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Robust Formant Tracking for Continuous Speech
with Speaker Variability

Kamran Mustafa and lan C. Brucklember, IEEE

Abstract— Several algorithms have been developed for tracking is unknown, the gender of the speaker is unknown, or difteren
formant frequency trajectories of speech signals, however mos individuals are speaking at different times or simultarsspu
of these algorithms are either not robust in real-life noise 1 itional formant frequency estimation methods are thase

environments or are not suitable for real-time implementation. | Vi q K picking’ hni
The algorithm presented in this paper obtains formant frequency O SPectral analysis and ‘peak picking’ techniques (e}

estimates from voiced segments of continuous speech by usind17]). However, a comparative analysis of some of these
a time-varying adaptive filterbank to track individual formant  algorithms has shown that they are neither accurate nostobu

frequencies. The formant tracker incorporates an adaptive V- in transient background noise [18]. A more reliable formant
ing detector and a gender detector for formant extraction from estimation technique has been proposed by Rao and Kumare-

continuous speech, for both male and female speakers. The . . _ .
algorithm has a low signal delay and provides smooth and S&n [19]. This method is based on pre-filtering speech using

accurate estimates for the first four formant frequencies at @ time-varying adaptive filter for each formant before sgzct
moderate and high signal-to-noise ratios. Thorough testing of peak estimation. The pre-filtering limits the spectral oegi

the algorithm has shown that it is robust over a wide range of of estimation for each formant frequency and thereby mini-
signal-to-noise ratios for various types of background noises. mizes the effects of the neighboring formants or background
Index Terms— Formant estimation, speech analysis, hearing noise on the estimates. The Rao and Kumaresan approach
aids, speech enhancement. provides reasonably accurate formant frequency estinfates
strongly-voiced segments of speech. However, the algorith
is not robust, does not recover well after a period of silence
and is unreliable during unvoiced speech segments. These
ORMANT frequency trajectories are major acousticdhctors make the Rao and Kumaresan algorithm unsuitable
cues for the identification of phonemes including vowfor implementation in hearing aids for CEFS amplification of
els [1]-[4], nasal consonants [5], diphthongs [6], and cogontinuous speech [18]. Bruce and colleagues [20] proposed
sonants in consonant-vowel transitions [7]. Sound-induc&arious improvements to the Rao and Kumaresan algorithm
hearing loss can cause cochlear hair cell damage, leadingovercome these limitations. The Bruet al. algorithm
to the degradation of the auditory nerve response to fdacludes a formant energy detector and a voicing deteotor, s
mant frequencies [8], [9]. It is likely that these degradasi that the algorithm does not track formants during unvoiced
contribute to decreased intelligibility of speech for plkeop speech segments, during periods of silence, or when a farman
suffering from sound-induced hearing loss. Hearing ai@s tthas insufficient energy for reliable spectral estimatiod][2
apply amplification independently across different freagpye ~ The formant tracking algorithm presented in this paper has
bands probably cannot compensate satisfactorily for tige t several improvements upon the Brueeal. scheme to make
of hearing loss [9], [10]. However, an amplification schemi& more robust in continuous speech, to speaker variability
for hearing aids called Contrast Enhanced Frequency Shapd to different types of background noises present inlifeal-
ing (CEFS) that should improve speech perception has besvironments. In Section Il we describe the improvemeris th
proposed by Miller and colleagues [11]. CEFS takes infoave been made to the Brueeal. algorithm, in Section Il we
account across-frequency distortions introduced by the imlescribe the results of quantitative and qualitative negsiif the
paired ear and requires robust formant frequency estimatev algorithm in a variety of background noise conditioms] a
to allow dynamic, speech-spectrum-dependent amplifisatfo in Section IV we discuss the implications of these result$ an
speech in hearing aids [9], [11], [12]. The accurate and sbbulraw some conclusions about the utility of the algorithm for
formant frequency estimation required for CEFS is not eagyrange of speech processing applications. Preliminanjtses
to accomplish in real-time for continuous speech. This taslave been presented in [18] and [21]AMAB source code
becomes even more difficult in real-life noise environmenfer the algorithm is available on request.
and with speaker variability (i.e., in cases where the speak

I. INTRODUCTION
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(20M-order linear-phase FIR filter [23]). The primary reason

behind converting the real-valued signal into its analyép- 4

resentation is to allow the use of complex-valued filtershia t  Hazpi[n, 2] = Ki[n] x [[ (1 —ree?? 270 0 (3)
formant filterbank (see Section II-A below). The conversion
also decreases the amount of aliasing in the signal, incgas

the accuracy of the spectral estimation technique used Y¥pere

=0
#1

formant frequency estimation [24]. 1

The algorithm was implemented for speech signals sampled Kiln] = — 4
at F, = 8 kHz and with an RMS energy of 0 dB over the entire [T (1 = r,ei2n(Fln-1]=Fln-1]))
duration of the signal. 121

and F0[n—1] is the pitch estimate at the previous time index,
A. Adaptive Bandpass Filterbank which is provided to the S-formant filter by the gender
The adaptive bandpass filterbank used in the formant tra(g(e_t_ector descnbed n section II-D below: Note “@ Is only
%?tlmated during voiced speech, so during unvoiced segment

ing algorithm is similar to the one proposed by Rao an speech the moving average value of the estimates is
Kumaresan [19] but has been modified to further suppress t%e X 9 g

effects of the pitch from the first-formant estimation. EacHS.T_gé DTF in each formant filter is made up of a single pole

