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Abstract applies a fixed additive correction that depends exclusively on the

instantaneous SNR of the input. CDCN first estimates the en-

In this paper we present several algorithms that increase the robustness 9fronmenta| parameters representing additive noise and spectral
SPHINX, the CMU continuous-speech speaker-independent recognition

. . S tilt using EM techniques, and then performs the appropriate cor-
system, by normalizing the acoustic space via minimization of the overall i While SDCN is simpl d effecti CDCN i
VQ distortion. We propose an affine transformation of the cepstrum in F€ction. e IS simple and efiective, IS more
which a matrix multiplication performs frequency normalization and a COMPplex but performs better.

vector addition attempts environment r_]o_rmallzatlon. The algorithms fc."ln this paper we present two new algorithms to normalize the
environment normalization are very efficient and they improve dramati-

cally the recognition accuracy when the system is tested on a microphon(‘:ilcOUStIC space in the cepstral domain, the parameter space of
other from the one on which it was trained. The frequency normalization>"HINX. These algorithms, callethterpolated SNR-Dependent
algorithm applies a different warping of the frequency axis to different Cepstral NormalizationISDCN) andFixed CDCN (FCDCN),

speakers and it achieves a 10% decrease in error rate. are extensions of the SDCN and CDCN algorithms presented in
[6]. FCDCN is more computationally efficient than CDCN and
1. Introduction at least as effective, although it requires environment-dependent

training. ISDCN is also computationally efficient and doesn't

Building spoken language systems is difficult due to the enor-r ire environment-dependent data. but it is not rat
mous variability present in the speech signal. Although a model equire environment-dependent data, bu s hot as accurate as
CDCN. We also propose a novel method for frequency nor-

for the specific variability is often desired, in many cases we have ™~ ™ ™" . - 0
to be content with some kind of "multi-style” training, including mallzatlor_1 that increases the_ re_c_ognltlo_n accuracy by about 10%,
data representing most possible conditions. In this paper Weby removing some of the variability of different speakers.
describe some algorithms that attempt to increase the syste . .
robustness by applying an affine transformation on the cepstrunf=* Environment Normalization

that normalize the acoustic space. To accomplish the normalization of the acoustic space we

. . . . propose the following affine transformation
We are concerned in this study in reducing the long-term

variabilities caused by different speakers and acoustical environ- E =Lz +w 1)
ments. Most current recognition systems are very fragile when ' ! . .
; : wherex; andz are the normalized and unnormalized cepstrum
taken outside the laboratory into the real world, because they P . .
. 7 . vectors,w is the environmental correction ahds the frequency

operate under different conditions from those for which they were

. . o 4 normalization matrix. In ISDCN the correction vectorsare a
trained. Especially harmful are the presence of additive noise an . . . . .
. . - unction of the instantaneous signal-to-noise ratio (SNR) of the
spectral tilt. Boll [1] proposed spectral subtraction techniques ~ .~ . . .
noisy input and the environmental parameters nais@nd

that with some modifications are still valid t . Som thor o .
a some modifications are s alid today. Some autho Sequallzatlonq. In FCDCN the correction vectorg depend on

(e.g. Van Comperrjolle_ [2) propose the use of a mlgrophone the identity of the closest VQ codeword, as well as the instan-
array to create a directionality pattern that effectively increases

the SNR by reducing noise from undesired directions. Wh”etaneous SNR.
previous approaches are effective in suppressing additive noisey 1 Interpolated SDCN

they do not combat distortion introduced by linear filtering L . . .
(spectral tilt). Stockham [3] proposed blind deconvolution to One of the deficiencies of the SDCN algorithm presented in [6] is

compensate for these linear distortions. Erell and Weintraubits inability to adapt to new environments because its correction
[4] demonstrated improved performance by compensating in_v_ectors are pre-computed by comparing (_:e_pstra repregenting
dependently for the effects of noise and spectral tilt. TechniqueSS|multaneously-recorded speech from the training and testing en-
based on auditory models.§. Seneff [5]) are also very promis- vironments. The ISDCN algorithm can re-estimate these correc-
ing, but they incur a substantial computational burden. tion from the testing data as it arrives.

