileret al., 1977!. A particularly clear
example of the limitations of pattern classification stud
can be seen by comparing pattern classification results u
static acoustic measurements with studies in which hum
listeners identify vowels with static formant patterns. Seve
pattern classification studies have shown that vowels ca
identified with relatively modest error rates in the 12%–14
range based on static acoustic measurements~e.g., Hillen-
brand and Gayvert, 1993b; Miller, 1984, 1989; Near
1992; Neareyet al., 1979; Syrdal and Gopal, 1986!. How-
ever, Hillenbrand and Gayvert~1993a! reported a 27% erro
rate for human listeners who were asked to identify sta
vowels synthesized from the Peterson and Barney~1952! F0

and formant measurements, and Fairbanks and Grubb~1961!
reported a 26% error rate for naturally produced static vo
els. The Fairbanks and Grubb findings are especially strik
since there were just seven talkers, all of them men, and
investigators went to great lengths to ensure the quality
representativeness of their test signals.

In our view, the primary lesson from this mismatch
pattern recognition results and listening tests is not that
tern classification evidence is necessarily irrelevant or m
3510 J. Acoust. Soc. Am., Vol. 105, No. 6, June 1999 J
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leading, but rather, that pattern recognition studies need t
followed up with appropriately designed perception expe
ments. The purpose of the present experiment was to fol
up on the pattern classification tests reported in Hillenbra
et al. ~1995! by asking listeners to identify naturally pro
duced /hVd/ signals and two synthetically generated v
sions. One set of synthesized signals was generated usin

FIG. 1. Spectral change patterns for /hVd/ utterances produced by m
women, and children. The symbol identifying each vowel is plotted at
F1–F2 value for the second sample of the formant pattern~80% of vowel
duration!, and a line connects this point to the first sample~20% of vowel
duration!. The measurements are from Hillenbrandet al. ~1995!.
3510. M. Hillenbrand and T. M. Nearey: Effects of formant contour
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original measured formant contours and a second set of
nals was synthesized with flat formants, fixed at the val
measured at the steadiest portion of the vowel.

I. EXPERIMENT 1. METHODS

A. Test signals

The test signals consisted of a 300-stimulus subset of
1668 /hVd/ utterances recorded by Hillenbrandet al. ~1995!.
The talkers in that study consisted of 45 men, 48 women,
46 10- to 12-year-old children. Recordings were made
subjects producing the vowels /{, (, |, }, ,, Ä, Å, Ç, ), É, #, É/
in /hVd/ syllables. A computer program was written to sele
a 300-stimulus subset from the full set of 1668 signals. T
300 signals were selected at random, but with the follow
constraints:~a! signals showing formant mergers involvin
any of the three lowest formants were omitted;~b! signals
with identification error rates~measured in the original 199
study! of 15% or greater were omitted; and~c! all 12 vowels
were equally represented. The 300-stimulus set that was
lected by this method included tokens from 123 of the 1
talkers, with 30% of the tokens from men, 36% from wome
and 34% from children.

B. Acoustic measurements

Acoustic measurement techniques are described in d
in Hillenbrand et al. ~1995!. Briefly, peaks were extracte
from LPC spectra every 8 ms and formant contours
F1–F4 were edited by hand during the vowel using a cust
interactive editing tool. Measurements were also made ofF0

contour~also edited by hand using the same editing tool! and
three temporal quantities:~a! the onset of the vowel;~b! the
offset of the vowel; and~c! steady-state time; i.e., the sing
frame at which the formant pattern was judged by vis
inspection to be maximally steady. Vowel onsets and offs
were also judged by visual inspection, using standard m
surement criteria~Peterson and Lehiste, 1960!. Average
spectral change patterns for the full data set are shown in
1. The figure was created by connecting a line between
formant frequencies sampled at 20% and 80% of vowel
ration; the symbol for each vowel category is plotted at
location of the second measurement. The measuremen
sults are described in some detail in Hillenbrandet al., but
there are two points about the formant-change pattern
Fig. 1 that are particularly relevant to the present study. F
with the exception of /{/ and /É/, the formant frequency val
ues show a good deal of change throughout the course o
vowel. For example, note that the vowels /|/ and /Ç/, which
are known to be diphthongized, do not show spectral cha
magnitudes that are unusually large relative to the other v
els. Second, the formants change in such a way as to enh
the contrast between vowels with similar formant patter
For example, the pairs /,/–/}/ and /É/–/)/, which show a
good deal of overlap when the vowels of individual talke
are plotted in staticF1–F2 space~see Fig. 4 of Hillenbrand
et al.!, show very different patterns of formant-frequen
change.
3511 J. Acoust. Soc. Am., Vol. 105, No. 6, June 1999 J
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C. Synthesis method

Test signals consisted of the 300 original, 16-kHz di
tized utterances and two synthesized versions, for a tota
900 signals. The Klatt and Klatt~1990! formant synthesizer,
running at a 16-kHz sample rate, was used to generate
sets of synthetic signals. The ‘‘original formant’’~OF! and
‘‘flat format’’ ~FF! synthesis methods are illustrated in Fi
2. The OF signals were synthesized using the original m
sured formant contours, shown by the dashed curves.
vowel in this example is /,/, and the measured formant con
tour shows a pronounced offglide which is quite common
our data for this vowel. The FF signals were synthesiz
with flat formants, fixed at the values measured at ste
state, shown by the solid curves in Fig. 2.1 For these signals
a 40-ms linear transition connected the steady-state value
the F1–F3 values that were measured at the end of
vowel. Both sets of synthetic signals were generated with
measuredF0 contours and at their measured durations. D
ing the /*/ interval ~i.e., between the beginning of the stimu
lus and the start of the vowel!: ~a! the voicing amplitude
~AV ! parameter was set to zero and the aspiration amplit
~AH! parameter was controlled by the measured rms int
sity of the signal being synthesized;~b! the F1 bandwidth
was set to 300 Hz; and~c! formant values forF1–F3 were
set to the values that were measured at the start of the vo
At all other times formant bandwidths remained at their d
fault values ~B1590, B25110, B35170, B45400, B5

5500, B65800!. During the vowel the AH parameter wa
set to zero and the AV parameter was driven by the m
sured rms energy of the signal. Values ofF4 were set sepa-
rately for each vowel and talker group based on data fr
Hillenbrand et al. ~1995!. Values of F5 and F6 were set
separately for each talker group based on data from Rab
~1968!. Formant amplitudes were set automatically duri
the /*/ and vowel by running the synthesizer in casca
mode. A final /$/ was simulated by:~a! rampingF1 100 Hz
below its measured value at the end of the vowel in fo
steps of 25 Hz; and~b! switching from the cascade to th
parallel branch of the synthesizer and setting the reson

FIG. 2. Schematic spectrograms illustrating the method that was use
synthesize the original-formant~OF! and flat-formant~FF! signals.
3511. M. Hillenbrand and T. M. Nearey: Effects of formant contour
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gains of F2–F6 30 dB below theF1 resonator gain; i.e.
producing a ‘‘voice bar’’ with energy primarily atF1 . Since
we were not entirely satisfied with our efforts to gener
natural sounding final release bursts with the synthesizer
signals were generated unreleased, and release bursts
had been excised from naturally produced signals spoke
one man, one woman, and one child were appended to
end of the stimuli.2

D. Listening Test

Twenty subjects who had taken or were currently e
rolled in an undergraduate course in phonetics served as
teners. The choice of listeners with training in phonetic tra
scription was motivated by the findings of Assmannet al.
~1982! indicating that many of the identification errors ma
by untrained subjects are due to listeners’ uncertainty ab
how to map perceived vowel quality onto orthographic sy
bols. Subjects were tested one at a time in a quiet room
single session lasting about 1 h. Listeners identified eac
the 900 test signals~300 original signals, 300 OF signal
and 300 FF signals! presented in random order. The prese
tation order was reshuffled prior to each listening sess
Stimuli were low-pass filtered at 6.9 kHz, amplified, a
delivered at approximately 75 dBA over a single loudspea
~Boston Acoustics A60! positioned approximately 1 m from
the subject’s head. Subjects entered their responses
computer keyboard labeled with both phonetic symbols
key words for the 12 vowels. Subjects were allowed to rep
stimuli as many times as they wished before entering a
sponse.