Egggadoé dthvsit::It:rZ?nngkle(-:sglse’:lsésyn%fm?g t?z!;:i?rzg I:::g: ((S_ZI_BNhere the location of the pole is always set to the previous
L . Ie'stimate of the formant frequency of that formant filter. The

The combination of the AZF and the DTF is calledoamant transfer function of the&" DTFE at timen is:

filter and is responsible for bandpass filtering the speech signa‘i‘l '

prior to estimating individual formant frequencies. Coepl

filters are used to simplify normalization of the filter frency

response to give unity gain and zero phase lag at the filte . . .
center frequency [19]. The zeros and pole of each formaWE'_ererP Is the rtﬁd'us of the pole angk{n—1| 'S the_formant
timate of the&™ formant tracker at the previous time index.

filter are updated over time, based on the previous formaiﬁ :
frequency estimates, allowing dynamic suppression offiette X?tluetgf rplz 0.90 ":‘ ufs;ahd [19}' d ¢ hf ¢
ence from neighboring formants and from background noiﬁa err1 ep alcemf.eln 0 fef{poe anf kz}erfos ofr cac éoﬂrman
sources, while tracking an individual formant frequencyitas liter, the complex filter coe |C|en_ts_o the four formantéils )
varies with time. are calculated. These filter coefficients are then used # filt

In the filters for trackingF'2—F'4, each AZF has three zeros:heioe:]r;?gﬁ viﬁiiictgesflggilo:mgnﬁrué Esggzgétride:g;;ral
that are set to the previous value of the other three form Igam le frequency responses of theqfour formant filters at
frequency estimates (obtained from the other three formantomP q y P

trackers). The transfer function of thé" AZF (where k — a particular time are shown in Fig. 2. The positions of the
2.3 or 4)'at timen is: pole and the zeros of each formant filter are updated every

sample, as the formant frequency estimates vary with time.
All four formant filters have unity gain and zero phase lag
at the location of the pole, i.e., at the peak of the bandpass
filter that corresponds to the previous estimate of the fotma
frequency.

Figure 3 shows spectrograms of the original speech signal
and the signal from each of the four formant filters after the

1 original signal has been adaptively filtered, using the fmn
Ki[n] = () filterbank. It can be seen that in each of the filtered sigrieds t
(1 — rpe2n(Aln-1]=FRin-1])) energy of the neighboring formants is greatly reduced aoH ea
filter output contains energy primarily from only one forrhan

andr. is the radius of the zeros on theplane, 71 [n—1] and The energy at the pitch _frequency is also attenuated in the
ogtput of theF'1 formant filter.

Fk [n—1] are the formant frequency estimates at the previou
time index from the™ and k™ formant trackers, respectively. o o o
The term K,[n] ensures that the AZF has unity gain an®. Spectral Estimation via Linear Prediction
zero phase lag at the estimated formant frequency ofkthe The first four formant frequencies of voiced speech seg-
component. A value of, = 0.98 is used [19]. ments are estimated from the four bands of the adaptive band-
The transfer function of the Stformant AZF is slightly pass filterbank using first-order linear prediction on eamb
different than those of the other three AZFs. The AZF of th€he analytic signal from each band is first windowed using
F'1 filter has an additional zero at the pitch frequerddy to a 20-ms Hamming window. Next, a single linear predictive
prevent theF'1 tracker from erroneously tracking the signatoefficient (LPC) of the windowed frame is calculated forteac
energy at theF'0 frequency. Therefore, the transfer functioband using the autocorrelation method (e.qg., [25], [265nG
of the B! AZF at indexn is: a single-pole model to the windowed signal in each band.

1-7,
(1— rpejQka[nq]Zq)’

(®)

Hprre(n, 2] =

(1 _ TzejQTrFl[nfl]zfl)7 (1)

-

HAZFk[n, Z} = Kk[n} X

W
e

where

I

W
>
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Fig. 1. Block diagram of the formant tracker. The formant texdlelies on an adaptive filterbank to separate each formeguéncy region prior to spectral
estimation.
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Fig. 3. Spectrograms of the original speech signal and therdit signals

