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The purpose of this study was to examine the role of formant frequency movements in vowel
recognition. Measurements of vowel duration, fundamental frequency, and formant contours were
taken from a database of acoustic measurements of 1668 /hVd/ utterances spoken by 45 men, 48
women, and 46 childrefHillenbrand et al,, J. Acoust. Soc. Am97, 3099-3111(1995]. A
300-utterance subset was selected from this database, representing equal numbers of 12 vowels and
approximately equal numbers of tokens produced by men, women, and children. Listeners were
asked to identify the original, naturally produced signals and two formant-synthesized versions. One
set of “original formant” (OF) synthetic signals was generated using the measured formant
contours, and a second set of “flat formar(fF) signals was synthesized with formant frequencies
fixed at the values measured at the steadiest portion of the vowel. Results indladeéd: OF
synthetic signals were identified with substantially greater accuracy than the FF signdls) tred
naturally produced signals were identified with greater accuracy than the OF synthetic signals.
Pattern recognition results showed that a simple approach to vowel specification based on duration,
steady-stat&,, and formant frequency measurements at 20% and 80% of vowel duration accounts
for much but by no means all of the variation in listeners’ labeling of the three types of stimuli.
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PACS numbers: 43.72.Ar, 43.71.Es, 43.72.34]

INTRODUCTION vowel perception. For example, Strangeal. (1983 and

) . , Nearey and Assmani1986 showed high identification rates
There is a long tradition of representing vowels by a, «gjlent center” stimuli in which the vowel centers were

single spectral cross section taken from the nucleus of th?ated out, leaving only brief onglides and offglidese also
vowel. The essence of this approach was summarized nicelykinset al, 1983: Parker and Diehl, 1984Nearey and
by Tiffany (1953: o Assmann (1986 showed that it was not simply spectral
It has been commonly assumed or implied that the €sq,qyement that was required, but a specific pattern of spec-
sential physical specification of a vowel phoneme couldy 5| change throughout the course of the vowel. Brief ex-
be accomplished in terms of its acoustic SPectrum agerpts of naturally produced vowels excised from nucleus
measured over a single fundamental period, or over anq offglide segments were presented to listeners in three
short interval including at most a few cycles of the fun- .,nitions:(1) natural order(nucleus followed by offglidg
damental frequency. That is to say, each vowel ha; b.ee&) repeated nucleugnucleus followed by itsef and (3)
a'lssum'ed to ha_tve.:?\ unique energy vs frequency dIStrIbLP'everse ordefoffglide followed by nucleus Identification
tion, with the significant physical variables all accountedg o rates for the natural-order signals were comparable to
for by an es_sentlally cr_o_ss-sectlonal analysis of the VOWihose for the original, unmodified vowels, while the
el’s harmonic composition(p. 290. repeated-nucleus and reverse-order conditions produced
The potential limitations of this static approach to vowel much higher error rates.
quality were recognized by Tiffany, who noted that vowel There is also evidence that vowels with static formant
duration and changes over time in formant frequencies angatterns are not particularly well identified. Hillenbrand and
the fundamental frequency{) may play a role in vowel Gayvert(1993a synthesized 300-ms monotone vowels with
perception(see also similar comments by Potter and Stein-stationary formant patterns from th&, and formant mea-
berg, 1950; Peterson and Barney, 1952; and Stevens astirements of each of the 1520 tokens in the Peterson and
House, 1968 While the role ofF, contour and duration Barney (1952 /hVd/ databas€?2 repetitions of 10 vowels
received a fair amount of attention in early accounts of vowebkpoken by 33 men, 28 women, and 15 childrefhe 27%
recognition (e.g., Ainsworth, 1972; Bennett, 1968; Black, identification error rate for these steady-state synthetic sig-
1949; Stevens, 1959; Tiffany, 1953t has only been more nals was nearly five times greater than the error rate reported
recently that the role of formant frequency movements hady Peterson and Barney for the original utterances. Synthe-
been examined systematically. sizing the signals with a falling pitch contour resulted in a
Evidence from several studies suggests that formant frehighly significant but relatively small drop in the error rate.
guency movements do, in fact, play an important role inThese results suggest that the duration and spectral change
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information that was removed from these stimuli by theleading, but rather, that pattern recognition studies need to be
steady-state synthesis method plays an important role ifollowed up with appropriately designed perception experi-
vowel recognition. Similarly high identification error rates ments. The purpose of the present experiment was to follow
were reported by Fairbanks and Grufd®61) for naturally  up on the pattern classification tests reported in Hillenbrand
produced sustained vowels. et al. (1995 by asking listeners to identify naturally pro-
Evidence implicating a role for spectral change alsoduced /hVd/ signals and two synthetically generated ver-
comes from studies using statistically based pattern classifsions. One set of synthesized signals was generated using the
ers. For example, Assmami al. (1982 trained a linear dis-
criminant classifier with(a) steady-staté&, and formant in-
formation alone; and(b) steady-state information plus 2500 | ) MEN
formant slopes and duration. The pattern classification model F e~
that incorporated dynamic information provided more accu- 2100
rate predictions of error patterns produced by human listen- \,
ers(see also Nearey and Assmann, 1986; Parker and Diehl,
1984). Hillenbrandet al. (1995 trained a quadratic discrimi-
nant classifier oy and formant measurements from /hvd/
utterances spoken by 45 men, 48 women, and 46 children.
The pattern classifier was trained on various combinations of
acoustic measurements, with formant frequencies sampled
either at steady state or at 20% and 80% of vowel duration.
The classifier was much more accurate when it was trained 900 -
on two samples of the formant pattern. For example, ®ith 300 200 00 600 700 800
and F, alone, the classification accuracy was 71% for a
single sample at steady state and 91% for two samples of the
formant pattern. Two-sample parameter sets including either
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brand and Gayvert, 1993b; Miller, 1984, 1989; Nearey,

1992; Neareyet al, 1979; Syrdal and Gopal, 1986How- 1800
ever, Hillenbrand and Gayve{1993a reported a 27% error
rate for human listeners who were asked to identify static
vowels synthesized from the Peterson and Baii®%2 F

and formant measurements, and Fairbanks and GLéui) 1200 |
reported a 26% error rate for naturally produced static vow-

els. The Fairbanks and Grubb findings are especially striking 400 700 800 900 1000
since there were just seven talkers, all of them men, and the
investigators went to great lengths to ensure the quality and
representativeness of their test signals. FIG. 1. Spectral change patterns for /hVd/ utterances produced by men,

. . : - women, and children. The symbol identifying each vowel is plotted at the
In our view, the primary lesson from this mismatch of F,—F, value for the second sample of the formant patt@®P6 of vowel

e . . . 1
pattern reppgn.ltlon re_SU“S ahd listening .tesfts is not that p_atiuratior), and a line connects this point to the first sam@8% of vowel
tern classification evidence is necessarily irrelevant or miseuration. The measurements are from Hillenbragtdal. (1995.
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original measured formant contours and a second set of sig- SOLID LINE: FORMANTS FIXED AT "STEADY STATE"

. . . DOTTED LINE: ORIGINAL MEASURED FORMANT CONTOUR
nals was synthesized with flat formants, fixed at the values 3000 — , .
measured at the steadiest portion of the vowel.