II. EXPERIMENT 1. RESULTS AND DISCUSSION

Figure 3 shows overall percent correct for each stimu
type and talker group averaged across all vowels. It can
seen that the naturally produced signals~NAT! were identi-
fied with the greatest accuracy, followed by the OF and
synthesized signals. A two-way repeated-measures ANO
using arcsine-transformed percent correct values show

FIG. 3. Percent correct identification of the naturally produced signals,
original-formant synthetic signals, and the flat-formant synthetic sign
Error bars indicate one standard deviation. The percentages at the top
cate the mean percent correct for each condition pooled across the
talker groups.
3512 J. Acoust. Soc. Am., Vol. 105, No. 6, June 1999 J
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significant effect for stimulus type@F(2,38)5860.7,
p,0.0001# and talker group@F(2,38)53.5, p,0.05# and a
significant interaction @F(4,76)510.2, p,0.0001#.3

Newman–Keulspost hoc tests showed significant differ
ences among all three stimulus types. Although statistic
reliable, the effects for talker group are relatively small a
nonuniform across stimulus type, as revealed by the sign
cant interaction. For the naturally produced signals,post hoc
analyses showed that the men’s and women’s tokens w
identified with greater accuracy than the children’s toke
The pattern was different for the OF synthetic signals, wh
showed greater intelligibility for the men’s tokens as co
pared to those of the women and children. A third patte
was observed for the FF synthetic signals, which show
significantly poorer intelligibility for the women’s tokens a
compared to the men and the children. One clear conclu
from this rather mixed set of talker-group results is that th
was no evidence for a simple pitch effect; that is, althou
the spectrum envelope is more poorly defined at higher f
damental frequencies, the talker-group effects show no
dence of a simple inverse relationship betweenF0 and vowel
intelligibility @see also Carlsonet al. ~1975!, and Hillenbrand
and Gayvert~1993a!, for related findings#.

Figure 4 shows percent correct separately for e
vowel category. Confusion matrices for the three conditio
are shown in Tables I–III. It can be seen in Fig. 4 that t
effect of stimulus type varies considerably from one vowel
the next. This was confirmed by a two-way repeate
measures ANOVA~using arcsine-transformed percent co
rect values! which tested the effects of stimulus type~NAT
versus OF synthesis versus FF synthesis! and vowel. The
ANOVA showed a significant effect for stimulus typ
@F(2,38)5799.9, p,0.001# and vowel @F(11,209)528.0,
p,0.001# as well as a significant interaction@F(22,418)
546.7,p,0.001#. The nature of the interaction will be dis
cussed and further analyzed below.

Note that the pattern for /Å/ appears to differ markedly
from the other vowels since this vowel showed the high
recognition accuracy in the FF condition and the lowest
curacy for the naturally produced signals. Examination of
confusion matrices in Tables I–III suggests that the ove

e
s.
di-
ree

FIG. 4. Percent correct identification of the naturally produced sign
~NAT!, the original-formant~OF! synthetic signals, and the flat-forman
synthetic signals separated by vowel category.
3512. M. Hillenbrand and T. M. Nearey: Effects of formant contour



g the
own in
el was
% of the

8.3

3513 J. Acoust. S
TABLE I. Confusion matrix for the naturally produced signals. Values on the main diagonal, indicatin
percentage of trials in which the listeners’ responses matched the vowel intended by the talker, are sh
boldface. The response means given in the last row indicate the percentage of trials in which a given vow
used as a listener response. Each vowel, as classified by the speaker’s intention, was presented on 8.3
trials.

Vowel identified by listener

/{/ /(/ /|/ /}/ /,/ /Ä/ /Å/ /Ç/ /)/ /É/ /#/ /É/

Vowel
intended

by
talker

/{/ 98.2 0.8 0.4 0.6 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

/(/ ¯ 97.6 0.6 1.4 ¯ ¯ ¯ ¯ 0.4 ¯ ¯ ¯

/|/ 0.2 0.2 97.8 1.6 ¯ ¯ ¯ ¯ 0.2 ¯ ¯ ¯

/}/ ¯ ¯ 0.2 91.6 8.0 ¯ ¯ ¯ ¯ ¯ 0.2 ¯

/,/ ¯ ¯ ¯ 2.0 97.2 0.4 0.4 ¯ ¯ ¯ ¯ ¯

/Ä/ ¯ ¯ ¯ ¯ 3.2 92.2 4.0 ¯ ¯ ¯ 0.6 ¯

/Å/ ¯ ¯ ¯ 0.2 0.8 9.6 87.2 0.4 0.6 ¯ 1.6 ¯

/Ç/ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 96.4 1.4 0.6 1.6 ¯

/)/ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 0.2 96.2 0.4 3.2 ¯

/É/ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 1.6 3.0 95.4 ¯ ¯

/#/ ¯ ¯ ¯ ¯ ¯ 2.0 1.0 ¯ 1.4 0.4 95.2 ¯

/// ¯ ¯ ¯ 0.2 ¯ ¯ ¯ ¯ ¯ ¯ ¯ 99.8

Response means: 8.2 8.2 8.3 8.1 9.1 8.7 7.7 8.2 8.6 8.1 8.5
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percent correct figures may be misleading in some respe
The last row in each of these tables gives the respo
means; that is, the percentage of trials in which a giv
vowel was used as a response. Since each of the 12 vo
was presented equally often, an ideal listener whose
sponses always agreed with the speaker’s intention wo
use each symbol on 8.3% of the trials. Note that the perc
age of /Å/ responses increases from 7.7% for the natura
produced signals, to 8.6% for the OF synthetic signals
11.2% for the FF synthetic signals. In other words, for re
sons that are not clear, there is an increasing probability
listener hearing /Å/ across these three conditions. Althou
the overall percent correct for /Å/ improves from natural
speech to OF synthesis to FF synthesis, the probability
correct response on trials in which /Å/ was used as a respons
declines from 94.1% for the natural signals to 91.1% for
OF synthetic signals to 83.7% for the FF synthetic signa
oc. Am., Vol. 105, No. 6, June 1999 J
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In the analyses that follow, we will first consider th
effect of flattening the formants, and then consider the d
ferences in intelligibility between the natural signals and
OF synthetic signals.

A. Effects of formant flattening

The drop in intelligibility that occurs as a result of fla
tening the formants is in general quite large. However,
Fig. 4 shows, the effect varies considerably from one vow
to the next. This was confirmed by a two-way repeate
measures ANOVA comparing just the OF and FF conditio
which showed significant effects for stimulus type@F(1,19)
5366.1, p,0.001# and vowel @F(11,209)548.4,
p,0.001#, and a significant interaction@F(11,209)544.0,
p,0.001#. Vowels showing the largest changes in intellig
bility as a result of formant flattening were /|/ ~52.8%!, /,/
~31.4%!, /)/ ~27.6%!, /#/ ~22.6%!, and /Ç/ ~22.2%!.
al,
talker,
hich a

resented

8.3
TABLE II. Confusion matrix for the original-formant~OF! synthetic signals. Values on the main diagon
indicating the percentage of trials in which the listeners’ responses matched the vowel intended by the
are shown in boldface. The response means given in the last row indicate the percentage of trials in w
given vowel was used as a listener response. Each vowel, as classified by the speaker’s intention, was p
on 8.3% of the trials.