Fig. 2. The magnitude-frequency response of the four formdtersiat from the four adaptive formant filters.
a particular time when the pitchF(Q) is set to 200 Hz, the first formant
frequency €'1) is set to 700 Hz, the second formant frequengi2) is set

to 1500 Hz, the third formant frequency¥’) is set to 2200 Hz and the fourth .
formant frequency K¥4) is set to 3500 Hz. Each formant filter acts as ar]fhe energy calculated in that formant band has to be above an

adaptive bandpass filter, spectrally isolating the foumfamts. ‘energy threshold levelin addition to that speech segment
being voiced. The energy threshold level for each of the
formant frequencies is different and is adapted to long term
The LPCs are only calculated from the bands if the entighanges in the spectral energy of the formant frequencysband
previous 20-ms window of the speech signal is voiced (@radual adjustment of the threshold levels prevents long te
determined by the VOiCing detector described in Sectiof ”-errors to the energy detector and allows the a|g0rithm to
below) and the energy in a particular band is above the eneig¥over quickly from brief loud sounds. The energy threghol
threshold for that band, as described in the next section. level ETF'L' for the ith formant is updated during every voiced
segment of speech according to:
C. Adaptive Energy Detector

After the speech signal has been filtered using the adaptive ; ; _ 11 F T
bandpass filterbank, the RMS energy of the signal over th§T In] = ETrln—1] = 0.002 (ETk[n—1] = Erln]), (6)
previous 20 ms is calculated for each band. In order to etimahere ETx;[n] is the energy threshold level (in dB) of the
a particular formant frequency from the spectrum (instefd 6" formant frequency at time index and E;[n] is the RMS
assigning the moving average value to that formant freqgdencenergy (in dB) of the previous 20 ms of the signal at the output
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TABLE |

detector about the gender of the speaker so that the voicing
INITIAL FORMANT ENERGY THRESHOLD LEVELS

detector parameters can be updated.

Initial formant Level
energy threshold (dB) 1 PITCHESTIMATE -
ETr, —35 L To F1 Formant Filter
e S ——————— S U ——
ETFQinit —40 I From the Gender Detector -, ----- lvv.oncvcovvv.occv: -i
ETp3i —45 Pitch Gender | :
ETFa; —50 I Extractor — D;I(:f:r)n s -
l ..........................
|~ Delay co#glt:t-ion I Pitch and Gender Detector I
of the i formant filter. |
The initial energy threshold levelBT;, ., for each formant : Voicing Detector Voicing
Fi are set at the start of the algorithm. Various initial energ§peech becision f= — — +
1 HPF Maker To the
threshold level& T, ,, were tested and the best results wereinput | J Moving Average
obtained using the values given in Table . u_-I Logwrl— Y Decision Maker
I Hysteresis
L) Lee ' !
D. Gender Detector | ( [

Gender detection is based on a simple and fast pitch estima- L ___.
tO.I’ [27]. This qlgquthm usels an amocorrelatlo,n balsedm Fig. 4. Block diagram of the voicing detector designed tontifg voiced
with center-clipping, for pitch frequency estimation. @R segments of speech.
clipping the signal makes the periodicity of the speechaign
more prominent while suppressing the interaction betweent |n the voicing detector, the original speech signal (the
pitch frequency and the first formant frequency, thus ingir@a real-valued signal without pre-emphasis) is filtered inio t
the accuracy of the pitch frequency estimates [27], [28].  different frequency bands by passing it through a highpass
A 50-ms segment of speech is broken up into seven 20-filger (HPF) and a lowpass filter (LPF) with the same cutoff
frames overlapping by 5 ms. After the signal in a particuldfequency F,q. After the signal is filtered into the two fre-
frame has been center clipped, its autocorrelatiBn|m|, quency bands, the RMS energy of the previous 20 ms of the
is calculated and the location of the highest pegk,of |ower and higher frequency bands is normalized by the square
the autocorrelation function is located. R,[p] is greater root of the filter bandwidths, i.e., divided kyF.q for the low-
than 0.4 x R, [0], then the pitch period is computed from frequency band and by/F,/2 — F,q for the high-frequency
Otherwise, the segment is classified as being unvoiced asihd. The log ratio of the normalized low-frequency eneay t
its pitch is set to 0 Hz. The range of acceptable values fRigh-frequency energy is then calculated. The windowedaig
the pitch frequency is between 60 and 320 Hz, and if thgment is classified as voiced when the log ratio exceeds a
calculated value of the pitch for a particular frame is alési threshold level.
this range then the pitch estimate for that frame is set t0.0 Hz The value of F,q depends on the estimated gender of
The pitch for the entire segment is obtained by median-fiiter the speaker. For the large number of values tested, the best
the pitch estimates from all the frames within that segmentyesults were obtained wheh,; was set to 700 Hz for male
The gendeG|n] is updated every 20 ms (160 samples); thgpeech and 1120 Hz for female speech. Every 20 ms the
speaker is considered to be mal&[¢] = 0) if the average yoicing detector obtains updates of the estimated gender of
pitch frequency is below 180 Hz and is set to femalér( = the speaker and is able to modify,q if the gender changes.
1) if it is great than or equal to 180 Hz. The average pitciihe cut-off frequencyF,q is adapted slowly so that transient
frequency of each segment is also used byrtihdormant filter  effects are limited. The algorithm is configured to shift the
for the placement of the additional zero at the pitch fregyencut-off frequencyF,q from 700 to 1120 Hz (from that for
location, as described in Section II-A above. a male speaker to that for a female speaker) or vice versa
over ~ 44 ms according to the equation:
E. Voicing Detector

