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applies a fixed additive correction that depends exclusively on theAbstract
instantaneous SNR of the input. CDCN first estimates the en-

In this paper we present several algorithms that increase the robustness ofvironmental parameters representing additive noise and spectral
SPHINX, the CMU continuous-speech speaker-independent recognitiontilt using EM techniques, and then performs the appropriate cor-
system, by normalizing the acoustic space via minimization of the overall

rection. While SDCN is simple and effective, CDCN is moreVQ distortion. We propose an affine transformation of the cepstrum in
complex but performs better.which a matrix multiplication performs frequency normalization and a

vector addition attempts environment normalization. The algorithms for In this paper we present two new algorithms to normalize the
environment normalization are very efficient and they improve dramati-

acoustic space in the cepstral domain, the parameter space ofcally the recognition accuracy when the system is tested on a microphone
SPHINX. These algorithms, calledInterpolated SNR-Dependentother from the one on which it was trained. The frequency normalization
Cepstral Normalization(ISDCN) andFixed CDCN (FCDCN),algorithm applies a different warping of the frequency axis to different
are extensions of the SDCN and CDCN algorithms presented inspeakers and it achieves a 10% decrease in error rate.
[6]. FCDCN is more computationally efficient than CDCN and
at least as effective, although it requires environment-dependent1. Introduction
training. ISDCN is also computationally efficient and doesn’tBuilding spoken language systems is difficult due to the enor-
require environment-dependent data, but it is not as accurate asmous variability present in the speech signal. Although a model
CDCN. We also propose a novel method for frequency nor-for the specific variability is often desired, in many cases we have
malization that increases the recognition accuracy by about 10%,to be content with some kind of "multi-style" training, including
by removing some of the variability of different speakers.data representing most possible conditions. In this paper we

describe some algorithms that attempt to increase the system
2. Environment Normalizationrobustness by applying an affine transformation on the cepstrum
To accomplish the normalization of the acoustic space wethat normalize the acoustic space.
propose the following affine transformation

We are concerned in this study in reducing the long-term
∧variabilities caused by different speakers and acoustical environ- x = Lz + w (1)i i

ments. Most current recognition systems are very fragile when
wherex and z are the normalized and unnormalized cepstrumi itaken outside the laboratory into the real world, because they
vectors,w is the environmental correction andL is the frequency

operate under different conditions from those for which they were
normalization matrix.  In ISDCN the correction vectorsw are a

trained. Especially harmful are the presence of additive noise and
function of the instantaneous signal-to-noise ratio (SNR) of the

spectral tilt.  Boll [1] proposed spectral subtraction techniques
noisy input and the environmental parameters noisen and

that with some modifications are still valid today. Some authors
equalizationq. In FCDCN the correction vectorsw depend on

(e.g. Van Compernolle [2]) propose the use of a microphone
the identity of the closest VQ codeword, as well as the instan-

array to create a directionality pattern that effectively increases
taneous SNR.

the SNR by reducing noise from undesired directions. While
previous approaches are effective in suppressing additive noise,2.1. Interpolated SDCN
they do not combat distortion introduced by linear filtering

One of the deficiencies of the SDCN algorithm presented in [6] is(spectral tilt). Stockham [3] proposed blind deconvolution to
its inability to adapt to new environments because its correctioncompensate for these linear distortions.  Erell and Weintraub
vectors are pre-computed by comparing cepstra representing[4] demonstrated improved performance by compensating in-
simultaneously-recorded speech from the training and testing en-dependently for the effects of noise and spectral tilt. Techniques
vironments. The ISDCN algorithm can re-estimate these correc-based on auditory models (e.g.Seneff [5]) are also very promis-
tion from the testing data as it arrives.ing, but they incur a substantial computational burden.

∧
In both SDCN and ISDCN, the compensated vectorx is of theiIn [6], we presented two algorithms: SDCN and CDCN. SDCN
form



∧ TEST CLSTK CRPZMx = z − w (n,q,SNR) (2)i i i
BASE 85.3% 18.6%where n and q are environmental parameters representing the

effects of additive noise and distortion from linear filtering, SDCN N/A 67.2%
respectively. In ISDCN the correction vector is expressed as

CDCN 85.3% 74.9%
w (n,q,SNR) = n + (q −n) f (SNR) (3)i i ISDCN 84.8% 62.1%

where the functionf interpolatesbetween the noisen at low SNR
FCDCN N/A 73.1%and the equalization vectorq at high SNR, so that the correction

vector performs noise suppression at low SNR and equalization at
Table 1: Performance of the ISDCN and FCDCN algorithmshigh SNR.  We selectedf to be the sigmoid function
compared with the  baseline, SDCN, and CDCN, using testing

f (x) = 1 / [1 + exp(−α x+ β )] α > 0 (4) data from two microphones. The system was trained usingi i i
processed speech from the CLSTK microphone.because it satisfies the asymptotic behavior of beingf ≈ 0 at low