S 2500 FLAT-FORMANT (FF) SYNTHESIS
5 H '
8 2000 ™
I. EXPERIMENT 1. METHODS g T
A. Test signals E 100} vowr ::Zi;:o on s éé_\é%/u
B . . — :
The test signals consisted of a 300-stimulus subset of the§ SIART & & STATE e, |
1668 /hVd/ utterances recorded by Hillenbragichl. (1995. s00¢ L T

The talkers in that study consisted of 45 men, 48 women, and ol.
46 10- to 12-year-old children. Recordings were made of  200f

subjects producing the vowelsY, e, €, &, a,9, 0, U, u, A, 3/ 2 100

in /hvd/ syllables. A computer program was written to select

a 300-stimulus subset from the full set of 1668 signals. The 05 ” o0 g pos s
300 signals were selected at random, but with the following TIME (msec)

constraints:(a) signals showing formant mergers involving 6. 2. Sehemat t ustrating th tod that i
any of the three lowest formants were omittéhl) signals - £ Sehematic spectrograms Hustiating the method that was used to
with identification error rategmeasured in the original 1995 synthesize the original-forman®F) and flat-forman(FF) signals.

study) of 15% or greater were omitted; afd) all 12 vowels

were equally represented. The 300-stimulus set that was S€. Synthesis method

lected by this method included tokens from 123 of the 139
talkers, with 30% of the tokens from men, 36% from women
and 34% from children.

Test signals consisted of the 300 original, 16-kHz digi-
‘tized utterances and two synthesized versions, for a total of
900 signals. The Klatt and Kla(1990 formant synthesizer,
running at a 16-kHz sample rate, was used to generate two
sets of synthetic signals. The “original formantOF) and
“flat format” (FF) synthesis methods are illustrated in Fig.
Acoustic measurement techniques are described in deta?. The OF signals were synthesized using the original mea-
in Hillenbrand et al. (1995. Briefly, peaks were extracted sured formant contours, shown by the dashed curves. The
from LPC spectra every 8 ms and formant contours forvowel in this example isa&/, and the measured formant con-
F,—F, were edited by hand during the vowel using a custonmtour shows a pronounced offglide which is quite common in
interactive editing tool. Measurements were also made,of our data for this vowel. The FF signals were synthesized
contour(also edited by hand using the same editingjtaold  with flat formants, fixed at the values measured at steady
three temporal quantitie$a) the onset of the vowelb) the  state, shown by the solid curves in Fig! Eor these signals
offset of the vowel; andc) steady-state time; i.e., the single a 40-ms linear transition connected the steady-state values to
frame at which the formant pattern was judged by visualthe F,—F; values that were measured at the end of the
inspection to be maximally steady. Vowel onsets and offsetsowel. Both sets of synthetic signals were generated with the
were also judged by visual inspection, using standard meaneasured-, contours and at their measured durations. Dur-
surement criteria(Peterson and Lehiste, 1960Average ing the h/ interval (i.e., between the beginning of the stimu-
spectral change patterns for the full data set are shown in Fidus and the start of the vowel(a) the voicing amplitude
1. The figure was created by connecting a line between théAV) parameter was set to zero and the aspiration amplitude
formant frequencies sampled at 20% and 80% of vowel du¢AH) parameter was controlled by the measured rms inten-
ration; the symbol for each vowel category is plotted at thesity of the signal being synthesizefh)) the F; bandwidth
location of the second measurement. The measurement resas set to 300 Hz; an¢t) formant values foilF;—F 3 were
sults are described in some detail in Hillenbraetdal, but  set to the values that were measured at the start of the vowel.
there are two points about the formant-change patterns iAt all other times formant bandwidths remained at their de-
Fig. 1 that are particularly relevant to the present study. Firstfault values (B;=90, B,=110, B;=170, B,=400, Bg
with the exception ofi/ and &/, the formant frequency val- =500, Bg=800). During the vowel the AH parameter was
ues show a good deal of change throughout the course of theet to zero and the AV parameter was driven by the mea-
vowel. For example, note that the vowet$ 4nd b/, which ~ sured rms energy of the signal. Valueskof were set sepa-
are known to be diphthongized, do not show spectral changetely for each vowel and talker group based on data from
magnitudes that are unusually large relative to the other vowHlillenbrand et al. (1995. Values of F5 and Fg were set
els. Second, the formants change in such a way as to enhanseparately for each talker group based on data from Rabiner
the contrast between vowels with similar formant patterns(1968. Formant amplitudes were set automatically during
For example, the pairse/—/e/ and L/—/u/, which show a the h/ and vowel by running the synthesizer in cascade
good deal of overlap when the vowels of individual talkersmode. A final 4/ was simulated by(a) rampingF; 100 Hz
are plotted in stati¢-,—F, space(see Fig. 4 of Hillenbrand below its measured value at the end of the vowel in four
et al), show very different patterns of formant-frequency steps of 25 Hz; andb) switching from the cascade to the
change. parallel branch of the synthesizer and setting the resonator

B. Acoustic measurements
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FIG. 4. Percent correct identification of the naturally produced signals
FIG. 3. Percent correct identification of the naturally produced signals, th&NAT), the original-formant(OF) synthetic signals, and the flat-formant
original-formant synthetic signals, and the flat-formant synthetic signalssynthetic signals separated by vowel category.
Error bars indicate one standard deviation. The percentages at the top indi-
cate the mean percent correct for each condition pooled across the three

talker groups. significant effect for stimulus type[F(2,38)=860.7,
p<0.0001 and talker grougF(2,38)=3.5, p<0.05] and a
gains of F,—Fg 30 dB below theF, resonator gain; i.e., significant interaction [F(4,76)=10.2, p<0.0001.2
producing a “voice bar” with energy primarily & ;. Since  Newman—Keulspost hoctests showed significant differ-
we were not entirely satisfied with our efforts to generateences among all three stimulus types. Although statistically
natural sounding final release bursts with the synthesizer, theliable, the effects for talker group are relatively small and
signals were generated unreleased, and release bursts thahuniform across stimulus type, as revealed by the signifi-
had been excised from naturally produced signals spoken hyant interaction. For the naturally produced signpsst hoc
one man, one woman, and one child were appended to threnalyses showed that the men’s and women’s tokens were

end of the stimul? identified with greater accuracy than the children’s tokens.
The pattern was different for the OF synthetic signals, which
D. Listening Test showed greater intelligibility for the men’s tokens as com-

Twenty subjects who had taken or were currently er1_pared to those of the women and children. A third pattern
rolled in an undergraduate course in phonetics served as [l pbserved for the F.F. ;ynthetlc signals, V,Vh'Ch showed
teners. The choice of listeners with training in phonetic tran-S'gnmcamIy poorer intelligibility for the women’s tokens as

scription was motivated by the findings of Assm | compared to the men and the children. One clear conclusion
(1982 indicating that many of the identification errors madef";r: ::)'Se(filg;rcr:';(;daszfrg;rzll;irggrgft;scfstﬁgts ils tgﬁ;ghuzﬁ
by untrained subjects are due to listeners’ uncertainty aboqﬁ ’ '

how to map perceived vowel quality onto orthographic sym- e spectrum envelope is more poorly defined at higher fun-

bols. Subjects were tested one at a time in a quiet room in éznmceen;?l;ﬁ?nuﬁg(i::i/sér;ger;ﬂ:ii:g;?uE;@ecir‘:‘gc\)/vgv\?; evi-
single session lasting about 1 h. Listeners identified each qQ P P &9

the 900 test signal€300 original signals, 300 OF signals Intelligibility [see also Carlsoet a.I.(l'975), and Hillenbrand
and 300 FF signalgpresented in random order. The presen-and FQayverﬁlQ??e), for relatetd flndlngt}, tely f h
tation order was reshuffled prior to each listening session. igure SNOWS percent correct separately for eac
Stimuli were low-pass filtered at 6.9 kHz, amplified, and vowel category. Confusion matrices for the_ thr_ee conditions
delivered at approximately 75 dBA over a single IoudspeakeFlre shown_ in Tables I_”I.' It can _be seen in Fig. 4 that the
(Boston Acoustics ABppositioned approximatgll m from effect of stimulus type varies considerably from one vowel to

the subject's head. Subjects entered their responses ont ¢ next. This was confirmed by a two-way repeated-