A block diagram of the voicing detector is shown in Fig. 4. Foan—1]-1.2, if G[n] =0
The voicing detector provides the formant tracking aldponit and Fq[n—1]>700,
with a reliable sample-by-sample decision on whether theF 4[n]=< Fia[n—1]+1.2, if G[n]=1
preceding 20-ms speech segment is voiced or unvoiced. The and Fyq[n—1]<1120,
low-frequency to high-frequency energy ratio serves as the Fealn—1], otherwise,
primary means of determining if a speech segment is voiced or @)

unvoiced. Functionality has been built into the voicingedtdr whereF,4[n] is the cut-off frequency an@[n] is the estimated

to prevent it from switching its decisions spuriously, eas gender (zero for male and one for female) at sample index

a result of short-term fluctuations in the speech spectrum.The log energy ratio is reliable and accurate only for

Parameters of the voicing detector need to be adapted topbmnemes with frequency components that do not vary too
that it functions well for both male and female speakerspuch over time. The presence of transient frequency com-
the gender detector provides regular updates to the voicipgnents can make the voicing detector results oscillate too
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quickly between the voiced and unvoiced states. To avoid

these spurious oscillations between the voiced and urdoice a[n—1]+0.001, if G[n] =0

states, Bruce and colleagues [20] proposed a threshold with and a[n—1]<0.6,
hysteresis. This allows changes in the voicing state (from a[n]={ a[n—1]-0.001, if G[n] =1 (10)
voiced to unvoiced or vice versa) only if the state of the and afn—1]>0.25,

current sample changes from the previous sample and the

current sample has a log ratio exceeding a set thresholt leve i o ]
If the previous 20-ms window (i.e., up to samplel) was Independent testing of the voicing detector algorithm was

unvoiced and the current 20-ms window (i.e., up to Sampq:@nducted using both synthesized sentences and recorded
n) has a log energy ratio greater than a set threshold leg@eech sen_te_nces from the TIMIT database. The results show
(LT,), then the current sample is assigned as being voicdat the voicing detector performs very well for both male
i.e., the switch from unvoiced to voiced state occurs only f#nd female speakers and has a delay of approximately 10 ms
the log energy ratio is greater than the proper thresholel Jevirom the actual onset of voicing to the detection of voicing.

If the previous window was voiced and the current windowhe voicing detector is fairly robust and encounters vettieli
has a log ratio less than a set threshold I6VeT,), then the spurious switching between the voiced and unvoiced states.

current sample is assigned as being unvoiced, i.e., thelswit
from voiced to unvoiced state occurs only if the log energy. Moving Average Decision Maker

ratio is below the proper threshold level. These thresteidls The moving average decision maker has two purposes:

depend on the gender of the speaker and have to be change.d to calculate and update the moving average value of each

?s ';hg gt(;ndsr otf the sltpefaketrhchan_ggs. I;rotm :he range of vglues formant frequency, and
ested, the best results for the voicing detector were o&ai « to determine whether to assign the LPC-estimated value

xﬂez égv VanS se; :00(1) ;ofr rrn;Iels ani)i(f)og ]te:nfalrens land for the current formant frequency estimate or to decay to
€ u Was Set to—0.2 Tor maies a > for females. the moving average value for each formant frequency.

If the gender of the speaker changes, the threshold levels ar ; . . )
The moving average decision maker assigns the estimated

updated over 40 ms (to avoid any transient effects) accordin
topthe equations: ( y ) accg value to the formant frequencies (from the LPCs) only when

every sample in the 20-ms LPC window (i.e., 160 samples) is
determined to be voiced according to the voicing detectdr an
the energy of the formant is above its respective thresievid |
(described in Section 1I-C above). If not all of the windowed
segment is voiced or if the energy of a particular formant is
below its respective threshold level, then the current evafi

an-1], otherwise.

LT,[n—1]-3.125x10~%, if G[n] =0
and LT,[n—1]>0.1,

LT,[n]={ LT,[n—1]+3.125x10~4, if G[n] =1
and LT, [n—1]<0.2,

LTy[n-1], otherwise, (8) the formant frequency decays toward the moving averagevalu
and for that formant frequency according to:
LT,[n—1]+3.125x10~% if G[n] =0 Fi[n] = Filn—1] — (0.002 (Fi[n—1] — Fiyqa[n—1])), (11)

and LT,[n—1]<—0.2,

LT,[n]=< LT,[n—1]-3.125x10~% if G[n] =1
and LT,[n—1]>—0.3,
LT,[n—1], otherwise.

where Fi[n] is the formant estimate th& formant frequency

at time indexn and Fiya[n—1] is the previous value of the
moving average for thé" formant frequency. The update rule
) for the moving average value of each formant frequency is:

In order to avoid erroneous voicing detection in the presenc 1o
of background noise with a random lowpass spectrum over Fiyaln] = — Z Filk], (12)
the short term, the voicing detector algorithm performs an na
autocorrelation-based te_st to determine if the energy & _tu/hereFiMA[n] is the moving average value for t#& formant
lower frequency band is due to.short—term colored r]O'Sf?equency at timex and Fi[n] is the estimate of thé" formant
or due to some other lowpass signal that may be Speeﬁ%‘quency at timen
The autocorrelation of the previous 20 ms of the signal Is N
calculated. The signal is classified as voiced only if, initoid o o _
to passing the log energy ratio test, the autocorrelaticangt G. Limitations on the Proximity of Formant Frequencies
lag (m # 0) is greater than the autocorrelation threshold The frequency response of a formant filter becomes dis-
multiplier « times the autocorrelation at zero lag. = 0). torted when the poles and zeros are too close to each other.
The value of the multipliery is different for male and female Therefore, the formant tracking algorithm limits how close
speakers. For the range of values tested, the best results vilee formant frequency estimates can come to each other. The
obtained whern was set to 0.25 for female speakers and O#&lgorithm does not allow'1 to be less than 150 Hz from the
for male speakers. If the gender of the speaker changes, piteh frequencyF'0 at any time. SimilarlyF'2, F'3 and F'4 are
multiplier o[n] is updated over 44 ms (to avoid any transient limited from being less than 300, 400 and 500 Hz, respegtivel
effects) according to the equation: from their lower neighbors.
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TABLE I
MEANS AND STANDARD DEVIATIONS OF INITIAL FORMANT FREQUENCY
VALUES FOR TESTING PURPOSES

noise (AWGN) at signal-to-noise ratios (SNRs) from 40 dB
to —10dB, for various synthesized and TIMIT database
speech signals (for both male and female speakers).

Initial formant | pm, | om Figure 5a) shows the spectrogram of a female synthesized
estimate (Hz) | (H?) speaker saying “Five women played basketball” in the pres-
FOinig 150 | 40 ence of AWGN at 20 dB SNR. On the spectrogram, the actual
Flinit 458 | 154 i ! X

F2 1535 | 469 formant frequencies are plotted as dotted lines, the etda
F3init 2705 | 468 formant frequencies for an example trial are plotted asdsoli
F3init 3819 | 485 lines and the voicing decision is plotted as a dashed line. Th

speech is unvoiced when the voicing decision is ‘low’ (zero)
and it is voiced when the voicing decision is ‘high’ (non-
Ill. TESTING AND RESULTS zero). Note that the approximate average delay of the forman
Rigorous and systematic testing of the formant trackirigackers and voicing detector({ ms) is compensated for when
algorithm was conducted in order to find best values for th@otting the formant estimates against the spectrogrands an
operating parameters as well as to ensure that the algorittike formant trajectories.
performs well under various levels and types of background
noise. The algorithm has been tested using various syattesi
speech signals as well as a large number of signals from the g5,k
TIMIT recorded speech database. Testing with synthesized
sentences allows quantitative analysis of the performarfice < 3000
the formant tracker because the formant frequency valugs
of the synthesized speech signals are known. The TIMI
database speech signals are recorded from actual speakgro00t
and therefore sound more natural than the synthesizedtspegg
signals. However, because the actual formant frequenayesal @ 1900}.
of the TIMIT database speech signals are unknown, onfr 500l
gualitative analysis of the results can be performed thnoug A
visual inspection of the spectrograms. 500
For testing purposes, the formant tracking algorithm was
initialized with formant frequency estimates set to random
values drawn from distributions that approximate the true
distributions of naturally-occurring formant frequergielhe
mean and standard deviation in frequency of each forrhdnt
F4 and the pitch#'0 were calculated from formant frequency 800 ; : : ;
values of male and female synthesized utterances of the sen- : : : | — F1RMSE
tence “Five women play basketball.” During testing, theiahi : ' N ,Eg Emgg '
values for the four formant frequencies and the pitch freque
were drawn from Gaussian distributioAs (., o), Wwhere
the meanug, and standard deviationg for each formant T
Fk, for k = 1,2,3, or 4, or for the pitch F'0, are given E,’
in Table II. The initial values were rejected and new value|
drawn if any value was negative or was greater than theg 300
Nyquist frequency K5/2 = 4 kHz), or if the values for the
frequencies of F0O—F'4 were not in the correct order (i.e.,
ascending values). 100
Quantitative performance of the algorithm for the synthe-

2500

200

sized sentences was measured in terms of the root mean 0 - 5 10 20 0 20
squared error (RMSE) in units of Hz between the actual and SNR (dB)

estimated formant frequencies. The RMSE was measured only

for those time indices where the target speaker’'s speech was b)

voiced and_ had sufficient energy for spectral estimation, apig 5. Formant tracking results for a synthesized femalekayesaying “Five
the approximate average delay of the formant trackErsr(s) women played basketball” in the presence of background w@iessian

was compensated for when computing the RMSE. noise. a) Spectrogram, estimated (solid lines) and actuttb@bnes) formant
P p 9 frequencies, and voicing decision (dashed line) at an SNEOafB. b) Mean

RMSE (in Hz) over 25 trials as a function of SNR (in dB). Theoars indicate

. . . . the standard deviations of the actual formant frequencyega(in Hz).
A. Testing in the Presence of White Noise a )