|
In both SDCN and ISDCN, the compensated vegtds of the

In [6], we presented two algorithms: SDCN and CDCN. SDCN form



0

X, =2 - w(n,q,SNR) @ TEST CLSTK CRPZM
wheren and q are environmental parameters representing the | BASE 85.3% 18.6%
effects of additive noise and distortion from linear filtering, SDCN N/A 67.2%

tively. In ISDCN th ti tor i d
respec |ve(y nSNR e(corr)e;:(;)’:F\{/)ec or is expresse (;a)s CDCN 85.3% 22.9%

w; (n,q, =n+(g-n

N : ' _ ISDCN 84.8% 62.1%

where the functiofi interpolatesbetween the noise at low SNR
and the equalization vectgrat high SNR, so that the correction FCDCN N/A 73.1%

vector performs noise suppression at low SNR and equalization at .
high SNR. We selecteido be the sigmoid function Table 1: Performance of the ISDCN and FCDCN algorithms

compared with the baseline, SDCN, and CDCN, using testing
fi()=1/[1+ expfo; x+()] a >0 4

data from two microphones. The system was trained using
because it satisfies the asymptotic behavior of bein@ at low  Processed speech from the CLSTK microphone.
SNR andf=1 at high SNR. It is also monotonic and very

smooth. presented in Table 2. In addition to new speech using the

The noise vecton can be reliably estimated by averaging a CRPZM, this evaluation includes speech from a cardioid desktop
number of noise frames, as described in [6]. We show in [7] thatCrown PCC160 (CRPCC), a handheld dynamic cardioid Sen-
the equalization vector can be obtained by an EM algorithm thathheiser 518 (SE518), and an electret supercardioid Sennheiser
minimizes the accumulated VQ distortion: ME80 (SEMEB80). The system was trained with processed
speech from the CLSTK in all cases. The entries in the table
compare the performance of the system with no processing (to
the left of the slash) and with environmental normalization using
the ISDCN and other algorithms (after the slash). We see that the
ISDCN algorithm achieves improved recognition accuracy, al-
though not as much as the CDCN for recordings with low SNR.

0
1. Start with an initial estimate fq(o) andj =1

2. Label all frames,.e. find the value ofki(j) that
minimizes the VQ distortion

3. Estimateq(j) from all the frames in the utterance:
N-1

2 (z-n- C[ki(l)]) f(SNR) TEST | CRPZM | CRPCC | SE518 | SEMESO
0. & C
q(J) =n+ I — (5) BASE 84.8/41.8| 82.4/70.20 87.2/84.5 83.7/714
¢ 2(SNR) CDCN 83.3/73.9| 81.0/78.5 82.2/83.3 81.5/80.7
.; ISDCN 86.1/73.7| 82.3/75.4 87.2/183.b 83.2/785
4. If convergence has been reached, stop; else go to FCDCN NA793 | NA/771 NA/S3.4 NA/S1 1
step 2. ’ ’ ) :

Since $HINX's cepstrum codebook does not contain the zerothTgple 2: Analysis of performance offINX for the baseline and
order termz[Q], the value of[0] cannot be computed by Eq. (5). the CDCN, ISDCN and FCDCN algorithms using four different
The constraint we used to estimgf8], the gain control, was that  microphones (see text).