SNR andf ≈ 1 at high SNR.  It is also monotonic and very
smooth.

presented in Table 2.  In addition to new speech using the
CRPZM, this evaluation includes speech from a cardioid desktopThe noise vectorn can be reliably estimated by averaging a
Crown PCC160 (CRPCC), a handheld dynamic cardioid Sen-number of noise frames, as described in [6]. We show in [7] that
nheiser 518 (SE518), and an electret supercardioid Sennheiserthe equalization vector can be obtained by an EM algorithm that
ME80 (SEME80). The system was trained with processedminimizes the accumulated VQ distortion:
speech from the CLSTK in all cases.  The entries in the table∧ (0)1. Start with an initial estimate forq andj = 1 compare the performance of the system with no processing (to

(j) the left of the slash) and with environmental normalization using2. Label all frames,i.e. find the value ofk thati the ISDCN and other algorithms (after the slash).  We see that theminimizes the VQ distortion
ISDCN algorithm achieves improved recognition accuracy, al-

(j)3. Estimateq from all the frames in the utterance: though not as much as the CDCN for recordings with low SNR.
N−1

(j) TEST CRPZM CRPCC SE518 SEME80(z − n − c[k ]) f (SNR)∑ i ii
∧ i=0 BASE 84.8/41.8 82.4/70.2 87.2/84.5 83.7/71.4(j)q = n + (5)

N−1
2 CDCN 83.3/73.9 81.0/78.5 82.2/83.3 81.5/80.7

f (SNR)∑ i
ISDCN 86.1/73.7 82.3/75.4 87.2/83.5 83.2/78.5i=0

4. If convergence has been reached, stop; else go to FCDCN NA/79.3 NA/77.1 NA/83.4 NA/81.1
step 2.

Since SPHINX’s cepstrum codebook does not contain the zerothTable 2: Analysis of performance of SPHINX for the baseline and
order termz[0], the value ofq[0] cannot be computed by Eq. (5). the CDCN, ISDCN and FCDCN algorithms using four different
The constraint we used to estimateq[0], the gain control, was that microphones (see text).

∧
the dynamic range of the utterance (max {x [0]} − n[0]) had to bei
constant. 2.2. Fixed CDCN
For evaluation,α andβ were set empirically to 3.0 fori > 0 and In this section we describe the Fixed CDCN algorithm, whichi i

∧ combines some of the attractive features from both the SDCN
to 6.0 for i = 0. The equalization estimateq given by Eq. (5) and CDCN algorithms. The motivation for this algorithm is to
exhibited a large variance for short utterances which introducedobtain an algorithm that is as accurate as CDCN and as computa-
noise into the system. To ameliorate this problem, we only rees-tionally efficient as SDCN.
timate the first 4 cepstral coefficients ofq, setting the high order

The Fixed CDCN applies a correction that depends on the instan-ones to zero. This reflects the fact that the equalization function
taneous SNR of the input (like SDCN), but that is also differentmust be spectrally smooth.  Since SPHINX already performs vector
for every codeword (like CDCN):quantization, ISDCN can be implemented with little computa-

tional overhead. ∧
x = z + r [k, SNR] (6)

In Table 1 we compare the performance of the census database
The selection of the appropriate codeword is done at the VQ[6] with the ISDCN algorithm. These comparisons were obtained
stage, so that labelk is chosen to minimizeusing testing data from two microphones: the close-talking Sen-

2nheiser HMD224 (CLSTK), and the omnidirectional desktop ||z + r [k, SNR] − c[k]|| (7)
Crown PZM6FS (CRPZM).  In each case the system was trainedThis technique has been applied to speech from the desktop
on processed speech from the CLSTK microphone. CRPZM when the system was trained using the CLSTK close-

talking microphone. The new correction vectors were estimatedA second evaluation with speech from four microphones is
with an EM algorithm that maximizes the likelihood of the data.



The probability density function ofx is assumed to be a mixture
of Gaussian densities as in [6].

K−1

p (x) = P[k] N (c[k], Σ ) (8)∑ x k
k=0

The cepstra of the corrupted speech are modeled as Gaussian
random vectors, whose variance depends also on the instan-
taneous SNR,l, of the input.