The operation of the algorithm was tested and analyzedit can be seen that during the voiced segments of speech
in the presence of background additive white Gaussidéime algorithm performs well in tracking the actual formant
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L : : . . . TABLE Il
frequencies, including fairly rapid formant transitiom3uring
NUMBER OF POORLY¥TRACKED TRIALS OUT OF25 FOR THE FEMALE AND

unvoiced speech segments the algorithm decays the formant . )
tracks towards the moving average values of the formant MALE VERSIONS OF'FIVE WOMEN PLAYED BASKETBALLY IN THE
. . L. PRESENCE OF BACKGROUNIAWGN.
frequency estimates, rather than attempting spectrahastn.
At the onset of a new voiced segment of speech, the formanSNR (dB) [ —10 [ -5 [ 0 [ 5] 10 | 15 20 [ 25 | 30 [ 40
tracker quickly re-acquires the correct formant trajegctor Female 16 17] 0] 2] 0] 0] o] 0o 0 1
The algorithm was tested using different male and femaleMale 9] 5|6|5] 1] 0] 0] 0] 1] 0
speech sentences in various SNRs, in the presence of back-
ground AWGN. In general, the formant frequencies were
estimated accurately and the algorithm was relatively sobumore prevalent at low SNRs, particularly for the female test
Figure 5b) shows the RMS error between the actual and thntence in which (i) the formants frequencies are morelyide
estimated formant frequencies for the same sentence asshaced and (iif'4 is often above the Nyquist frequency.
Fig. 5a) in the presence AWGN at various SNRs. 25 trials were
conducted, with a different AWGN sequence and differe
initial formant estimates each time, and the figure shows t
mean RMSEs for the 25 trials. The performance of the algorithm was evaluated in the
The arrows on the right hand side of Fig. 5b) indicatgresence of a single male or female background (competing)
the standard deviations of the actual formant frequenciggeaker at SNRs from 40 dB te5 dB. This scenario is
(calculated using those points for which the RMSE of thehallenging for the algorithm, because over a particulartsh
estimated formant frequencies is calculated). At high SNR#me period the background speaker may contribute significa
the RMSEs forF'1 and F'3 are close to the standard deviationgnergy to the formant frequency regions of the target spgake
of the actual formant frequencies, and the RMSE Fir is  especially at lower SNRs. This may cause the algorithm 1 sta
much less than the standard deviation of acfi@frequencies. tracking the formant frequencies of the background speaker
The RMSE forF4 is much higher than the standard deviatiostead of those of the primary speaker. Furthermore, at ver
of actual F4 frequencies at all SNRs because the actuliw SNRs (0 dB and below), the formant tracking algorithm
F4 frequency often exceeds the Nyquist frequengy/@¢ = may start exclusively tracking the formant frequencieshef t
4 kHz) in this sentence and consequently the formant cannotltigckground speaker because the energy from the background
tracked during these times. At 0 dB SNR the RMSE for speaker will be greater than that from the target speaker.
grows to around two times the standard deviation of actualFigure 6a) shows the spectrogram and estimated and actual
F1 frequencies. Below 0 dB SNR, the1 RMSE drops to formant frequencies of a synthesized male speaker saying
around the standard deviation fdfl because at such low “Five women played basketball” in the presence of a com-
SNRs the algorithm decays to the moving average values of theting single female recorded (TIMIT) background speaker a
formant frequencies instead of spectrally estimating thiam an SNR of 5 dB. At such a low SNR with a single compet-
linear prediction. The RMSE foF'2 increases to around theing background speaker, the voicing detector determinas th
standard deviation of actual2 frequencies at SNRs between (signal is voiced for almost the entire duration of the signal
and 10 dB and exceeds the standard deviation somewhabuating the silent and unvoiced segments of the target seaten
lower SNRs. This validates the use of the moving average dbe algorithm tracks the formants of the background female
cision maker when spectral estimates are not reliable. Harot speaker and then returns to accurately tracking the target
justification for decaying to moving average values duringprmants in the strongly voiced phonemes of the synthesized
unvoiced speech is that it ensures that the formant frequersentence. An example of this is seen in Fig. 6a) in the period
estimates vary smoothly as the speech changes from voicedt00.6—0.7 s, where thg€’l and F2 estimates rise up in
unvoiced and vice versa, even at low SNRs. frequency to the formants of the background female speaker
Similar performance was found for male synthesized and then return back down to the formants of the synthesized
speaker in AWGN, except that the mean RMSEsHdrwere male speaker.
substantially lower than for the female speaker, because th Figure 6b) shows the mean RMSEs for 25 trials of the same
true F'4 frequencies for the male speaker remain below tleynthesized male speaker sentence in the presence of a singl
Nyquist frequency and can consequently be tracked with sofeenale background speaker from the TIMIT database saying
reliability [18]. “How do we define it?” at various SNRs. The background
Despite the good mean RMSE results, there were somentence was identical in each of the 25 trials, but theainiti
instances where the random initial formant frequencies vdbrmant estimates were different for each trial. Similattthe
ues (drawn from the distributions described above) were farevious example, at high SNRs the mean RMSEs Aar
enough from the formant frequencies of the first phoneme 2 and F4 are typically around the standard deviations of
the test sentence that tf€&2 and F'3 trackers had difficulty in their respective actual formant frequencies, and as the SNR
finding the correct formant tracks. Table 11l shows the numbéalls to 0 dB the RMSEs increase above the standard deviation
of trials out of 25 for which the RMSE foF'2 was greater values. The mean RMSEs fd@f2 are substantially below the
than 600 Hz, indicating thakt'2 and F'3 were poorly tracked actual F'2 standard deviation at most SNRs. At 0 dB SNR the
in that trial. At high SNRs this occurred only very infreqtign performance of the algorithm degrades and the RMSEtor
(zero or one times out of 25 trials). Poorly-tracked triaksrév  rise above the standard deviation.