. . easures ANOVA(using arcsine-transformed percent cor-
k label h both ph I ) .
computer keyboard labeled with both phonetic symbols an(?;ct value$ which tested the effects of stimulus typeAT

key words for the 12 vowels. Subjects were allowed to repeat : .
stimuli as many times as they wished before entering a retcrsus OF synthesis Versus FF syntheaisd \{owel. The
sponse. ANOVA showed a significant effect for stimulus type
[F(2,38)=799.9, p<0.00] and vowel [F(11,209)=28.0,
p<0.001 as well as a significant interactigi-(22,418)
=46.7,p<0.001. The nature of the interaction will be dis-
Figure 3 shows overall percent correct for each stimulugussed and further analyzed below.
type and talker group averaged across all vowels. It can be Note that the pattern fon/ appears to differ markedly
seen that the naturally produced sign@B\T) were identi-  from the other vowels since this vowel showed the highest
fied with the greatest accuracy, followed by the OF and FRecognition accuracy in the FF condition and the lowest ac-
synthesized signals. A two-way repeated-measures ANOVAuracy for the naturally produced signals. Examination of the

using arcsine-transformed percent correct values showed anfusion matrices in Tables I-I1ll suggests that the overall

Il. EXPERIMENT 1. RESULTS AND DISCUSSION

3512 J. Acoust. Soc. Am., Vol. 105, No. 6, June 1999 J. M. Hillenbrand and T. M. Nearey: Effects of formant contour 3512



TABLE |. Confusion matrix for the naturally produced signals. Values on the main diagonal, indicating the
percentage of trials in which the listeners’ responses matched the vowel intended by the talker, are shown in
boldface. The response means given in the last row indicate the percentage of trials in which a given vowel was
used as a listener response. Each vowel, as classified by the speaker’s intention, was presented on 8.3% of the

trials.
Vowel identified by listener
fil n lel lel lel  lal /ol lo/ ful ha/ Inl /34

fil 982 08 04 06
lel 02 02 978 16 - 0.2
Vowel el 20 972 04 04
intended  /a/ 32 922 40 .- 0.6
by Iol 02 08 96 872 04 06 - 1.6

Response means: 8.2 8.2 8.3 8.1 9.1 8.7 7.7 8.2 8.6 81 85 8.3

percent correct figures may be misleading in some respects. In the analyses that follow, we will first consider the

The last row in each of these tables gives the responseffect of flattening the formants, and then consider the dif-
means; that is, the percentage of trials in which a giverferences in intelligibility between the natural signals and the

vowel was used as a response. Since each of the 12 vowel¥= synthetic signals.

\évas presented equally oft_en, an ideal I|§tgner v_vhose reé. Effects of formant flattening
ponses always agreed with the speaker’s intention woul

use each symbol on 8.3% of the trials. Note that the percent- The drop in intelligibility that occurs as a result of flat-
age of b/ responses increases from 7.7% for the naturalljtening the formants is in general quite large. However, as
produced signals, to 8.6% for the OF synthetic signals, td~ig. 4 shows, the effect varies considerably from one vowel
11.2% for the FF synthetic signals. In other words, for reato the next. This was confirmed by a two-way repeated-
sons that are not clear, there is an increasing probability of measures ANOVA comparing just the OF and FF conditions,
listener hearingal across these three conditions. Althoughwhich showed significant effects for stimulus tyjde(1,19)

the overall percent correct fon//improves from natural =366.1, p<0.00]] and vowel [F(11,209)=48.4,
speech to OF synthesis to FF synthesis, the probability of @<0.001], and a significant interactiofF (11,209)=44.0,
correct response on trials in whicll Ivas used as a response p<0.001]. Vowels showing the largest changes in intelligi-
declines from 94.1% for the natural signals to 91.1% for thebility as a result of formant flattening were//(52.8%, /a/

OF synthetic signals to 83.7% for the FF synthetic signals. (31.499, /u/ (27.699, /a/ (22.6%), and b/ (22.29.

TABLE Il. Confusion matrix for the original-formantOF) synthetic signals. Values on the main diagonal,
indicating the percentage of trials in which the listeners’ responses matched the vowel intended by the talker,
are shown in boldface. The response means given in the last row indicate the percentage of trials in which a
given vowel was used as a listener response. Each vowel, as classified by the speaker’s intention, was presented
on 8.3% of the trials.

Vowel identified by listener

il hl lel el el lal 1ol lol lul u/ Inl 3/

1il 916 4.6 36 02
n 06 964 0.2 24 04

Jel 76 48 854 20 - 02 .-
Je/ ... 928 56 - 02 1.4
Vowel el 04 - 0.2 18.6 808 ..
intended  /a/ 06 64 828 66 - 3.0 06
by Jol 42 942 04 - 1.2
talker lo/ 04 --- 894 52 42 08
Iul 02 .- 10 894 20 70 04
Iu/ 02 -~ 114 176 704 0.4
Ial 06 20 26 08 46 -+ 894
/3] 1.0 .- . 99.0

Response means: 8.4 8.8 7.5 9.8 78 75 8.6 8.6 9.7 6.4 8.6 8.3
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TABLE lIl. Confusion matrix for the flat-formantFF) synthetic signals. Values on the main diagonal, indi-

cating the percentage of trials in which the listeners’ responses matched the vowel intended by the talker, are
shown in boldface. The response means given in the last row indicate the percentage of trials in which a given
vowel was used as a listener response. Each vowel, as classified by the speaker’s intention, was presented on
8.3% of the trials.

Vowel identified by listener

fil n lel lel l=l ol fol fol vl il I I3

fil 89.6 6.6 28 08 - 0.2
n 44 886 28 36 06 -
lel 120 294 326 216 4.4

lel 0.2 0.2 08 876 9.6 10 - 0.4 0.2
Vowel el 1.2 7.4 42.0 494
intended la/ e e B 04 52 852 74 0.8 04 - 0.4 0.2
by 1o/ .. 22 960 1.8 -
talker lo/ 02 - 32 122 672 9.0 7.0 1.2
vl . 132 61.8 10.2 146 0.2
fu/ 02 - 0.2 212 164 610 0.8 0.2
Ial 04 112 186 2.2 08 --- 66.8
/3l 02 - 998

Response means: 85 105 39 133 58 85 11.2 8.9 7.5 6.5 7.0 8.4

Table IV shows what kinds of changes in identification As might be expected, vowels that typically show rela-
occurred. The analysis focused on instances in which a givetively large amounts of spectral change tended to be more
listener identified the OF version of a signal correctlg., as  strongly affected by formant flattening. Figure 5 shows the
the vowel intended by the talkebut the FF version incor- relationship between the average magnitude of formant fre-
rectly. The symbols going down the rows indicate the vowelquency change for each vowel and the total number of
as classified both by the speaker’s intention and the listener'sorrect-to-incorrect changes in identificatigne., the last
labeling of the OF version; the columns show how the FFcolumn of Table I\. The magnitude of spectral change for
versions of these signals were identified. The last colummreach vowel category was represented as the average length
shows the total number of changes in identification in whichof a vector connecting formant measurements sampled at
the OF version was heard as the intended vowel but the FE0% of vowel duration and 80% of vowel duration. The
version was heard as some other vowel. The most frequentlyector was drawn in a three-dimensional space consisting of
occurring changes in identificatiofshown in boldface in log-transformed values d¢f,, F,, andF3. As Fig. 5 shows,
Table IV) involved £/ shifting to 4/ or /e/, I/ shifting to &/, the vowels tend to cluster into one group in the lower left
[ul shifting to A/, o/, or lu/, Ia/ shifting to b/ or /o/, and b/  showing relatively little spectral change and few changes in
shifting to b/. Labeling changes involving these five vowels labeling, and a second group in the upper right showing a
accounted for approximately three-quarters of all correct-togood deal of spectral change and many shifts in labeling. The
incorrect vowel shifts. A similar analysis that included all relationship is far from perfect, however. For example, the
shifts in vowel color between OF and FF signals, whethemperceptual effect of formant flattening fas/ fis quite large,
from correct to incorrect or otherwise, yielded a pattern ofeven though the magnitude of formant frequency change is
results that was quite similar to that shown in Table IV.  relatively modest in relation to the other vowels. We experi-

TABLE IV. Changes in phonetic labeling for signals whose original-formant versions were identified correctly
but whose flat-formant versions were identified as a vowel other than that intended by the talker. The most
frequently occurring vowel shifts are shown in boldface.