Vowel identified by listener

/{/ /(/ /|/ /}/ /,/ /Ä/ /Å/ /Ç/ /)/ /É/ /#/ /É/

Vowel
intended

by
talker

/{/ 91.6 4.6 3.6 0.2 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

/(/ 0.6 96.4 0.2 2.4 0.4 ¯ ¯ ¯ ¯ ¯ ¯ ¯

/|/ 7.6 4.8 85.4 2.0 ¯ 0.2 ¯ ¯ ¯ ¯ ¯ ¯

/}/ ¯ ¯ ¯ 92.8 5.6 ¯ ¯ ¯ ¯ 0.2 1.4 ¯

/,/ 0.4 ¯ 0.2 18.6 80.8 ¯ ¯ ¯ ¯ ¯ ¯ ¯

/Ä/ ¯ ¯ ¯ 0.6 6.4 82.8 6.6 ¯ ¯ ¯ 3.0 0.6
/Å/ ¯ ¯ ¯ ¯ ¯ 4.2 94.2 0.4 ¯ ¯ 1.2 ¯

/Ç/ ¯ ¯ ¯ ¯ ¯ 0.4 ¯ 89.4 5.2 4.2 0.8 ¯

/)/ ¯ ¯ ¯ ¯ ¯ 0.2 ¯ 1.0 89.4 2.0 7.0 0.4
/É/ ¯ ¯ ¯ ¯ ¯ 0.2 ¯ 11.4 17.6 70.4 0.4 ¯

/#/ ¯ ¯ ¯ ¯ 0.6 2.0 2.6 0.8 4.6 ¯ 89.4 ¯

/// ¯ ¯ ¯ 1.0 ¯ ¯ ¯ ¯ ¯ ¯ ¯ 99.0

Response means: 8.4 8.8 7.5 9.8 7.8 7.5 8.6 8.6 9.7 6.4 8.6
3513. M. Hillenbrand and T. M. Nearey: Effects of formant contour
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TABLE III. Confusion matrix for the flat-formant~FF! synthetic signals. Values on the main diagonal, in
cating the percentage of trials in which the listeners’ responses matched the vowel intended by the tal
shown in boldface. The response means given in the last row indicate the percentage of trials in which
vowel was used as a listener response. Each vowel, as classified by the speaker’s intention, was pres
8.3% of the trials.

Vowel identified by listener

/{/ /(/ /|/ /}/ /,/ /Ä/ /Å/ /Ç/ /)/ /É/ /#/ /É/

Vowel
intended

by
talker

/{/ 89.6 6.6 2.8 0.8 ¯ 0.2 ¯ ¯ ¯ ¯ ¯ ¯

/(/ 4.4 88.6 2.8 3.6 0.6 ¯ ¯ ¯ ¯ ¯ ¯ ¯

/|/ 12.0 29.4 32.6 21.6 4.4 ¯ ¯ ¯ ¯ ¯ ¯ ¯

/}/ 0.2 0.2 0.8 87.6 9.6 ¯ ¯ ¯ 1.0 ¯ 0.4 0.2
/,/ ¯ 1.2 7.4 42.0 49.4 ¯ ¯ ¯ ¯ ¯ ¯ ¯

/Ä/ ¯ ¯ ¯ 0.4 5.2 85.2 7.4 0.8 0.4 ¯ 0.4 0.2
/Å/ ¯ ¯ ¯ ¯ ¯ 2.2 96.0 1.8 ¯ ¯ ¯ ¯

/Ç/ ¯ ¯ ¯ 0.2 ¯ 3.2 12.2 67.2 9.0 7.0 1.2 ¯

/)/ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 13.2 61.8 10.2 14.6 0.2
/É/ ¯ ¯ ¯ 0.2 ¯ ¯ 0.2 21.2 16.4 61.0 0.8 0.2
/#/ ¯ ¯ ¯ ¯ 0.4 11.2 18.6 2.2 0.8 ¯ 66.8 ¯

/// ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 0.2 ¯ 99.8

Response means: 8.5 10.5 3.9 13.3 5.8 8.5 11.2 8.9 7.5 6.5 7.0
on
iv

e
e
FF
m
ic
F

n

ls
-to
ll

he
o

la-
ore
he
fre-
of

or
ngth

d at
e

g of

eft
in

g a
The
he

e is
ri-
Table IV shows what kinds of changes in identificati
occurred. The analysis focused on instances in which a g
listener identified the OF version of a signal correctly~i.e., as
the vowel intended by the talker! but the FF version incor-
rectly. The symbols going down the rows indicate the vow
as classified both by the speaker’s intention and the listen
labeling of the OF version; the columns show how the
versions of these signals were identified. The last colu
shows the total number of changes in identification in wh
the OF version was heard as the intended vowel but the
version was heard as some other vowel. The most freque
occurring changes in identification~shown in boldface in
Table IV! involved /|/ shifting to /(/ or /}/, /,/ shifting to /}/,
/)/ shifting to /#/, /Ç/, or /É/, /#/ shifting to /Ä/ or /Å/, and /Ç/
shifting to /Å/. Labeling changes involving these five vowe
accounted for approximately three-quarters of all correct
incorrect vowel shifts. A similar analysis that included a
shifts in vowel color between OF and FF signals, whet
from correct to incorrect or otherwise, yielded a pattern
results that was quite similar to that shown in Table IV.
oc. Am., Vol. 105, No. 6, June 1999 J
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As might be expected, vowels that typically show re
tively large amounts of spectral change tended to be m
strongly affected by formant flattening. Figure 5 shows t
relationship between the average magnitude of formant
quency change for each vowel and the total number
correct-to-incorrect changes in identification~i.e., the last
column of Table IV!. The magnitude of spectral change f
each vowel category was represented as the average le
of a vector connecting formant measurements sample
20% of vowel duration and 80% of vowel duration. Th
vector was drawn in a three-dimensional space consistin
log-transformed values ofF1 , F2 , andF3 . As Fig. 5 shows,
the vowels tend to cluster into one group in the lower l
showing relatively little spectral change and few changes
labeling, and a second group in the upper right showin
good deal of spectral change and many shifts in labeling.
relationship is far from perfect, however. For example, t
perceptual effect of formant flattening for /|/ is quite large,
even though the magnitude of formant frequency chang
relatively modest in relation to the other vowels. We expe
ectly
e most
TABLE IV. Changes in phonetic labeling for signals whose original-formant versions were identified corr
but whose flat-formant versions were identified as a vowel other than that intended by the talker. Th
frequently occurring vowel shifts are shown in boldface.

FF synthetic vowel identified as

/{/ /(/ /|/ /}/ /,/ /Ä/ /Å/ /Ç/ /)/ /É/ /#/ /É/ Total

OF
vowel

identified
as

/{/ ¯ 23 9 2 ¯ 1 ¯ ¯ ¯ ¯ ¯ ¯ 35
/(/ 20 ¯ 10 11 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 41
/|/ 37 116 ¯ 105 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ 280
/}/ 1 1 4 ¯ 38 ¯ ¯ ¯ 5 ¯ 2 1 52
/,/ ¯ 2 28 157 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 187
/Ä/ ¯ ¯ ¯ ¯ 6 ¯ 26 3 1 ¯ ¯ ¯ 36
/Å/ ¯ ¯ ¯ ¯ ¯ 11 ¯ 7 ¯ ¯ ¯ ¯ 18
/Ç/ ¯ ¯ ¯ 1 ¯ 16 55 ¯ 27 26 5 ¯ 130
/)/ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 50 ¯ 45 55 1 151
/É/ ¯ ¯ ¯ 1 ¯ ¯ 1 57 41 ¯ 3 1 104
/#/ ¯ ¯ ¯ ¯ 2 51 79 8 2 ¯ ¯ ¯ 142
/// ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 1 ¯ ¯ 1
3514. M. Hillenbrand and T. M. Nearey: Effects of formant contour
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mented with sample points other than 20% and 80%,
with a number of alternate methods of representing spec
change magnitude, including calculations based on norm
ization schemes proposed by Syrdal~1985!; Syrdal and Go-
pal ~1986!; Miller ~1984, 1989! and Peterson~1951!. Results
of these additional analyses were very similar to the gen
pattern shown in Fig. 5.