A Testing in the Presence of a Single Background Speaker
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[ee)

4000 formant frequencies. The mean RMSE 62 grows to equal
3500 } the standard deviation as the SNR drops to 0 dB, but it falls
slightly at —5 dB to just below the standard deviation.
~ 3000 |
T 800 T
=, 2500 ; ; ; — F1RMSE
0 s 700 S R R TEREEERELE - =+ F2 RMSE |+
$ 2000} g g g +=:+ F3 RMSE
g_ = 600 T [EETTRIPRIPRIPRIS SRS IITTR F4 RMSE |
© 1500F 5 5 5 :
S _—
T N 500
1000 f. =
W 400
500 g
oc 300
0
200 p:s
100
0 i i i i
800 — ; ; : 0 10 20 30 40
: : : — F1 RMSE
700 ......... ................. , ........ [epr—— F2 RMSE - SNR (dB)
: : : +=++ F3 RMSE
600 [ S B e F4 RMSE |4 Fig. 7. Mean RMSE (in Hz) over 25 trials as a function of SNR i)
- : : : : for a synthesized male speaker saying “Once upon a midnigarydrerhile
N 500 | pondered weak and weary, over many a...” in the presenceakigbaund
5 babble. The arrows indicate the standard deviation of theahdormant
w frequency values (in Hz).
400
s :
O 300 [™Hidnd,
200 . D. Testing for Speaker Variability
One of the main features of the algorithm is its ability to
100 track formant frequencies for both male and female speakers
0 H ; ; ; The results for the previous test cases indicate that the alg
0 10 20 30 40 rithm works quite well for both genders. However, in thisttes
SNR (dB) case the response of the algorithm to a change in the gender

of the speaker was evaluated, to see if it can seamlesslgrswit
between tracking formant frequencies for either gender.
Fig. 6. 'TOFm:Et trsckti)nﬁ reSlélfS fOFaSVntthSiZEdlmale ;%WMT') fg“Fi\I/e Figure 8 shows a spectrogram for the transition between
women played basketball” in the presence of a single recd( emale .
speaker. a) Spectrogram, estimated (solid lines) and actiated lines) two concatenated _TIMIT. database sentences in the presence
formant frequencies, and voicing decision (dashed line)aSBR of 5 dB. Of background white noise at an SNR of 25 dB. The start
b) Mean RMSE (in Hz) over 25 trials as a function of SNR (in dBpe of the Signa| is a male Speaker Saying “Gus saw pine trees
arrows indicate the standard deviation of the actual fornfrafuency values . . - "
(in Ha). and redwoods on his walk through Sequoia national forest
followed by a female speaker saying “Don’t ask me to carry
an oily rag like that.” The switch from the male speaker to
C. Testing in the Presence of Multiple Background Speakef8e female speaker occurs at approximatety 4.1 s. On the
r?gectrogram, the estimated formant frequencies are glake

slc()lid lines and the gender decision is plotted as a dashed

p:ﬁiﬁzcia%fb:z; Igﬁlgl\?sgkggomungocgg F;s;'z% S'?’E?skircs)is(:aﬁn_e' The gender detector correctly estimates that thekepea

9 - ' is male where the dashed line is low (befdre: 4.1 s) and
source has characteristics somewhere between the previ US ihe speaker is female where the dashed line is high
two test cases: the multiplicity of speakers produces aeflattSafter t~4.15s). The algorithm performs well during the
short-term spectrum and less temporal modulation than-a sj e

n._ .. .
. . ransition from mal femal ker an ntin

gle speaker, but it has greater spectral and temporal mimhula ansitio ° ale to female speaker and continues to

than AWGN.

provide smooth and accurate formant frequency estimates as
) . i
Figure 7 shows mean RMSEs for 25 trials of a synthesize

it dstarts tracking the formants of the female speaker.
male speaker saying “Once upon a midnight dreary, while |
pondered weak and weary, over many a...” in the presenceEof Other Tests
background babble at various SNRs. The background babbld he algorithm was tested using both synthesized and TIMIT
was identical in each of the 25 trials, but the initial forrhardatabase recorded speech signals under various otheratyfes
estimates were different for each trial. At high SNRs, thivels of background noise conditions, including:
RMSEs forF'2 are below the standard deviation of the actual « background music,

b)