FF synthetic vowel identified as

hil nolel el Jel  lal bl lol  fol hl Ia /3 Total

identified 16Yi 11 7 18
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largest changes in intelligibility as a result of formant coding
were 4/ (25.099, /e/ (16.499, /el (12.499, and &/ (9.4%).
Table V shows the distribution of responses for all in-
stances in which a given listener identified the original signal
200 - correctly but identified the OF synthetic version as a vowel
other than that intended by the talker. The most frequently
occurring changes in identification involved/ /shifting to
100 | u lul or lol, =/ shifting to £/, and £/ shifting to A/. Labeling
changes involvingu/ and &/ alone accounted for 37.8% of
i~ I q all correct-to-incorrect vowel shifts. These comparisons raise
an obvious question: Why is there any difference in intelli-
3 p 9 " s gibility between the natural signals and OF synthetic signals?
Amount of Spectral Change (Log Units x 100) In other words, what phonetically relevant information is not

preserved by the formant frequency representation that

FIG. 5. Total number of correct-to-incorrect changes in identification as ajrjyes the synthesizer during the vowel?
function of the average magnitude of formant frequency change for each o ibili h b | d. is th he d
vowel. The magnitude of formant change for each vowel category was rep- ne possibility that cannot be ruled out Is that the drop

resented as the average length of a vector connecting formant measuremetfisintelligibility may occur at least in part as a result of errors
sampled at 20% of vowel duration and 80% of vowel duration. The vectorin the estimation of formant frequencies. Measurement—
was drawn in a three-dimensional space consisting of log-transformed Va?'emeasurement reliability for the LPC-derived formant fre-
ues ofF,, F,, andF;. . .

quency estimates is on the order of 1.0%—-2.0% of formant

frequency forF; and 1.0%-1.5% of formant frequency for
mented with sample points other than 20% and 80%, ang¢t, andF, (Hillenbrandet al, 1995.* However, these reli-

with a number of alternate methods of representing spectra{yjjity estimates do not address the validity question, and the
change magnitude, including calculations based on normahossibility exists that LPC produces systematic errors in for-
ization schemes proposed by Syr@2985; Syrdal and Go-  mant frequency measurement. For example, in a relatively
pal (1986; Miller (1984, 1989 and Petersofil95). Results  gmgll-scale study, Di Benedett¢1989 reported LPC-
of these additional analyses were very similar to the generalerived estimates oF, and F5 that were very similar to
pattern shown in Fig. 5. those derived from smoothed wide-band Fourier spectra, but
estimates of~, that were systematically lower when mea-
sured with LPC. A larger and more formal comparison of
180 /hVvd/ utterances by Hillenbrared al. (1995 also found
Although the main purpose of this study was to examineestimates of, and F5 that were similar between LPC and
the effects of formant flattening, the difference in intelligi- smoothed Fourier spectra; however, estimates- pfwere
bility that was observed between the naturally produced sigfound to be approximately 40 Haigher for LPC.
nals and the OF synthetic signals raises some important The main question that is raised by these measurement
guestions about the cues underlying the perception of voweassues is whether systematic errors in formant frequency es-
color. A two-way repeated-measures ANOVA comparingtimation might account for the shifts in vowel quality that
just the NAT and OF synthesis conditions showed significantvere observed between the natural and the OF synthetic sig-
effects for stimulus typdF(1,19)=371.8, p<0.001]] and nals. For example, the many labeling shifts that occurred
vowel [F(11,209)= 10.6, p<<0.001], and a significant inter- from /u/ to /u/ and ke/ to /e/ might be explained by positing
action [F(11,209)=21.0, p<0.001]. Vowels showing the that estimates of; are systematically high. Figure 6 was
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B. Natural signals versus OF synthesis

TABLE V. Changes in phonetic labeling for naturally produced signals that were identified correctly but whose
original-formant synthetic versions were identified as a vowel other than that intended by the talker. The most
frequently occurring vowel shifts are shown in boldface.

OF synthetic vowel identified as

hil nolel el Jel  lal bl fol  ful /o Ia /3 Total

! 3 12 2 ... 17
identified 16Yi 16 2 5 23
vl 1 5 - 10 27 - 45
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FIG. 6. This figure shows the most frequently occurring shifts in vowel FIG. 7. Percent correct identification for four types of utteran¢asnatu-
e . . ) . . _rally spoken /hVd/ signal$NAT), (b) the NAT signals with the initial and
color from NAT to OF; that is, the number of instances in which the natu final consonants edited 0@NAT-V), (c) original-formant synthetic /hva/

rally spoken version of an utterance was correctly identified but the o“gmal-signals(OF), and (d) the vowels only from the OF signal©F-V). Error

formant synthetic version was identified as some other vowel. To provide %ars indicate 1 s.d. The percentages above each bar indicate the mean per-
reference frame for formant space, phonetic symbols are plotted at the av- T P 9 p

erage values df ; andF, for the women. The tails of the arrows are plotted cent correct for each condition.
at the formant values for the correctly identified natural signal, and the

arrow heads point at the phonetic label assigned to the OF synthetic versigmisleading to listeners in some way. Experiment 2 was de-
of the signal. The line thickness is roughly proportional to the number °fsigned to test this possibility

labeling shifts.

lll. EXPERIMENT 2. METHODS
designed to address this question. Plotted on this figure are
the most frequently occurring shifts in vowel color from
NAT to OF, based on the data in Table V. To provide a
reference frame for formant space, phonetic symbols ar
plotted at the average steady-state valuef paind F, for
the women. The tails of the arrows are plotted at the averag F-V). The signals were edited from the NAT and OF ut-
formant values for the correctly identified natural signal, andterancés described above using a simple computer program
the arrow heads point at the corresponding values for ph that was controlled by the hand-measured values of vowel
netic label assigned to the OF synthetic version of the signaStart and vowel end from Hillenbranet al. (1995. After
The line thicknesgbut not line length is roughly propor- : :

tional to the number of labeling shifts. The main point to beCllpplng the vowels from the /hVd/ utterances, the NAT-V

L . . . F-V signal ff with a 10-
made about this figure is that no simple, systematic measurgﬁnd © signals were ramped on and off with a 10-ms

Experiment 2 presented listeners with four kinds of sig-
nals: (a) the 300 natural /hvd/ utterance8lAT); (b) the
vowel only from the 300 NAT utterancg®lAT-V); (c) the
800 original-formant synthetic /hVd/ utterancédF); and
d) the vowel only from the 300 OF synthetic utterances

i t for th ; hifts i alf-cosine function to prevent onset and offset transients.
ment error can account for the most common SNITS N VOWEY ji0nars consisted of 24 undergraduate students who had

quality. For gxample, while t_he shifts away fr_om and i/ taken an introductory phonetics course and had received ba-
could conceivably be explained on the basis of SyStematIéic instruction in the use of phonetic symbols for vowels.
cally high estimates df; (i.e., the arrows point in the direc-

i f Is with hiaher first f tsth f None of these listeners had participated in experiment 1. Lis-
/'O/n 0 dvg)/ve s Wi i '9 grt |rts C:Lnlﬁn o d oseTarl]\(vay roTt teners identified each of the 1200 test sigiial0 NAT, 300
alan are not consistent wi IS ldea. This 1S hot 1o AT-V, 300 OF, and 300 OF-Ypresented in random order
suggest that formant measurement error does not play a ro

) . . . o Sing the same instrumentation and procedures that were de-
in accounting for the differences in intelligibility between the 9 P

X . . SCfi f i t 1.
NAT and OF signals, but rather, that no simple, systematlc:sCrIbEd or experimen

@ﬁerence in fo_rmant estimation seems capable of accounﬁ-\/. EXPERIMENT 2. RESULTS AND DISCUSSION
ing for these differences.