B. Natural signals versus OF synthesis

Although the main purpose of this study was to exam
the effects of formant flattening, the difference in intellig
bility that was observed between the naturally produced
nals and the OF synthetic signals raises some impor
questions about the cues underlying the perception of vo
color. A two-way repeated-measures ANOVA compari
just the NAT and OF synthesis conditions showed signific
effects for stimulus type@F(1,19)5371.8, p,0.001# and
vowel @F(11,209)510.6, p,0.001#, and a significant inter-
action @F(11,209)521.0, p,0.001#. Vowels showing the

FIG. 5. Total number of correct-to-incorrect changes in identification a
function of the average magnitude of formant frequency change for e
vowel. The magnitude of formant change for each vowel category was
resented as the average length of a vector connecting formant measure
sampled at 20% of vowel duration and 80% of vowel duration. The ve
was drawn in a three-dimensional space consisting of log-transformed
ues ofF1 , F2 , andF3 .
3515 J. Acoust. Soc. Am., Vol. 105, No. 6, June 1999 J
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largest changes in intelligibility as a result of formant codi
were /É/ ~25.0%!, /,/ ~16.4%!, /|/ ~12.4%!, and /Ä/ ~9.4%!.

Table V shows the distribution of responses for all i
stances in which a given listener identified the original sig
correctly but identified the OF synthetic version as a vow
other than that intended by the talker. The most frequen
occurring changes in identification involved /É/ shifting to
/)/ or /Ç/, /,/ shifting to /}/, and /|/ shifting to /{/. Labeling
changes involving /É/ and /,/ alone accounted for 37.8% o
all correct-to-incorrect vowel shifts. These comparisons ra
an obvious question: Why is there any difference in inte
gibility between the natural signals and OF synthetic signa
In other words, what phonetically relevant information is n
preserved by the formant frequency representation
drives the synthesizer during the vowel?

One possibility that cannot be ruled out is that the dr
in intelligibility may occur at least in part as a result of erro
in the estimation of formant frequencies. Measureme
remeasurement reliability for the LPC-derived formant fr
quency estimates is on the order of 1.0%–2.0% of form
frequency forF1 and 1.0%–1.5% of formant frequency fo
F2 and F3 ~Hillenbrandet al., 1995!.4 However, these reli-
ability estimates do not address the validity question, and
possibility exists that LPC produces systematic errors in f
mant frequency measurement. For example, in a relativ
small-scale study, Di Benedetto~1989! reported LPC-
derived estimates ofF2 and F3 that were very similar to
those derived from smoothed wide-band Fourier spectra,
estimates ofF1 that were systematically lower when me
sured with LPC. A larger and more formal comparison
180 /hVd/ utterances by Hillenbrandet al. ~1995! also found
estimates ofF2 andF3 that were similar between LPC an
smoothed Fourier spectra; however, estimates ofF1 were
found to be approximately 40 Hzhigher for LPC.

The main question that is raised by these measurem
issues is whether systematic errors in formant frequency
timation might account for the shifts in vowel quality th
were observed between the natural and the OF synthetic
nals. For example, the many labeling shifts that occur
from /É/ to /)/ and /,/ to /}/ might be explained by positing
that estimates ofF1 are systematically high. Figure 6 wa

a
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p-
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r

al-
hose
e most
TABLE V. Changes in phonetic labeling for naturally produced signals that were identified correctly but w
original-formant synthetic versions were identified as a vowel other than that intended by the talker. Th
frequently occurring vowel shifts are shown in boldface.

OF synthetic vowel identified as

/{/ /(/ /|/ /}/ /,/ /Ä/ /Å/ /Ç/ /)/ /É/ /#/ /É/ Total

NAT
vowel

identified
as

/{/ ¯ 21 16 1 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 38
/(/ 3 ¯ ¯ 12 2 ¯ ¯ ¯ ¯ ¯ ¯ ¯ 17
/|/ 38 21 ¯ 7 ¯ 1 ¯ ¯ ¯ ¯ ¯ ¯ 67
/}/ ¯ ¯ ¯ ¯ 16 ¯ ¯ ¯ ¯ 1 7 ¯ 24
/,/ 2 ¯ 1 89 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 92
/Ä/ ¯ ¯ ¯ 3 23 ¯ 26 ¯ ¯ ¯ 15 ¯ 67
/Å/ ¯ ¯ ¯ ¯ ¯ 16 ¯ 2 ¯ ¯ 5 ¯ 23
/Ç/ ¯ ¯ ¯ ¯ ¯ 2 ¯ ¯ 22 17 2 ¯ 43
/)/ ¯ ¯ ¯ ¯ ¯ 1 ¯ 5 ¯ 10 27 ¯ 45
/É/ ¯ ¯ ¯ ¯ ¯ 1 ¯ 54 80 ¯ 2 2 137
/#/ ¯ ¯ ¯ ¯ 2 9 13 4 19 ¯ ¯ ¯ 47
/// ¯ ¯ ¯ 5 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 5
3515. M. Hillenbrand and T. M. Nearey: Effects of formant contour
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designed to address this question. Plotted on this figure
the most frequently occurring shifts in vowel color fro
NAT to OF, based on the data in Table V. To provide
reference frame for formant space, phonetic symbols
plotted at the average steady-state values ofF1 and F2 for
the women. The tails of the arrows are plotted at the aver
formant values for the correctly identified natural signal, a
the arrow heads point at the corresponding values for p
netic label assigned to the OF synthetic version of the sig
The line thickness~but not line length! is roughly propor-
tional to the number of labeling shifts. The main point to
made about this figure is that no simple, systematic meas
ment error can account for the most common shifts in vo
quality. For example, while the shifts away from /É/ and /,/
could conceivably be explained on the basis of system
cally high estimates ofF1 ~i.e., the arrows point in the direc
tion of vowels with higher first formants!, those away from
/Ä/ and /|/ are not consistent with this idea. This is not
suggest that formant measurement error does not play a
in accounting for the differences in intelligibility between th
NAT and OF signals, but rather, that no simple, system
difference in formant estimation seems capable of acco
ing for these differences.

One other possibility worth considering has to do w
differences between the natural and synthetic signals du
the /*/ and final /$/ intervals. The synthesizer was driven b
acoustic measurements during the vowel only, with the*/
and /$/ segments being generated by some simple rules. A
result, the initial /*/ and, in particular, the final /$/ segments
did not always show a very close match between the orig
and synthetic utterances. It is possible that there is so
limited information in the naturally produced consonants t
influenced vowel quality. Alternatively, it may be that the
was some information in the synthetic consonants that

FIG. 6. This figure shows the most frequently occurring shifts in vow
color from NAT to OF; that is, the number of instances in which the na
rally spoken version of an utterance was correctly identified but the origi
formant synthetic version was identified as some other vowel. To provi
reference frame for formant space, phonetic symbols are plotted at th
erage values ofF1 andF2 for the women. The tails of the arrows are plotte
at the formant values for the correctly identified natural signal, and
arrow heads point at the phonetic label assigned to the OF synthetic ve
of the signal. The line thickness is roughly proportional to the numbe
labeling shifts.
3516 J. Acoust. Soc. Am., Vol. 105, No. 6, June 1999 J
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misleading to listeners in some way. Experiment 2 was
signed to test this possibility.

III. EXPERIMENT 2. METHODS

Experiment 2 presented listeners with four kinds of s
nals: ~a! the 300 natural /hVd/ utterances~NAT!; ~b! the
vowel only from the 300 NAT utterances~NAT-V !; ~c! the
300 original-formant synthetic /hVd/ utterances~OF!; and
~d! the vowel only from the 300 OF synthetic utteranc
~OF-V!. The signals were edited from the NAT and OF u
terances described above using a simple computer prog
that was controlled by the hand-measured values of vo
start and vowel end from Hillenbrandet al. ~1995!. After
clipping the vowels from the /hVd/ utterances, the NAT-
and OF-V signals were ramped on and off with a 10-
half-cosine function to prevent onset and offset transie
Listeners consisted of 24 undergraduate students who
taken an introductory phonetics course and had received
sic instruction in the use of phonetic symbols for vowe
None of these listeners had participated in experiment 1.
teners identified each of the 1200 test signals~300 NAT, 300
NAT-V, 300 OF, and 300 OF-V! presented in random orde
using the same instrumentation and procedures that were
scribed for experiment 1.