2C′ 1
p (z |k, r , l) = exp(− ||z + r [k, l ] − c[k] || ) (9)
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Figure 1: Variance of the difference vector between the CLSTK

In [7] we show that the solution to the EM algorithm is the and the  restored CRPZM speech for different input SNR of the
following iterative algorithm. In practice, convergence is reachedCRPZM.
after 2 or 3 iterations if we choose the initial values of the
correction vectors to be the ones specified by the SDCN algo-

maximum by sum in the transformed noisy space, instead of inrithm.
the clean space. In their algorithm, many different vectors in the21. Assume initial values forr ′[k, l ] andσ [l ].k clean space are transformed into essentially the same vector in

2. Estimate f [k], the a posterioriprobabilities of the the noisy space at low SNRs. With their method, small fluctua-i
mixture components given the correction vectors tions around the observed vector in the noisy space yield very

2r ′[k, l ], variancesσ [l ] and codebook vectorsc[k] different labels in the clean space at low SNR, and the restoredk
vectors exhibit themusicalnoise characteristic of spectral sub-21

exp(− ||z + r ′[k, l ] − c[k] || ) traction techniques (e.g.[7]).i k22σ [l ]k
f [k] = (10) The computational complexity of this fixed CDCN is very lowi K−1

21 because the correction vectors are precomputed, and it is at leastexp(− ||z + r ′[ p, l ] − c[p] || )∑ i p2 as accurate as CDCN. However, it does require simultaneously-2σ [l ]p=0 p
recorded data from the training and testing environments.

3. Maximize the likelihood of the complete data by
obtaining new estimates for the correction vectors

3. Frequency Normalizationr [k, l ] and correspondingσ[l ]:k
Speaker-independent systems perform with an error rate that isN−1
about 3 or 4 times greater than similarly trained speaker-(x − z ) f [k] δ[SNR − l∆ ]∑ i i i i SNR dependent systems (Pallettet al.[9]). Part of the problem is thati=0

r [k, l ] = (11) speaker-independent systems like SPHINX have to cope with theN−1
burden of differing formant-frequency distributions from dif-f [k] δ[SNR − l∆ ]∑ i i SNR ferent speakers, which broaden the HMM distributions.  In thisi=0

N−1K−1 section we present a novel technique for frequency normalization2
||x − z − r [k, l ] || f [k] δ[ SNR − l∆ ] that is accomplished by multiplying the input cepstra by the∑ ∑ i i i i SNR

i=0 k=0 matrix L in Eq.  (1).2σ [l ] = (12)
N−1 K−1

The frequency-normalization algorithm makes use of the bilinear
f [k] δ[ SNR − l∆ ]∑ ∑ i i SNR transform stage already present in the SPHINX system, which

i=0 k=0
accomplishes a nonlinear frequency warping of the cepstra.  The4. Stop if convergence has been reached, otherwise go
bilinear transform is defined asto step 2.

−1z − α2 −1Figure 1 shows the resulting variancesσ [l ] obtained after the z = −1 < α < 1 (13)new −1process for∆ = 1dB. The large variance exhibited at low 1 − αzSNR
SNR reflects the higher uncertainty in the value of the CLSTK and it produces the frequency transformation
speech given the CRPZM speech that occurs at low SNRs. αsin (ω)

ω = ω + 2 arctg [ ] (14)new 1 − αcos (ω)We also tried estimating the correction vectors by replacing the
sum in Eq. (8) by a maximum. The resulting Eqs. (11) and (12)In SPHINX we use the efficient algorithm proposed by Oppenheim
are still valid, but thea posteriori probabilitiesf [k] are now a and Johnson [10], that implements the bilinear transform as ai
Dirac functionδ[k], being 1 ifk is the VQ label for framei and 0 matrix multiplication [7]. Specifically, the parameterα = 0.6 is
otherwise. The recognition rate for the CRPZM, 72.6%, is essen-used to warp the LPC-cepstrum into a pseudo mel scale ( [11]).
tially the same obtained with the previous estimation method.The present algorithm selects a value ofα to minimize the overall
One of the differences between our algorithm and the one sug-VQ distortion. This algorithm works in anunsupervisedmode,
gested by Gishet al.[8], is that they made the approximation of since it does not require sex information or any other charac-



terization of the speaker’s formant frequencies. The new tionally efficient and more accurate than ISDCN, but it does
codebook is generated by the Lloyd algorithm used for finding requires environment-specific data to derive the correction vec-
the VQ codebook, with the difference that theα parameter for tors. Finally, we introduced a novel method of frequency nor-
every speaker is different. malization that applies a different warping of the frequency axis

to every speaker as to minimize the VQ distortion. This technique
In the present frequency-normalization algorithm, frequency results in a 10% decrease in error rate compared to the baseline
warping is performed in two stages [7]: a bilinear transformation conditions.
is first performed withα = 0.6, and then a second transform is0
applied with a variable warping parameter∆α. The∆α for every 5. Acknowledgments
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