One other possibility worth considering has to do with Overall percent correct values for the four stimulus con-
differences between the natural and synthetic signals durinditions of experiment 2 are shown in Fig. 7. The main point
the h/ and final 4/ intervals. The synthesizer was driven by to be made about Fig. 7 is that both the natural and OF /hvd/
acoustic measurements during the vowel only, with tife / syllables were identified at a slightly higher rate than the
and A/ segments being generated by some simple rules. As @orresponding vowel-only utterances. A repeated-measures
result, the initial h/ and, in particular, the finall/ segments two-way ANOVA showed significant effects for both factors
did not always show a very close match between the originalnatural versus syntheti€[ 1,24]=268.4,p<0.01; syllable
and synthetic utterances. It is possible that there is someersus vowel:F[1,24]=64.8, p<0.01). As can be seen in
limited information in the naturally produced consonants that-ig. 7, the difference in intelligibility between the /hvVd/ and
influenced vowel quality. Alternatively, it may be that there vowel-only conditions is not large overall, and is very small
was some information in the synthetic consonants that wafr the OF synthetic stimuli. Newman—Keyt®st hoctests
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showed that this difference was significant only for the natuNearey, 1992; Nearey, 1997These methods can simulta-
rally spoken stimuli. These results would seem to be consisaeously accommodate many aspects of the patterns, includ-
tent with the idea that there is some limited information ining magnitude and direction of spectral change and relative
the naturally produced consonants that influences vowdlistance from competitors, on a token-by-token basis. We
quality. If the synthetic consonants were providing mislead-will adopt a variation of the general methodology developed
ing information about vowel quality, the results should haveby Nearey and Assmani1986.

shown an improvement in intelligibility for the OF synthetic

signals with the removal of the consonants, and little or ngA. Testing and training sets

change for the natural signals. The small drop in intelligibil- . .
ity that was observed suggests that some very limited infor- _MUCh of our ”?Ode"”g uses _a_tv_vo-sta_g_e procedure_ in-
mation about vowel identity was lost when the natural con-VOIVIng th? distinction between disjoint training af“?' tes_trng
sonants were clipped off. However, the absolute magnitudgata that is now prevalent in the speech recognition litera-

of the effect was quite small. The natural vowel-only stimuli Lure. dFrrst{ha ptat;retr_n :ecogr;rtrc:.n elg(zrr]rth{n s cogs;crucéed
remain highly intelligible, and the drop in intelligibility that 2a>€d on the statistical regulanties in the training data. Sec-

results from excising the consonants amounts to an avera @d’ the parameters of the recognition model are held fixed

of just 7 additional misidentified vowels out of the 300 that t the training values, while the algorithm is fed new acoustic

were presented. The primary conclusion from experiment Zga:a f;_Ohm a testrntg set t(:l.ai Icsj mdependenttto f the trhernr:ng
therefore, is that the failure to faithfully model the initial and ata. 1his generates pre ',C €d response patierns, which are
pwen compared to listeners’ performance on the test stimuli.

final consonants can at best explain a very small portion o - .
the difference in intelligibility between the natural and OF The trarnrng set consisted of 1297_tokens from the larger
synthetic signals. data of Hillenbrancet al. (1995 and_wrll be referred to as
the H95 data. The selected tokens included all those with no
V. PATTERN RECOGNITION MODELS missing values for any of the measurements required, but
excluded the 300 tokens that were used in experiments 1 and
Two general conclusions seem likely from the forego-2 above. There was also a corresponding set of responses for
ing. First, some changes in listeners’ perceptiomst nota-  each token of the H95 training data. These responses were
bly those between the natural and OF stimwannot be ysed for training the logistic regression coefficients in Model
readily accounted for by any of the acoustic properties cong, discussed below. The testing sets consist of the stimuli

trolled in the experiments. Second, despite this, variations ignd responses reported in experiments 1 and 2 above.
responses across stimuli are at least partly related to differ-

ences in spectral change that were manipulated. The modek: stimulus properties and discriminant analysis
ing work presented below strives to provide a more detailed
assessment of just how far we can go in relating response We have chosen a representation similar to that of the
patterns to selected acoustic properties. Canadian studies, using vowel duration, steady-$tgteand
This modeling can be viewed as a way to extend theé™1. F2 andF; (all frequencies were log-transformeat the
insights that we were seeking in Fig. 5. There, we measured0% and 80% time pointgFor the flat formant stimuli, the
how average identification rates for each vowel category im20% and 80% formant frequencies were equal to the mea-
proved from the FF to the OF condition and we attempted tured steady-state frequencjdsinear discriminant function
relate that improvement to average spectral change. Thanhalysis of the H95 training data showed that 92.0% of the
Pearson correlation coefficient+ 0.46) between the andy tokens could be correctly reclassified using these measure-
coordinates of Fig. 5 gives us a simple index of associatiofents. When the coefficients estimated from the training
between the two quantities. The directness of such an aglata were applied to measurements from the natural or OF
proach is very appealing, and it seems to provide some evfesting datawith distinct 20% and 80% formant measures
dence for the hypothesis being tested. However, it is defithe results were actually higher, 94.0% correct. Thus the cho-
cient in several respects. First, it fails to take into accounf€n measurements are capable of separating the vowel cat-
variation among tokens of the same vowel category. Seconggories relatively well. But to what degree can a recognition
a very high correlation should result only under a very lim-algorithm characterize variation in listeners’ response pat-
iting assumption: namely, a unit increase in the magnitude oferns?
s_pectral change will result in.a urriform change in identifica—cl Predicting listener responses on the testing data
tion rate, regardless of the direction of the change and of the
overall location in formant space of the tokens involved.l- Model A: A posteriori probabilities from
However, it is easy to imagine cases where this is most und/Scriminant function analysis of the H95 data
likely. For example, a token of a vowel whose overall posi- The linear classification functions described above are
tion in formant space is relatively distant from those of itsnot only suitable for classification, but they can be used to
competitors in neighboring categories is likely to be less sengeneratea posteriori probabilities (APP scorel of group
sitive to differences in spectral change than a token that isnembership for any given measurement point. APP scores
closer to competing tokens. can be viewed as estimates of relative strength of group
Nearey and his colleagues have developed pattern recaembership(Nearey and Assmann, 1988-or example, a
ognition methods that can overcome these difficulfidss-  token whose measurements are near the meait ahd re-
mannet al, 1982; Nearey and Assmann, 1986; Andruski andmote from the means of the other categories will have an
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APP score foril near unity while scores for the other vowels TABLE VI. Percent modal agreement valudg,(;) for each of the stimulus
will be near zero. Similarly, an ambiguous token that jgSets used in experiment 1. Columns represent different prediction models.

.. . . The last column represents an empirical split-sample cross-validation esti-
roughly equidistant fromi/, /e/, and #/ will have a score near mate, predicting one-half of the subjects’ responses from the other half.
0.33 for each of these vowels, but near zero for the rest.

Such graded membership scores can be compared with Stimulus ~ Model Model Model Model  Split-
confusion matrices, including confusion matrices constructedFxperiment  type A B c C-s  Sample
on a token-by-token basis. Such token-by-token confusion 1 NAT 940 970 963  96.1 99.5
matrices will be referred to below as probability matrices. 1 FF 713 753 883 879 92,5
For each 300 token set, there is both a predicted and an 1 OF 917 927 943 942 96.4
observed probability matrix, each with 300 rows and 12 col- ; ('\)"A:‘T %‘;g %74'(; %%37 %%3; 1%3‘%
umns. Preqmpn_s based on t_he linear cIaSS|f|cat|on functions NAT.V 943 967 960 962  100.0
from the discriminant analysis of the H95 data will be re- 2 OF-V 950 957 970 96.4 97.7

ferred to as Model A predictions.