IV. EXPERIMENT 2. RESULTS AND DISCUSSION

Overall percent correct values for the four stimulus co
ditions of experiment 2 are shown in Fig. 7. The main po
to be made about Fig. 7 is that both the natural and OF /h
syllables were identified at a slightly higher rate than t
corresponding vowel-only utterances. A repeated-meas
two-way ANOVA showed significant effects for both facto
~natural versus synthetic:F@1,24#5268.4,p,0.01; syllable
versus vowel:F@1,24#564.8, p,0.01!. As can be seen in
Fig. 7, the difference in intelligibility between the /hVd/ an
vowel-only conditions is not large overall, and is very sm
for the OF synthetic stimuli. Newman–Keulspost hoctests

l
-
l-
a
v-

e
ion
f

FIG. 7. Percent correct identification for four types of utterances:~a! natu-
rally spoken /hVd/ signals~NAT!, ~b! the NAT signals with the initial and
final consonants edited out~NAT-V !, ~c! original-formant synthetic /hVd/
signals~OF!, and ~d! the vowels only from the OF signals~OF-V!. Error
bars indicate 1 s.d. The percentages above each bar indicate the mea
cent correct for each condition.
3516. M. Hillenbrand and T. M. Nearey: Effects of formant contour
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showed that this difference was significant only for the na
rally spoken stimuli. These results would seem to be con
tent with the idea that there is some limited information
the naturally produced consonants that influences vo
quality. If the synthetic consonants were providing mislea
ing information about vowel quality, the results should ha
shown an improvement in intelligibility for the OF synthet
signals with the removal of the consonants, and little or
change for the natural signals. The small drop in intelligib
ity that was observed suggests that some very limited in
mation about vowel identity was lost when the natural co
sonants were clipped off. However, the absolute magnit
of the effect was quite small. The natural vowel-only stim
remain highly intelligible, and the drop in intelligibility tha
results from excising the consonants amounts to an ave
of just 7 additional misidentified vowels out of the 300 th
were presented. The primary conclusion from experimen
therefore, is that the failure to faithfully model the initial an
final consonants can at best explain a very small portion
the difference in intelligibility between the natural and O
synthetic signals.

V. PATTERN RECOGNITION MODELS

Two general conclusions seem likely from the foreg
ing. First, some changes in listeners’ perception~most nota-
bly those between the natural and OF stimuli! cannot be
readily accounted for by any of the acoustic properties c
trolled in the experiments. Second, despite this, variation
responses across stimuli are at least partly related to di
ences in spectral change that were manipulated. The mo
ing work presented below strives to provide a more deta
assessment of just how far we can go in relating respo
patterns to selected acoustic properties.

This modeling can be viewed as a way to extend
insights that we were seeking in Fig. 5. There, we measu
how average identification rates for each vowel category
proved from the FF to the OF condition and we attempted
relate that improvement to average spectral change.
Pearson correlation coefficient (r 50.46) between thex andy
coordinates of Fig. 5 gives us a simple index of associa
between the two quantities. The directness of such an
proach is very appealing, and it seems to provide some
dence for the hypothesis being tested. However, it is d
cient in several respects. First, it fails to take into acco
variation among tokens of the same vowel category. Sec
a very high correlation should result only under a very li
iting assumption: namely, a unit increase in the magnitud
spectral change will result in a uniform change in identific
tion rate, regardless of the direction of the change and of
overall location in formant space of the tokens involve
However, it is easy to imagine cases where this is most
likely. For example, a token of a vowel whose overall po
tion in formant space is relatively distant from those of
competitors in neighboring categories is likely to be less s
sitive to differences in spectral change than a token tha
closer to competing tokens.

Nearey and his colleagues have developed pattern
ognition methods that can overcome these difficulties~Ass-
mannet al., 1982; Nearey and Assmann, 1986; Andruski a
3517 J. Acoust. Soc. Am., Vol. 105, No. 6, June 1999 J
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Nearey, 1992; Nearey, 1997!. These methods can simulta
neously accommodate many aspects of the patterns, inc
ing magnitude and direction of spectral change and rela
distance from competitors, on a token-by-token basis.
will adopt a variation of the general methodology develop
by Nearey and Assmann~1986!.

A. Testing and training sets

Much of our modeling uses a two-stage procedure
volving the distinction between disjoint training and testi
data that is now prevalent in the speech recognition lite
ture. First, a pattern recognition algorithm is construc
based on the statistical regularities in the training data. S
ond, the parameters of the recognition model are held fi
at the training values, while the algorithm is fed new acous
data from a testing set that is independent of the train
data. This generates predicted response patterns, which
then compared to listeners’ performance on the test stim

The training set consisted of 1297 tokens from the lar
data of Hillenbrandet al. ~1995! and will be referred to as
the H95 data. The selected tokens included all those with
missing values for any of the measurements required,
excluded the 300 tokens that were used in experiments 1
2 above. There was also a corresponding set of response
each token of the H95 training data. These responses w
used for training the logistic regression coefficients in Mod
B, discussed below. The testing sets consist of the stim
and responses reported in experiments 1 and 2 above.

B. Stimulus properties and discriminant analysis

We have chosen a representation similar to that of
Canadian studies, using vowel duration, steady-stateF0 , and
F1 , F2 andF3 ~all frequencies were log-transformed! at the
20% and 80% time points.~For the flat formant stimuli, the
20% and 80% formant frequencies were equal to the m
sured steady-state frequencies.! Linear discriminant function
analysis of the H95 training data showed that 92.0% of
tokens could be correctly reclassified using these meas
ments. When the coefficients estimated from the train
data were applied to measurements from the natural or
testing data~with distinct 20% and 80% formant measures!,
the results were actually higher, 94.0% correct. Thus the c
sen measurements are capable of separating the vowe
egories relatively well. But to what degree can a recognit
algorithm characterize variation in listeners’ response p
terns?

C. Predicting listener responses on the testing data

1. Model A: A posteriori probabilities from
discriminant function analysis of the H95 data

The linear classification functions described above
not only suitable for classification, but they can be used
generatea posteriori probabilities ~APP scores! of group
membership for any given measurement point. APP sco
can be viewed as estimates of relative strength of gr
membership~Nearey and Assmann, 1986!. For example, a
token whose measurements are near the mean of /{/ and re-
mote from the means of the other categories will have
3517. M. Hillenbrand and T. M. Nearey: Effects of formant contour
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APP score for /{/ near unity while scores for the other vowe
will be near zero. Similarly, an ambiguous token that
roughly equidistant from /{/, /|/, and /(/ will have a score nea
0.33 for each of these vowels, but near zero for the rest

Such graded membership scores can be compared
confusion matrices, including confusion matrices construc
on a token-by-token basis. Such token-by-token confus
matrices will be referred to below as probability matrice
For each 300 token set, there is both a predicted and
observed probability matrix, each with 300 rows and 12 c
umns. Predictions based on the linear classification funct
from the discriminant analysis of the H95 data will be r
ferred to as Model A predictions.

2. Model B: Predicted probabilities from logistic
regression of the H95 perceptual data

Logistic regression provides another technique for g
erating predicted probability matrices for the testing d
~see Nearey, 1989, 1997, for applications of logistic regr
sion to perceptual data!. A 12-category polytomous logistic
regression was performed using the training measurem
as independent variables and the response matrices from
Hillenbrandet al. ~1995! study as the dependent measur
This method may result in better correspondence to listen
behavior because, in effect, it can model ambiguity as w
as identity. It does this by optimally matching the gradie
probabilistic identification profiles of a group of listeners
each token of the training set, rather than simply predict
nominal correct categories.

D. Measures of association between probability
matrices

We will compare predicted and observed probabil
matrices using methods similar to those of Nearey and A
mann ~1986!.5 Three measures of association will be r
ported. The first is percentage of modal agreement (Pma),
defined as the percentage of tokens for which the predi
and observed probabilities show the same modal categ
where the modal category is the response with the hig
probability for that token.~See the Appendix for a forma
definition of Pma and other measures of association used
the pattern recognition work.! Note that this measure doe
not depend on the nominally correct category of the origi
recordings. For example, both the listeners and the predic
model might agree that a flat formant token from an origi
/|/ more closely resembles the /(/ category. These results ar
shown in Table VI.