0
the dynamic range of the utterance (mafd]} - n[0]) had to be

constant. 2.2. Fixed CDCN

In this section we describe the Fixed CDCN algorithm, which
6.0 fori=0. Th lizati .o by E combines some of the attractive features from both the SDCN
to 6.0 fori=0. e equalization estimatg given by Eq. (5) and CDCN algorithms. The motivation for this algorithm is to

exhibited a large variance for short utterances which introduced . . - algorithm that is as accurate as CDCN and as computa-
noise into the system. To ameliorate this problem, we only rees-tionally efficient as SDCN

timate the first 4 cepstral coefficients @f setting the high order
ones to zero. This reflects the fact that the equalization functioriThe Fixed CDCN applies a correction that depends on the instan-
must be spectrally smooth. Sincer8ix already performs vector taneous SNR of the input (like SDCN), but that is also different
quantization, ISDCN can be implemented with litle computa- for every codeword (like CDCN):

tional overhead.

For evaluationg; andp, were set empirically to 3.0 for> 0 and

E=z+ r[k, SNR (6)

In Table 1 we compare the performance of the census databasﬁ] lecti f th iat d dis d t the V
[6] with the ISDCN algorithm. These comparisons were obtained € selection of the appropriate codeword 1s done at the Q
stage, so that labklis chosen to minimize

using testing data from two microphones: the close-talking Sen-

nheiser HMD224 (CLSTK), and the omnidirectional desktop Iz + r[k, SNR - c[K]|P (7
Crown PZMEFS (CRPZM). In each case the system was trainedryjs technique has been applied to speech from the desktop
on processed speech from the CLSTK microphone. CRPZM when the system was trained using the CLSTK close-

A second evaluation with speech from four microphones is talking microphone. The new correction vectors were estimated
with an EM algorithm that maximizes the likelihood of the data.



The probability density function of is assumed to be a mixture 80.70r
of Gaussian densities as in [6]. 8
= 0.60
K-1 > 0.50
p(x) = Z) PIK] N, (c[K], Z}) 8 '
K= 0.40
The cepstra of the corrupted speech are modeled as Gaussian 0.30
random vectors, whose variance depends also on the instan- '
taneous SNR, of the input. 0.20
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Figure 1: Variance of the difference vector between the CLSTK

In[7] we show that the solution to the EM algorithm is the gng the restored CRPZM speech for different input SNR of the
following iterative algorithm. In practice, convergence is reached cRpzM.

after 2 or 3 iterations if we choose the initial values of the
correction vectors to be the ones specified by the SDCN algo-
rithm. maximum by sum in the transformed noisy space, instead of in
the clean space. In their algorithm, many different vectors in the

1. Assume initial values far[k, I,] andoz[l 1.

2. Estimate f;[K], the a posterioriprobabilities of the
mixture components given the correction vectors
r'ik, I, variances:rz[l ] and codebook vector$k]

1 2
0 oz 1A+ e d ~ 1D
(K = o (10)

1 , 2
pZO eXp(_ﬁ ||Zi +r [p,lp] —-cplll)

3. Maximize the likelihood of the complete data by
obtaining new estimates for the correction vectors
r(k 1,J and corresponding]l ]:

N-1

clean space are transformed into essentially the same vector in
the noisy space at low SNRs. With their method, small fluctua-
tions around the observed vector in the noisy space yield very
different labels in the clean space at low SNR, and the restored
vectors exhibit thenusicalnoise characteristic of spectral sub-
traction techniquese(g.[7]).

The computational complexity of this fixed CDCN is very low
because the correction vectors are precomputed, and it is at least
as accurate as CDCN. However, it does require simultaneously-
recorded data from the training and testing environments.

3. Frequency Normalization
Speaker-independent systems perform with an error rate that is

about 3 or 4 times greater than similarly trained speaker-
dependent systems (Pallettal.[9]). Part of the problem is that
— speaker-independent systems li x have to cope with the
=) (11) ker-independ like1®x h ith th
burden of differing formant-frequency distributions from dif-
Kl S[SNR - 1A A ; 9 quency CISHIbulion: :
& erent speakers, which broaden the HMM distributions. In this
N-1K-1 P section we present a novel technique for frequency normalization
Z) Z)”Xi =z = r[k ][ K 3[ SNR - 1A5\R] that is accomplished by multiplying the input cepstra by the
i=0 k=

= (12) matrixL in Eq. (1).