2. Model B: Predicted probabilities from logistic . o .
regression of the H95 perceptual data nonparametric randomization tegtdgington, 198Dto as-

- . . . sess significance levels of the correlation coefficients.
Logistic regression provides another technique for gen-

erating predicted probability matrices for the testing data
(;ee Nearey, 1989, 1997, for applications of logistic regresg  pifference correlations
sion to perceptual dataA 12-category polytomous logistic
regression was performed using the training measurements The third measure of association focuses on the ability
as independent variables and the response matrices from tR&the models to predict changes in listener behavior across
Hillenbrand et al. (1995 study as the dependent measures Stimulus conditions. Corresponding stimuli in all the chang-
This method may result in better correspondence to listeneré"d formant (i.e., natural and original formant synthetic
behavior because, in effect, it can model ambiguity as welftimuli must have exactly the same predicted probabilities
as identity. It does this by optimally matching the gradient,Pecause the measurement vectors supplied to the prediction
probabilistic identification profiles of a group of listeners to @lgorithm are identical. However, the measurements for the
each token of the training set, rather than simply predictindlat formant synthesis tokens are different, since the formant
nominal correct categories. frequencies are from the steady-state portion. If a pattern
recognition algorithm approximates the behavior of our lis-
teners, we would expechangesn predicted probabilities of
a given token across conditions to be correlated with changes
in listeners’ responses. Following Nearey and Assmann
We will compare predicted and observed probability (1986, we have calculated correlations between changes in
matrices using methods similar to those of Nearey and Asspredicted probabilities and corresponding changes in ob-
mann (1986.°> Three measures of association will be re-served probabilities. This is done by producing six difference
ported. The first is percentage of modal agreeméhtf,  matrices, one for each of the six changing formant conditions
defined as the percentage of tokens for which the predicteghe NAT and OF conditions from experiment 1 plus all four
and observed probabilities show the same modal categoryonditions from experiment)2 Each is calculated as the
where the modal category is the response with the highesflement-by-element difference between the probability ma-
probability for that token(See the Appendix for a formal trix of the given changing formant condition and that of the
definition of P,,, and other measures of association used irFF condition.
the pattern recognition workNote that this measure does Our analysis here will concentrate on tierrect re-

not depend on the nominally correct category of the originakponse difference correlatidm.4). The calculation is analo-
recordings. For example, both the listeners and the prediction

model might agree that a flat formant token from an OrlglnaITABLE VII. Correct response correlations ) for the same analyses as
/el more closely resembles the ¢ategory. These results are tapje vi. Significance level&y randomization testshown for completely
shown in Table VI. cross-validated predictions of models A and B only.

The second measure of association, cattedrect re-
sponse correlatiorr;), is defined as the correlation between

D. Measures of association between probability
matrices

Stimulus Model Model Model Model  Split-

. s . Experiment type A B C C-s Sample
predicted and observed probabilities of nominally correct re- P P P
sponses to each stimuldgnoring all incorrect responses 1 NAT 0207 0370 0400 0345 0.585
The value ofr . will approach a maximum of 1.0 if and only L FF 0482 0547 0850 0814  0.890
if variation in the relative probabilities of correct identifica- ! oF 0399 0387 0710 0660  0.814
I ! _ p ues o ( 2 NAT 0.094 0305 0249 0197 0.434
tion by listeners is matched lmpvariationin predicted prob- 2 OF 0.408 0.426 0.659 0.626 0812
abilities on a token-by-token basis. These correlations are 2 NAT-V  0.22C 0.377 0371 0.326 0.561
shown in Table VII. Although these are conventional corre- 2 OF-V 0.480 0.504 0.664 0.605  0.751

lation coefficients from a computational standpoint, it is Notay 501,
clear whether the usual statistical assumptions apply. Theres<o.oos.
fore, following Nearey and Assman{1986, we will use  °p<0.001.
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TABLE VIII. Difference correct response correlations.§ of predicted  979% for model B for each of the changing formant condi-

with observed correct response difference scores when correct response fﬁ’bns The correct identification rate for listeners varies from

the flat formant data is subtracted from each of the corresponding tables. 0 0 - e
Significance leveldby randomization tegtshown for completely cross- about 95% to 100% across Cond't'dm\mere the winning

validated predictions of models A and B only. category is the one with the plurality of listener votdsow-
ever, correct response correlationsn Table VII show that
_ Stimulus  Model Model Model ~Model  Split- more than this overall correspondence of correct responses is
Experiment  type A B ¢ Cs Sample inyolved. Recall thar, is positive only to the extent that
1 NAT 0.364 0.494 0703 0.669 0.857  variations in the probability of nominally correct responses
1 FF covary in predicted and observed tables. Therefore, simply
L OF 0468 054F 0753 0699  0.788 having high average probabilities of correct responses in
2 NAT 0.382 0486 0.694 0.661 0.873 ) i ; . .
° OF 0456 05584 0772 0734 o0g3s Doth observed and predicted matrices will not result in posi-
2 NAT-V 03568 0472 0701 0667 0.853 tive correlations. The correlations for model A and model B
2 OF-V 0.398 0497 0.738 0.698 0.821 are all positive and significant for all of the changing-

formant conditions. Although the magnitudes of such corre-
lations are modest, we should bear in mind that a ceiling on
this correlation is imposed by listener-to-listener variability.
gous to the correct response correlation, except that differan estimate of this ceiling is given in the split-sample col-
ence matrices are substituted for the original probabilityymn. For the changing-formant cases, the variance accounted
matrices. This correlation will be large only when predictedfor by model A(calculated as the ratio of the squares of the
and observed correct identification rates change in similagorrelation coefficientsis roughly one-third and that by
ways across conditions. Correct response difference correlgnodel B is roughly one-half that accounted for in the corre-
tions are shown in Table VIil. sponding split-sample benchmarks.

4<0.001.

F. Benchmark split-sample predictions

As in Andruski and Nearey1992, we have included B. Flat formant condition

benchmark measures of association based on the degree of In the case of the FF stimuli, neither theoriori models
agreement between subgroups of listeners. This was done g4 and B) nor listeners’ identifications show nominally cor-
half-sample cross validation. For each experimental condirect identification rates nearly as high as in the changing-
tion, subjects were split randomly into two groups. An ob-formant cases. The nominally correct category was chosen
served probability matrix was calculated from the responseby the plurality of listeners in only about 80% of the tokens.
of approximately half the listenefd0 of 20 for experiment Perhaps not surprisingly, the corresponding nominally cor-
1, 13 of 25 for experiment )2 This was used to provide rect identification rate for model A is considerably lower,
nonparametric predictions for the entries of a similar matrixonly about 60%. Nonetheless, the modal agreement between
compiled from the remaining data. Measures of associatiothe two is about 71%. Modal agreement with listeners is
from 200 different random splittings were averaged. Thesdigher than the algorithm’s correct identification rate because
results are presented in the last column of Tables VI-VIil.model A predictions showed the same “modal error” as lis-
These figures give a rough estimate of the degree of similateners in 32 of the 59 tokens nominally misidentified by the
ity of empirical response tables when the experiment is replurality of listeners. Model B shows a nominally correct

peated with different listeners. classification rate of about 73%, which is still somewhat
lower than listeners. Again, the modal agreement between
VI. DISCUSSION listeners and model B is highéabout 75% because model