The second measure of association, calledcorrect re-
sponse correlation(r c), is defined as the correlation betwee
predicted and observed probabilities of nominally correct
sponses to each stimulus~ignoring all incorrect responses!.
The value ofr c will approach a maximum of 1.0 if and onl
if variation in the relative probabilities of correct identifica
tion by listeners is matched bycovariationin predicted prob-
abilities on a token-by-token basis. These correlations
shown in Table VII. Although these are conventional cor
lation coefficients from a computational standpoint, it is n
clear whether the usual statistical assumptions apply. Th
fore, following Nearey and Assmann~1986!, we will use
3518 J. Acoust. Soc. Am., Vol. 105, No. 6, June 1999 J
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nonparametric randomization tests~Edgington, 1980! to as-
sess significance levels of the correlation coefficients.

E. Difference correlations

The third measure of association focuses on the ab
of the models to predict changes in listener behavior acr
stimulus conditions. Corresponding stimuli in all the chan
ing formant ~i.e., natural and original formant synthetic!
stimuli must have exactly the same predicted probabilit
because the measurement vectors supplied to the predi
algorithm are identical. However, the measurements for
flat formant synthesis tokens are different, since the form
frequencies are from the steady-state portion. If a patt
recognition algorithm approximates the behavior of our l
teners, we would expectchangesin predicted probabilities of
a given token across conditions to be correlated with chan
in listeners’ responses. Following Nearey and Assma
~1986!, we have calculated correlations between change
predicted probabilities and corresponding changes in
served probabilities. This is done by producing six differen
matrices, one for each of the six changing formant conditio
~the NAT and OF conditions from experiment 1 plus all fo
conditions from experiment 2!. Each is calculated as th
element-by-element difference between the probability m
trix of the given changing formant condition and that of t
FF condition.

Our analysis here will concentrate on thecorrect re-
sponse difference correlation(r cd). The calculation is analo-

TABLE VI. Percent modal agreement values (Pma) for each of the stimulus
sets used in experiment 1. Columns represent different prediction mo
The last column represents an empirical split-sample cross-validation
mate, predicting one-half of the subjects’ responses from the other hal

Experiment
Stimulus

type
Model

A
Model

B
Model

C
Model

C-s
Split-

Sample

1 NAT 94.0 97.0 96.3 96.1 99.5
1 FF 71.3 75.3 88.3 87.9 92.5
1 OF 91.7 92.7 94.3 94.2 96.4
2 NAT 94.0 97.0 96.3 96.3 100.0
2 OF 93.7 94.7 96.7 95.6 97.6
2 NAT-V 94.3 96.7 96.0 96.2 100.0
2 OF-V 95.0 95.7 97.0 96.4 97.7

TABLE VII. Correct response correlations (r c) for the same analyses a
Table VI. Significance levels~by randomization test! shown for completely
cross-validated predictions of models A and B only.

Experiment
Stimulus

type
Model

A
Model

B
Model

C
Model

C-s
Split-

Sample

1 NAT 0.207b 0.370c 0.400 0.345 0.585
1 FF 0.484c 0.547c 0.850 0.814 0.890
1 OF 0.399c 0.387c 0.710 0.660 0.814
2 NAT 0.094 0.305c 0.249 0.197 0.434
2 OF 0.408c 0.426c 0.659 0.626 0.812
2 NAT-V 0.220c 0.372c 0.371 0.326 0.561
2 OF-V 0.480c 0.504c 0.664 0.605 0.751

ap,0.01.
bp,0.005.
cp,0.001.
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gous to the correct response correlation, except that dif
ence matrices are substituted for the original probabi
matrices. This correlation will be large only when predict
and observed correct identification rates change in sim
ways across conditions. Correct response difference cor
tions are shown in Table VIII.

F. Benchmark split-sample predictions

As in Andruski and Nearey~1992!, we have included
benchmark measures of association based on the degr
agreement between subgroups of listeners. This was don
half-sample cross validation. For each experimental con
tion, subjects were split randomly into two groups. An o
served probability matrix was calculated from the respon
of approximately half the listeners~10 of 20 for experiment
1, 13 of 25 for experiment 2!. This was used to provide
nonparametric predictions for the entries of a similar ma
compiled from the remaining data. Measures of associa
from 200 different random splittings were averaged. Th
results are presented in the last column of Tables VI–V
These figures give a rough estimate of the degree of sim
ity of empirical response tables when the experiment is
peated with different listeners.

VI. DISCUSSION

A. Changing formant conditions

Consider first the results for the changing formants c
ditions, i.e., all cases but FF. In Table VI, we see that mo
A shows modal agreement ranging from 91% to 95%
these conditions. Model B, which had access to gradient
pects of listeners’ categorization of the training stimu
shows even higher agreement~about 93%–97%!. A com-
parison with split-sample benchmark in the last column
Table VI shows that there is still room for improvemen
Listeners are somewhat more consistent with each o
~modal agreements range from 96% to 100%! than they are
with our models.

Much of the similarity of models A and B for all of the
non-FF conditions can be attributed to the simple fact th
for the both the listeners and the models, the modal categ
is the nominally correct category for most of the stimuli. T
nominally correct identification rate is 94% for model A an

TABLE VIII. Difference correct response correlations (r cd) of predicted
with observed correct response difference scores when correct respon
the flat formant data is subtracted from each of the corresponding ta
Significance levels~by randomization test! shown for completely cross-
validated predictions of models A and B only.

Experiment
Stimulus

type
Model

A
Model

B
Model

C
Model

C-s
Split-

Sample

1 NAT 0.364a 0.494a 0.703 0.669 0.857
1 FF ¯ ¯ ¯ ¯

1 OF 0.463a 0.541a 0.753 0.699 0.788
2 NAT 0.382a 0.486a 0.694 0.661 0.873
2 OF 0.450a 0.554a 0.772 0.734 0.835
2 NAT-V 0.356a 0.472a 0.701 0.667 0.853
2 OF-V 0.395a 0.497a 0.738 0.698 0.821

ap,0.001.
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97% for model B for each of the changing formant con
tions. The correct identification rate for listeners varies fro
about 95% to 100% across conditions~where the ‘‘winning’’
category is the one with the plurality of listener votes!. How-
ever, correct response correlationsr c in Table VII show that
more than this overall correspondence of correct respons
involved. Recall thatr c is positive only to the extent tha
variations in the probability of nominally correct respons
covary in predicted and observed tables. Therefore, sim
having high average probabilities of correct responses
both observed and predicted matrices will not result in po
tive correlations. The correlations for model A and mode
are all positive and significant for all of the changin
formant conditions. Although the magnitudes of such cor
lations are modest, we should bear in mind that a ceiling
this correlation is imposed by listener-to-listener variabili
An estimate of this ceiling is given in the split-sample co
umn. For the changing-formant cases, the variance accou
for by model A~calculated as the ratio of the squares of t
correlation coefficients! is roughly one-third and that by
model B is roughly one-half that accounted for in the cor
sponding split-sample benchmarks.

B. Flat formant condition

In the case of the FF stimuli, neither thea priori models
~A and B! nor listeners’ identifications show nominally co
rect identification rates nearly as high as in the changi
formant cases. The nominally correct category was cho
by the plurality of listeners in only about 80% of the token
Perhaps not surprisingly, the corresponding nominally c
rect identification rate for model A is considerably lowe
only about 60%. Nonetheless, the modal agreement betw
the two is about 71%. Modal agreement with listeners
higher than the algorithm’s correct identification rate beca
model A predictions showed the same ‘‘modal error’’ as l
teners in 32 of the 59 tokens nominally misidentified by t
plurality of listeners. Model B shows a nominally corre
classification rate of about 73%, which is still somewh
lower than listeners. Again, the modal agreement betw
listeners and model B is higher~about 75%! because mode
B has also predicted the listeners’ ‘‘modal errors’’ correc
in 29 of 59 cases.~This agreement on modal errors is slight
less than with model A. The improvement of model B ov
model A occurs because model B predicts 197 of the 2
correct responses by listeners, while model A correctly p
dicts only 182 of them.!