The performance of the algorithm was also tested in t
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4000 AT A limits on range of values that formant frequencies estimate
3500 F | can take, depending on the current gender estimate from the
gender detector. Additionally, the algorithm occasiongives
‘choppy’ and oscillating formant frequency estimates.sTisi
an undesirable result because the actual formant frecegenci
of speech normally vary slowly with time and have smooth
transitions. This problem is normally only encountered whe
the SNR is very low (typically below 5 dB) and occurs due
to the algorithm tracking the excess energy added outsile th
formant frequency regions from the background noise source
Possible solutions to this problem may be to smooth the
estimates or to incorporate additional logical limitasoto
prevent abnormal jumps from occurring in formant frequency
estimates in the first place. Another improvement may be to
modify the formant filters to have variable bandwidths that
are dependent on the magnitudes of the poles estimated by
gig._a. Spectrogram, formant frequency estimates (solid )Jinesl gender the linear prediction analysis. This may further improve th
o ance o o o SN o 700 s oMt requency estimates dring rapid formant trpesi
dashed line is low the gender detector has determined thaspbeker is @t Nigh SNRs, but the performance of the algorithm at low
male, and where the dashed line is high it has decided that aefemas  SNRs would likely remain unchanged. Despite these limita-
begun speaking. tions, the overall performance of the algorithm is bettemth
those of traditional formant estimation techniques [18].
Recently, substantial improvements have been made over
traditional formant tracking methods. Several approatizee
. . incorporated more sophisticated modeling of vocal trast re
« fading of the target speech signal, and . : 2
. reverberant acoustic environments. onances thgn conventional linear p_red|ct|c_)n [29]-[33].- An
. . _ other technique uses the spectral differential phase repect
. Further details of the testing and results can be obtaingdner than the Fourier spectrum [34]. In contrast to simple
in [18]. logical peaking picking, many new algorithms implement
estimation and tracking techniques such as concurrentcurv
IV. DISCUSSION ANDCONCLUSIONS formation [35], probabilistic estimation techniques (su&s
As described in the Introduction, in order to use thithe estimation-maximization algorithm) [29], [36], [371D
algorithm for CEFS amplification in hearing aids the formarand 2D hidden Markov models (HMMs) [38]-[42], Kalman
frequency estimates have to be smooth and accurate &idring [31], [41] and particle filtering [33]. However, ¢h
must be computed with relatively little time delay. Detdile computational complexity and the signal delay for most of
analysis has shown that the algorithm provides fairly aateur these techniques greatly exceed those of the algorithm pre-
formant frequency estimates at moderate to high SNRs asehted in this paper. Furthermore, it remains for most cehe
is robust to real-life noise conditions such as additivetazhimethods to be tested for robustness in background noise. One
Gaussian noise, a single background speaker (of the samexareption is [41], in which the combination of LP-spectral
different gender), multiple background speakers, revariie subtraction and Kalman filtering was found to produce much
acoustic environments, etc. The algorithm provides mostigore robust estimation of formants in background car and
smooth formant frequency estimates and recovers quickhain noise than a 2D HMM algorithm.
after erroneous estimates to return to tracking actual &atm  Although it was found in [18] that formant tracking based
frequencies in the speech signal. Furthermore, the afgoriton a highly simplified model of the auditory periphery [17]
has been designed to operate in real-time and estimatefibrma&as not robust to background noise, a more physiologically
frequencies from continuous speech for both male and femalecurate model has previously been shown to have a robust
speakers. Therefore, it can be concluded that the formaepresentation of formants in white noise [43]. It would
tracking algorithm presented in this paper is suitable fBFS be of interest to see if the newer estimation and tracking
amplification. methods listed above could be applied to the output of such
There have been some problems identified with the formaatphysiological model to produce robust formant estimates
tracker. It was observed that occasionally the and F'3 for a variety of background noises. However, once again the
trackers had difficulty finding the correct formant trackshié computational requirements and the signal delay are litely
initial formant estimate values were far from the actuahfant exceed those of the formant tracker presented in this paper.
frequencies. In continuous operation of the algorithms thi Although the algorithm developed in this paper is pri-
might occur sometimes when there is a switch in the genderrafrily designed to meet the criteria for CEFS amplification,
the speaker or if the formant tracker is perturbed by tramsieother applications for it do exist, such as automatic speech
background noise while the voicing detector reports that thecognition [29], speech synthesis [44], speaker norrattin
signal is voiced. One solution to this problem might be tapla for automatic speech recognition [45], voice conversiody,[4

Frequency (Hz)

« background environmental sounds,
« background traffic noise,
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speaker identification [46] and speech coding [47]. Sonn]
of these applications utilize phonemic segmentation lgefor

formant estimation, in which case the voicing detector arsh,
moving average decision maker could be removed from our
system, and the remaining algorithm could be applied just to
segments that are identified as voiced phonemes. [22]
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