B has also predicted the listeners’ “modal errors” correctly
in 29 of 59 caseqThis agreement on modal errors is slightly
Consider first the results for the changing formants coniess than with model A. The improvement of model B over
ditions, i.e., all cases but FF. In Table VI, we see that modeimodel A occurs because model B predicts 197 of the 241
A shows modal agreement ranging from 91% to 95% incorrect responses by listeners, while model A correctly pre-
these conditions. Model B, which had access to gradient asdicts only 182 of then).
pects of listeners’ categorization of the training stimuli, While the above results clearly suggest a reasonable de-
shows even higher agreemef@bout 93%—-97% A com-  gree of correspondence, we also see that listeners are much
parison with split-sample benchmark in the last column ofmore consistent with each other than they are with the mod-
Table VI shows that there is still room for improvement: els. Although the rates of split-sample modal agreement are
Listeners are somewhat more consistent with each othdower than they were for any of the changing formant con-
(modal agreements range from 96% to 1QG#an they are ditions, at about 93% they are still more than 20 percentage
with our models. points higher than the model A results for the FF stimuli.
Much of the similarity of models A and B for all of the The general pattern of the modal agreement results is
non-FF conditions can be attributed to the simple fact thatalso supported by the correlations between observed and pre-
for the both the listeners and the models, the modal categorgicted identification rates for nominally correct tokens
is the nominally correct category for most of the stimuli. Thegiven in Table VII. Both model A and B show highly sig-
nominally correct identification rate is 94% for model A and nificant correlations. However, the magnitudes of the corre-

A. Changing formant conditions
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lations (r.=0.48 and 0.5%account for only about one-third model, it is likely to present an overly optimistic picture
of the variance accounted for in the split-sample predictiongEfron and Tibshirani, 1993of prediction errors for new
(r.=0.89). data. However, to the extent that performance of even this
While the above models give a reasonable estimation ofnodel falls below our split-sample benchmarks, we will
the overall fit of the predictions, they give only a very indi- know that the shortfall is not due simply to the restricted
rect view of the relative success of predictioangesin  nature of the training data and we will have a useful estimate
categorizatioracrossconditions. For this, we turn to the cor- of the lower bound on how much remains to be explained.
rect response difference correlationg;, in Table VIII. Re- In addition, limited cross validation to distinct listeners
call that this measure involves correlations of the changegnd distinct tokens is possible with the available data if we
(from the FF condition to each of the changing formant conveyerse the roles of the training and testing data from those
ditions) in observed probabilities of correct response withgf models A and B. That is, we use logistic regression coef-
corresponding changes in predicted probabilities. Models Aicients “frozen” at the values estimated by model C to pre-
and B both show highly significant correlations for changesyict jisteners’ behavior on the much larger set of natural
in response patterns from the FF condition to each of th¢ykens of the H95 data. This analysis yields a modal agree-
other (changing formantconditions. Model A accounts for - any of 90,59 with H95 listeners, ap correlation of 0.453.
only about 17%-35% of the variance accounted for by thg¢ 1\, qe| ¢ is used to classify the H95 training tokens, we
split-sample benchmark. Model B fares somewhat better, 8%ind cross-validated classification rate of 90.5%his is the

1 0f— 0,
counting for about 30%-47% as much as the benChmarksame as modal agreement with listeners, because the plural-

The_ana|y3|s underlyingeq V?'”e? is similar n Spirit to that ity of listeners’ responses in the H95 actually selects the
of Fig. 5. There are two main differences. First, rather than_~_ . R

. . . . nominally correct category for all stimuliThis is rather re-
looking at difference in magnitude of formant changgy

involves changes in posterioriprobabilities(which, for lin- markable, given that self-trained linear discriminant analysis

o . .on the same data yielded 92.0%. Recall that in model C we
ear discriminant analysis, are closely related to changes in

“relative statistical distance” to category prototypelse- are training on measurements based on only 300 dlffere_nt
tween the two conditions. Second,; values are calculated vowels. Those mea;urements, when Op“”.‘a"y mapped to lis-
on a token-by-token basis, while Fig. 5 involved averagingteners dresponses In thglthr?elpre_septatlon Con?'tﬁ?ﬁd_
over vowel categorie$.If a similar averaging is done over FF’ and NAT, are capable of classifying a comp e_tey IS-
changes ina posteriori probabilities, correlations across tln-ctlset of nearly 1390 vowels almost as well as linear dis-
vowels are considerably higher for both model #=(0.60) criminant analysis trained on the larger data set itself.

and model B {=0.71) than for the spectral distance mea- Although we are not able here to provide cross valida-

sure of Fig. 5 (=0.46). tion to entirely new stimulus tokens in all the conditions of
experiments 1 and 2, we can provide true cross validation

C. Model C. Predicted probabilities from the across different listeners for all conditions of experiment 2

experiment 1 perceptual data (the last four rows in the model C column of Tables VI-

Despite the sianif f th it ted ab VIIlI) and we can also provide split-sample cross validation
espite the signiticance ot the resutls Teported abovey, oy iy the case of experiment 1, by training on the data

':jh;amr(()atljaetis\t/e&tz: tor:cethsepI?t(-)sO;nqglses g;:(t:hr;eaariu:ﬁjs?;it\?: E rom one-half of the listeners and testing predictions against
some pause. However, it should be kept in mind that models © other half(mO(_je! C-3. In the remaining discussion, we
. o will use the predictions of model C-s, since the measures
A and B were trained only on citation form tokens that must resented should provide unbiased estimates of prediction
certainly show less variability than the overall population of? P P

tokens(produced, e.g., at various speaking rates and stre yiccess for .the.: same set of stimuli across new groups of
conditions to which listeners are exposed. Thus even mode Isteners.(This is actually the only generalization that the

B, which was trained on the rather limited degree of gradienfempiricaI split-sample benchmarks also address. There is no

behavior in listeners’ categorization of the H95 training data’statistical basis for generalizing those results to new stimnuli.
We find that modal agreement numbers for model C-s

might easily have “wrapped itself around” a solution that ) .
was dominated by listeners’ behavior to relatively prototypi-(Table VI are uniformly very high, although they are
cal stimuli. It is perhaps not surprising that such predictionsSmaller than the split-sample benchmarks by about 1-4 per-
might be rather fragile and that they breakdown somewhag€ntage points. Correct response correlatiogs,in Table
when applied to the FF stimuli, which can present ratheV!l. are generally within about 0.1 of the corresponding
different stimulus patterns than those in the H95 data fofnodel A and B values, but are higher by about 0.2 to about
many vowel categories. 0.3 for the FF and the two OF conditions. However, the
We therefore constructed a third, optimized model,variance accounted for by model C-s still averages only
model C. Unlike the other two models which are based orfbout half that of the split-sample benchmark, ranging from
the distinct H95 data set, the predictions here are based dgxout 0.21 to 0.83, with the highest value for the FF condi-
observed response probabilities for the 900 stimuli of experition. Correct response difference correlatiopg, in Table
ment 1. Model C prediction results are also shown in Table¥/lll, show somewhat more improvement. Model C-s shows
VI=VIII. This model is included to see how well a model of values about 0.16—0.31 higher than corresponding entries for
the same ‘“size” as model B might do with the stimuli in models A and B, accounting for about 57%—-79% of the vari-
experiments 1 and 2. Since it is not a fully cross-validatedance accounted for by the split-sample benchmark.
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VIl. GENERAL DISCUSSION of listeners’ behavior and the puredypriori predictions of
The main purpose of this study was to measure the relgmodels A and B. However, the agreement b_etween listeners
tive importance of formant frequency movements in the rec_measured by split-sample benchmarks is ty_ppally bett.er by a
ognition of vowel quality. The substantial difference in over- factor of about 2 than even our best predictions. Th|§ Sug-
all intelligibility between the OF and FF signals strongly gests that we have gone no more thar,1 about.hal_f the distance
confirms several previous findings indicating that spectraF0 the goal of accounting for listeners’ behavior in these ex-
change patterns play a secondary but quite important role iRerlments. . .
the recognition of vowel quality. The vowels of American I_n our view, the most s!gnlflcant c_hallengt_e presente_zd _by
and Canadian Englistiand almost certainly many other the_ fl_nq_mgs reported here is to _explaln the difference in n-
vowel systems as well—see Watson and Harrington, 1999t,e.IIIgIbIIIty between the natural signals and t_he OI.: syr_1tr_1et|c
for recent data on Australian Englistare more properly _S|g_nals:. The OF signals were, of course, h|ghly intelligible,
modeled not as points in formant space but as trajectorie'Ed'Cat'ng that most of the information that is needed to cap-