While the above results clearly suggest a reasonable
gree of correspondence, we also see that listeners are m
more consistent with each other than they are with the m
els. Although the rates of split-sample modal agreement
lower than they were for any of the changing formant co
ditions, at about 93% they are still more than 20 percent
points higher than the model A results for the FF stimuli.

The general pattern of the modal agreement result
also supported by the correlations between observed and
dicted identification rates for nominally correct tokensr c ,
given in Table VII. Both model A and B show highly sig
nificant correlations. However, the magnitudes of the cor

for
s.
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lations ~r c50.48 and 0.54! account for only about one-third
of the variance accounted for in the split-sample predicti
(r c50.89).

While the above models give a reasonable estimation
the overall fit of the predictions, they give only a very ind
rect view of the relative success of predictingchangesin
categorizationacrossconditions. For this, we turn to the co
rect response difference correlations,r cd , in Table VIII. Re-
call that this measure involves correlations of the chan
~from the FF condition to each of the changing formant co
ditions! in observed probabilities of correct response w
corresponding changes in predicted probabilities. Model
and B both show highly significant correlations for chang
in response patterns from the FF condition to each of
other ~changing formant! conditions. Model A accounts fo
only about 17%–35% of the variance accounted for by
split-sample benchmark. Model B fares somewhat better,
counting for about 30%–47% as much as the benchm
The analysis underlyingr cd values is similar in spirit to tha
of Fig. 5. There are two main differences. First, rather th
looking at difference in magnitude of formant change,r cd

involves changes ina posterioriprobabilities~which, for lin-
ear discriminant analysis, are closely related to change
‘‘relative statistical distance’’ to category prototypes! be-
tween the two conditions. Second,r cd values are calculated
on a token-by-token basis, while Fig. 5 involved averag
over vowel categories.6 If a similar averaging is done ove
changes ina posteriori probabilities, correlations acros
vowels are considerably higher for both model A (r 50.60)
and model B (r 50.71) than for the spectral distance me
sure of Fig. 5 (r 50.46).

C. Model C. Predicted probabilities from the
experiment 1 perceptual data

Despite the significance of the results reported abo
the modest size of the goodness of fit measures for the
data relative to the split-sample benchmark must give
some pause. However, it should be kept in mind that mod
A and B were trained only on citation form tokens that mu
certainly show less variability than the overall population
tokens~produced, e.g., at various speaking rates and st
conditions! to which listeners are exposed. Thus even mo
B, which was trained on the rather limited degree of gradi
behavior in listeners’ categorization of the H95 training da
might easily have ‘‘wrapped itself around’’ a solution th
was dominated by listeners’ behavior to relatively prototy
cal stimuli. It is perhaps not surprising that such predictio
might be rather fragile and that they breakdown somew
when applied to the FF stimuli, which can present rat
different stimulus patterns than those in the H95 data
many vowel categories.

We therefore constructed a third, optimized mod
model C. Unlike the other two models which are based
the distinct H95 data set, the predictions here are base
observed response probabilities for the 900 stimuli of exp
ment 1. Model C prediction results are also shown in Tab
VI–VIII. This model is included to see how well a model o
the same ‘‘size’’ as model B might do with the stimuli i
experiments 1 and 2. Since it is not a fully cross-valida
3520 J. Acoust. Soc. Am., Vol. 105, No. 6, June 1999 J
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model, it is likely to present an overly optimistic pictur
~Efron and Tibshirani, 1993! of prediction errors for new
data. However, to the extent that performance of even
model falls below our split-sample benchmarks, we w
know that the shortfall is not due simply to the restrict
nature of the training data and we will have a useful estim
of the lower bound on how much remains to be explaine

In addition, limited cross validation to distinct listene
and distinct tokens is possible with the available data if
reverse the roles of the training and testing data from th
of models A and B. That is, we use logistic regression co
ficients ‘‘frozen’’ at the values estimated by model C to pr
dict listeners’ behavior on the much larger set of natu
tokens of the H95 data. This analysis yields a modal agr
ment of 90.5% with H95 listeners, anr c correlation of 0.453.
If model C is used to classify the H95 training tokens, w
find cross-validated classification rate of 90.5%.~This is the
same as modal agreement with listeners, because the pl
ity of listeners’ responses in the H95 actually selects
nominally correct category for all stimuli.! This is rather re-
markable, given that self-trained linear discriminant analy
on the same data yielded 92.0%. Recall that in model C
are training on measurements based on only 300 diffe
vowels. Those measurements, when optimally mapped to
teners’ responses in the three presentation conditions~OF,
FF, and NAT!, are capable of classifying a completely di
tinct set of nearly 1300 vowels almost as well as linear d
criminant analysis trained on the larger data set itself.

Although we are not able here to provide cross valid
tion to entirely new stimulus tokens in all the conditions
experiments 1 and 2, we can provide true cross valida
across different listeners for all conditions of experimen
~the last four rows in the model C column of Tables VI
VIII ! and we can also provide split-sample cross validat
even in the case of experiment 1, by training on the d
from one-half of the listeners and testing predictions aga
the other half~model C-s!. In the remaining discussion, w
will use the predictions of model C-s, since the measu
presented should provide unbiased estimates of predic
success for the same set of stimuli across new group
listeners.~This is actually the only generalization that th
empirical split-sample benchmarks also address. There i
statistical basis for generalizing those results to new stimu!

We find that modal agreement numbers for model C
~Table VI! are uniformly very high, although they ar
smaller than the split-sample benchmarks by about 1–4
centage points. Correct response correlations,r c , in Table
VII, are generally within about 0.1 of the correspondin
model A and B values, but are higher by about 0.2 to ab
0.3 for the FF and the two OF conditions. However, t
variance accounted for by model C-s still averages o
about half that of the split-sample benchmark, ranging fr
about 0.21 to 0.83, with the highest value for the FF con
tion. Correct response difference correlationsr cd , in Table
VIII, show somewhat more improvement. Model C-s sho
values about 0.16–0.31 higher than corresponding entries
models A and B, accounting for about 57%–79% of the va
ance accounted for by the split-sample benchmark.
3520. M. Hillenbrand and T. M. Nearey: Effects of formant contour
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VII. GENERAL DISCUSSION

The main purpose of this study was to measure the r
tive importance of formant frequency movements in the r
ognition of vowel quality. The substantial difference in ove
all intelligibility between the OF and FF signals strong
confirms several previous findings indicating that spec
change patterns play a secondary but quite important rol
the recognition of vowel quality. The vowels of America
and Canadian English~and almost certainly many othe
vowel systems as well—see Watson and Harrington, 19
for recent data on Australian English! are more properly
modeled not as points in formant space but as trajecto
through formant space.7 However, a simple observation tha
should not be lost in this discussion of spectral change is
the single-slice spectral measurements reported in stu
such as Peterson and Barney~1952! capture most of the in-
formation that is needed to represent vowel quality. In
present study,F0 , duration, and steady-state formant me
surements were sufficient to signal the intended vowel
roughly three-fourths of the utterances, with nearly all of t
misidentifications involving adjacent vowel categories. Str
ingly similar identification rates for vowels with static fo
mant patterns were reported by Fairbanks and Grubb~1961!,
Assmann and Nearey~1986!, and Hillenbrand and Gayver
~1993a! in studies using methods that are quite different fro
those employed here.

The relative importance of formant frequency chan
varies considerably from one vowel to the next. It was g
erally the case that the effect of formant flattening was sm
for vowels that tend to show relatively little formant fre
quency movement and larger for vowels that tend to sh
large changes in formant frequencies. The relationship is
quite that simple, however, as demonstrated by the very
ferent effects of formant flattening for /|/, /,/, and /Å/, which
showed roughly similar average magnitudes of formant
quency change.

A significant limitation of this study is the exclusive us
of the simple /hVd/ environment for all utterances. The re
tionships between spectral change patterns and vowel i
tity are guaranteed to be more complex when the conso
environment preceding and following the vowel is allow
to vary. We are currently studying the acoustics and perc
tion of a new multitalker CVC database with variation
both consonants. Preliminary analysis of this database~Hill-
enbrand and Clark, 1997! using a statistical pattern classifie
shows substantially better classification accuracy for t
samples of the formant pattern rather than a single sampl
spite of the complexities introduced by variation in cons
nant environment. The classification advantage for the t
sample case, however, was smaller than we observed
similar discriminant analysis of our /hVd/ database~Hillen-
brandet al., 1995!.