Z} (x; = 7) 1K A[SNR = IAgngl

rik,1] =

odl] =

N-1 K-1

f.[K] 3[ SNR - | ]
;) IrZ) i ) ASNR

4. Stop if convergence has been reached, otherwise go

The frequency-normalization algorithm makes use of the bilinear
transform stage already present in theHiSx system, which
accomplishes a nonlinear frequency warping of the cepstra. The
bilinear transform is defined as

to step 2.
-1 _
Figure 1 shows the resulting varian@ﬁ_l] obtained after the ‘éW: 2770 <1 (13)
process forAgyr= 1dB. The large variance exhibited at low 1-oaz1

SNR reflects the higher uncertainty in the value of the CLSTK gnq it produces the frequency transformation
speech given the CRPZM speech that occurs at low SNRs. asin )
. S . . Wy = W+ 2arctg[—————~ ] (14)
We also tried estimating the correction vectors by replacing the new 1 - acos W)
sum in Eq. (8) by a maximum. The resulting Egs. (11) and (12)n sprinx we use the efficient algorithm proposed by Oppenheim
are still valid, but thea posteriori probabilitiesf,[k] are now a and Johnson [10], that implements the bilinear transform as a
Dirac functiong[K], being 1 ifkis the VQ label for frameéand 0 matrix multiplication [7]. Specifically, the parameter= 0.6 is
otherwise. The recognition rate for the CRPZM, 72.6%, is essenysed to warp the LPC-cepstrum into a pseudo mel scale ( [11]).
tially the same obtained with the previous estimation method.The present algorithm selects a value b minimize the overall
One of the differences between our algorithm and the one sugyqQ distortion. This algorithm works in amsupervisednode,
gested by Gislet al.[8], is that they made the approximation of since it does not require sex information or any other charac-



terization of the speaker’'s formant frequencies. The new
codebook is generated by the Lloyd algorithm used for finding
the VQ codebook, with the difference that theparameter for
every speaker is different.

tionally efficient and more accurate than ISDCN, but it does
requires environment-specific data to derive the correction vec-
tors. Finally, we introduced a novel method of frequency nor-
malization that applies a different warping of the frequency axis
to every speaker as to minimize the VQ distortion. This technique

In th_e present frquency-normahzauon gl_gorlthm, frequeqcy results in a 10% decrease in error rate compared to the baseline
warping is performed in two stages [7]: a bilinear transformation

is first performed withog = 0.6, and then a second transform is
applied with a variable warping paramefer. TheAa. for every 5. Acknowledgments
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parameters for the census database is shown in Figure 2 for male

A histogram of the resulting warping this work.

and female speakers. As we had anticipated there is a clegReferences

separation between them, which confirms our assumptions abou{
this parameter. ‘
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Figure 2: Histogram of values ofo for male and female
speakers estimated by the frequency normalization algorithmg
based on variable warping with the bilinear transform.

4. Conclusions >
In this paper, we have presented several algorithms that normal-
ize the acoustic space of the target speaker and environment, and
that increase the robustness of the system to mismatches in trair-
ing and testing conditions. An affine transformation is applied in
the cepstrum vector with a frequency normalization matrix for
different speakers and a correction vector for different acoustical.
environments. The correction vector and the warping parameter
in the matrix are estimated to minimize the accumulated VQ

distortion.
9.
The ISDCN and FCDCN algorithms each makei8x more

robust with respect to changes of microphone and acoustical
environment. In ISDCN, the correction vector interpolates from
the noise vector at low SNR to the equalization vector at high10.
SNR by means of a sigmoid function. In FCDCN the correction
vector is a function of the codeword chosen in the VQ stage asi1.
well as SNR. ISDCN is simple, efficient, and it does not require
environment-specific training data. FCDCN is also computa-
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