through formant spaceHowever, a simple observation that Wre vowel identity is preserved by te, du.rat|on, and
. 6{prmant measurements that were used to drive the formant

ec,é/nthesizer. But the drop in intelligibility resulting from for-

the single-slice spectral measurements reported in studi : X .
such as Peterson and Barm@@52 capture most of the in- mant vocoding makes it equally clear that a certain amount
of phonetically relevant information was Id5Two possible

formation that is needed to represent vowel quality. In the lanati for this findi dh First
present studyF,, duration, and steady-state formant mea-SXP'anations for this finding were pursued nere. First, an

surements were sufficient to signal the intended vowel fOIanaIyS|s of the shifts in vowel identity between the NAT and

roughly three-fourths of the utterances, with nearly all of theOF signals suggested that it was unlikely that any simple,

misidentifications involving adjacent vowel categories. Strik-Systematic error in fqrmgnt meagurement could account for
ingly similar identification rates for vowels with static for- the most common s_hn‘ts in vowel |dent!t_)/. I was also shown
mant patterns were reported by Fairbanks and GfaBb1), that the failure to falthfulily copy the initial and final conso-
Assmann and Nearef1986, and Hillenbrand and Gayvert nants can at best explgln a very small share Of. th|§ effect.
(19934 in studies using methods that are quite different from.one plausible explanqtlon that was not pursued |n'th|s study
those employed here. is that th'e transformation to a formant represe:*ntatlon results
in the failure to preserve spectral shape details that are rel-

The relative importance of formant frequency change

varies considerably from one vowel to the next. It was gen_evant to vowel identity. The formant synthesizer is driven

erally the case that the effect of formant flattening was smal?nt'r(?ly by spectral—_peak frequencua_s, meaning that fO’m"?‘”‘
for vowels that tend to show relatively little formant fre- ampl!tudes, bandwidths, spectral t'l.t’ |nQ|V|duaI harmonic
quency movement and larger for vowels that tend to Shov\gmplltudes, and other spectral details will often not match

large changes in formant frequencies. The relationship is ”ﬁfe” between the natural and synthetic utterances. There has

quite that simple, however, as demonstrated by the very di een a fair amount of discussion about the relative contribu-
ferent effects of formant flattening fog/[ /ee/, and b/, which tions of formant frequencies and detailed speciral shege,

showed roughly similar average magnitudes of formant freKlatt, 1982a,b; Bladon and Lindblom, 1981; Bladon, 1982;

quency change Zahorian and Jagharghi, 1986, 1987; Zahorian and Zhang,

A significant limitation of this study is the exclusive use 1999, but the question is far from resolved. Work that is

of the simple /hVd/ environment for all utterances. The reIa—Currently underway involves a close examination of the sig-

tionships between spectral change patterns and vowel iderq-als from the present study that showed significant shifts in

tity are guaranteed to be more complex when the consonar'aﬁ?el'ng betwifenttthe nzturatl agd ?\Ft forme_xfr_lt-syntr:esllshcon—
environment preceding and following the vowel is allowed mons in an efiort to understand what Specilic spectral shape

to vary. We are currently studying the acoustics and percep(-jetalls might play a role in judgments of vowel identity.

tion of a new multitalker CVC database with variation in
both consonants. Preliminary analysis of this datalfeile =~ ACKNOWLEDGMENTS

enbrand and Clark, 1997sing a statistical pattern classifier This work was supported by a grant from the National

shows substantially better classification accuracy for twqpstiitutes of Health(2-R01-DCO1661to Western Michigan
samples of the formant pattern rather than a single sample, i)jyersity and by a grant from the Canadian Social Sciences
spite of the complexities introduced by variation in conso-;n4 Humanities Research Coun@lL0-93-0053to the Uni-
nant environment. The classification advantage for the tWO\'/ersity of Alberta. We are grateful to Michael Clark, Robert

sample case, however, was smaller than we observed in @ckson, and two anonymous reviewers for helpful com-
similar discriminant analysis of our /hVd/ databasgéllen- ments on an earlier draft.

brandet al, 1995.

The pattern recognition methods described above use
relatively simple approach to vowel specification based o
duration, steady-statE,, and formant frequency measure-
ments at two temporal intervals in the vowel. Such a repre- The observed probability matrix has elemeftgt,v),
sentation appears to go a considerable distance toward aghere the subscrigg represents a given stimulus condition
counting for the results of experiments 1 and 2 sincee.g., NAT, FF, etg. t ranges over the 300 tokens amaver
significant correlations were found between various aspectthe 12 vowel response categories. Assume the order of the

a
PPENDIX. FORMAL DEFINITIONS OF QUANTITIES
SED IN PATTERN RECOGNITION STUDIES
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vowels f1,e,e,2,d,0,0,u,u,A,3/. Thus,O4(4,3) represents the widthg do vary, we are satisfied that the frequenciesFefthrough F
proportion of listeners who responded to stimulus number 4match quite well.
with vowel category 3. The predicted probability matrix with 5The analyses reported here focus on the probabilities of a single response

| is similar i b . (either the correct original category or the modal resppimseach stimulus
€ ementsPs(t,v) IS similar In structure, but contaires pos- row of a probability matrix. We have also performed profile correlation and

teriori probability estimates from the pattern recognition difference profile correlation analyses similar to those reported in Nearey
models. These matrices are used for the definitions of alland Assmanit1986 and Andruski and Neare(1992) that use all entries of

other quantities used in the pattern recognition studies. the probability matrices. These analyses revealed patterns generally similar
to those reported here.

Percentage modal agreement for a given stimulus condbrhere is also a third, minor difference. Figure 5 counted the number of

tion can be defined as: tokens whose correct identification changed from OF to FF conditions,
regardless of direction, while.; measures signed changes in probability of
100 {M[argmax(O(t,v),argmax(Ps(t,v)1HT); correct identification across tokens. A very similar correlation results if the
latter difference in response measure is substituted in the analysis of Fig. 5.
whereM(x,y)=1, if x=y and 0 otherwise, argmgxindi-  “An anonymous reviewer suggested that listeners might, “... base their de-
cates the column index of the largest element in a rowTnd cisions not on the formant frequencies at the 20%, the 80% or the two
is the total number of token@00 in these experimer)ts combined but on the modal formant frequencies of the vowel production;

. . i.e., theF1, F2, F3 combination that occurs the most often ...” for the
For correct response correlations, define the ObserVedlominally monophthongal vowels. We believe that this is an unlikely pos-
correct probability score for tokeh as Cq(t)=Oq(t,c,), sibility. The clearest evidence, in our view, comes from the gating experi-
wherec, is the column number of the correct response for ments of Nearey and Assmaiib986, showing excellent identification of
tokent of the observed probability matrix. Thus if stimulus 4 silent-center vowelg§including the nominal monophthong, /e/, and ke/)

. . consisting of brief onsets and offsets, but poor labeling of the same seg-
corresponded to the vowed//(vowel number 3in the origi- ments played in reverse order.

nal recordings §=NAT), thenC(4) is O4(4,3). Predicted 8t is worth noting that the method that we used to track changes in vowel
correct probabilities are similarly definddl(t) = P(t,c,). color from the natural signals to the OF synthetic versions relies entirely on
Correct response correlations are then defined as théhanges in absolute identification. This method is rather coarse. There were

. Clearly many utterances in which the vowel color appeared to us to change
Pearson correlation between the elementEgft) and the  fom NAT to OF, but the change was not sufficient to induce a labeling

corresponding elements &@¢(t). Randomization tests are shift for most of the listeners. Conversely, in listening to the natural and OF
calculated by randomizing the token index for the predictedversions of signals showing a large number of labeling shifts, we have
tokens. Correct response difference correlaticrrlg are generally been impressed at the subtlety of the change in vowel color.
based on changes in correct identification probabilities be-
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