The pattern recognition methods described above u
relatively simple approach to vowel specification based
duration, steady-stateF0 , and formant frequency measur
ments at two temporal intervals in the vowel. Such a rep
sentation appears to go a considerable distance toward
counting for the results of experiments 1 and 2 sin
significant correlations were found between various asp
3521 J. Acoust. Soc. Am., Vol. 105, No. 6, June 1999 J
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of listeners’ behavior and the purelya priori predictions of
models A and B. However, the agreement between listen
measured by split-sample benchmarks is typically better b
factor of about 2 than even our best predictions. This s
gests that we have gone no more than about half the dist
to the goal of accounting for listeners’ behavior in these
periments.

In our view, the most significant challenge presented
the findings reported here is to explain the difference in
telligibility between the natural signals and the OF synthe
signals. The OF signals were, of course, highly intelligib
indicating that most of the information that is needed to c
ture vowel identity is preserved by theF0 , duration, and
formant measurements that were used to drive the form
synthesizer. But the drop in intelligibility resulting from for
mant vocoding makes it equally clear that a certain amo
of phonetically relevant information was lost.8 Two possible
explanations for this finding were pursued here. First,
analysis of the shifts in vowel identity between the NAT a
OF signals suggested that it was unlikely that any simp
systematic error in formant measurement could account
the most common shifts in vowel identity. It was also show
that the failure to faithfully copy the initial and final conso
nants can at best explain a very small share of this eff
One plausible explanation that was not pursued in this st
is that the transformation to a formant representation res
in the failure to preserve spectral shape details that are
evant to vowel identity. The formant synthesizer is driv
entirely by spectral-peak frequencies, meaning that form
amplitudes, bandwidths, spectral tilt, individual harmon
amplitudes, and other spectral details will often not ma
well between the natural and synthetic utterances. There
been a fair amount of discussion about the relative contri
tions of formant frequencies and detailed spectral shape~e.g.,
Klatt, 1982a,b; Bladon and Lindblom, 1981; Bladon, 198
Zahorian and Jagharghi, 1986, 1987; Zahorian and Zha
1992!, but the question is far from resolved. Work that
currently underway involves a close examination of the s
nals from the present study that showed significant shifts
labeling between the natural and OF formant-synthesis c
ditions in an effort to understand what specific spectral sh
details might play a role in judgments of vowel identity.
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APPENDIX. FORMAL DEFINITIONS OF QUANTITIES
USED IN PATTERN RECOGNITION STUDIES

The observed probability matrix has elementsOs(t,v),
where the subscripts represents a given stimulus conditio
~e.g., NAT, FF, etc.!. t ranges over the 300 tokens andv over
the 12 vowel response categories. Assume the order of
3521. M. Hillenbrand and T. M. Nearey: Effects of formant contour
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vowels /{,(,|,},,,Ä,Å,Ç,),É,#,//. Thus,Os(4,3) represents the
proportion of listeners who responded to stimulus numbe
with vowel category 3. The predicted probability matrix wi
elementsPs(t,v) is similar in structure, but containsa pos-
teriori probability estimates from the pattern recogniti
models. These matrices are used for the definitions of
other quantities used in the pattern recognition studies.

Percentage modal agreement for a given stimulus co
tion can be defined as:

100S t$M @argmaxv~Os~ t,v !,argmaxv~Ps~ t,v !#%/T!;

where M (x,y)51, if x5y and 0 otherwise, argmaxv indi-
cates the column index of the largest element in a row anT
is the total number of tokens~300 in these experiments!.

For correct response correlations, define the obser
correct probability score for tokent as Cs(t)5Os(t,ct),
wherect is the column number of the correct response
tokent of the observed probability matrix. Thus if stimulus
corresponded to the vowel /|/ ~vowel number 3! in the origi-
nal recordings (s5NAT), then Cs(4) is Os(4,3). Predicted
correct probabilities are similarly definedDs(t)5Ps(t,ct).

Correct response correlations are then defined as
Pearson correlation between the elements ofCs(t) and the
corresponding elements ofDs(t). Randomization tests ar
calculated by randomizing the token index for the predic
tokens. Correct response difference correlations,r cd , are
based on changes in correct identification probabilities
tween all moving formant conditions and the FF conditio
Define correct response difference scores asYs(t)5Cs(t)
2CFF(t) for observed probabilities and asXs(t)5Ds(t)
2DFF(t) for predicted, where the subscript FF refers to t
fixed formant condition. Correct response difference corre
tions for each conditions ~except FF, for which all scores ar
by definition zero! are then the Pearson correlations betwe
Ys(t) andXs(t).

1Note that the formant contour for the /,/ in Fig. 2 shows two relatively
stationary segments. While this sort of pattern was not very common o
all, it did occur with some regularity for this vowel. There was nothing
the formal procedure for judging steady-state times that would have
vented the research assistants who made these visually based judg
from choosing a frame in the offglide as the steadiest point in the vow
Inspection of these measurements by the first author showed that this
occurred.

2Note that the final /$/ segments of the OF and FF signals matched
original signals fairly closely for overall segment duration, but the origi
and synthetic signals did not necessarily match with respect to the rel
durations of the closure and burst intervals.

3Speaker-within-group could also be considered a random effect, altho
this is not typically done in phonetics experiments. Furthermore, the s
pling procedure used did not allow for systematic testing effects as s
Strictly speaking, we have no statistical basis for generalizing to stim
beyond those used in the experiments. Furthermore, statements abou
ject and vowel effects are to some degree confounded by individual spe
differences. However, our main focus is on differences among conditi
and we are using ANOVA primarily as a screening tool to draw our att
tion to possible patterns in the data that are correlated with vowel
speaker group.

4As a further check on the stimulus generation process, several dozen o
tokens showing the largest changes in identification from the NAT to
conditions in experiment 1 were reanalyzed at the University of Albe
using software distinct from that used in Hillenbrandet al. ~1995!. This
reanalysis showed that the retracked formant frequencies from the re
thesized stimuli agreed very closely with those of the original signals. Th
although other aspects of the stimuli~such as formant amplitudes and ban
3522 J. Acoust. Soc. Am., Vol. 105, No. 6, June 1999 J
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widths! do vary, we are satisfied that the frequencies ofF1 through F3

match quite well.
5The analyses reported here focus on the probabilities of a single resp
~either the correct original category or the modal response! in each stimulus
row of a probability matrix. We have also performed profile correlation a
difference profile correlation analyses similar to those reported in Nea
and Assmann~1986! and Andruski and Nearey~1992! that use all entries of
the probability matrices. These analyses revealed patterns generally si
to those reported here.

6There is also a third, minor difference. Figure 5 counted the numbe
tokens whose correct identification changed from OF to FF conditio
regardless of direction, whiler cd measures signed changes in probability
correct identification across tokens. A very similar correlation results if
latter difference in response measure is substituted in the analysis of F

7An anonymous reviewer suggested that listeners might, ‘‘... base their
cisions not on the formant frequencies at the 20%, the 80% or the
combined but on the modal formant frequencies of the vowel product
i.e., theF1, F2, F3 combination that occurs the most often ...’’ for th
nominally monophthongal vowels. We believe that this is an unlikely p
sibility. The clearest evidence, in our view, comes from the gating exp
ments of Nearey and Assmann~1986!, showing excellent identification of
silent-center vowels~including the nominal monophthongs /(/, /}/, and /,/!
consisting of brief onsets and offsets, but poor labeling of the same
ments played in reverse order.

8It is worth noting that the method that we used to track changes in vo
color from the natural signals to the OF synthetic versions relies entirely
changes in absolute identification. This method is rather coarse. There
clearly many utterances in which the vowel color appeared to us to cha
from NAT to OF, but the change was not sufficient to induce a label
shift for most of the listeners. Conversely, in listening to the natural and
versions of signals showing a large number of labeling shifts, we h
generally been impressed at the subtlety of the change in vowel color
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