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ABSTRACT

This paper presents a particle-filtering method for estimating
formant frequencies of speech signals from spectrograms. First,
frequency bands corresponding to the analyzed formants are ex-
tracted via a two-step dynamic programming based algorithm. A
particle-filtering method is then used to accurately locate formants
in every formant areas based on the posterior pdf described by a
set of support points with associated weights. Formant trajecto-
ries of voiced frames of a group of 81 utterances were manually
tracked and labeled, partly for model training and partly for algo-
rithm evaluation. In the experiments, the proposed method obtains
average estimation errors of 72, 115, and 113 Hz for the first three
formants, respectively, whereas LPC based method induces 118,
172, and 250 Hz deviations. The experimental results show that
the formants estimated by the proposed method are quite reliable
and the trajectories are more accurate than LPC.

1. INTRODUCTION

Formant frequency is one of useful speech parameters to be spec-
ified by a vocal tract shape or its movements in various pronunci-
ations. However, capturing and tracking formants accurately from
natural speech is difficult because of the variety of speech sounds.
Typically, formant-tracking algorithms have three phases [1] [6]:
signal conditioning (preemphasis), frame-dependent formant can-
didates generation, and tracking. For the second phase, linear pre-
diction analysis (LPC) based methods have received considerable
attention. Root-finding algorithms are employed to find the ze-
ros of the LPC polynomial, or local maxima of the LPC envelope
are searched using peak-picking techniques. However, the prob-
lem with root-finding algorithms is that the determination of for-
mant frequencies and bandwidths is only successful for complex-
conjugate poles and not for real poles, while peak-picking tech-
niques are vulnerable to merged formants and spurious peaks.

This paper proposes a new formant tracking method based
on gray-scale spectrograms. It is well known that the horizontal
bands in spectrograms with higher energy show the formant po-
sitions. This is why many researchers are capable of distinguish-
ing different phones just from spectrograms. In this paper, three
spectrogram-based features consistent with the human sense are
used to describe the likelihood of a frequency value to a formant
at a certain time frame. In order to provide an optimum set of
frequency segments each of which covers and concentrates on one
formant spectrum region, a two step frequency range segmentation
scheme based on dynamic programming is performed first.

Additionally, the developed algorithm is an application of se-
quential Monte Carlo methods (also known as particle filters) to
track horizontal bands with higher energy in spectrogram. Parti-
cle filters were introduced to the vision community in the form of

the CONDENSATION algorithm [9]. Improvements of a techni-
cal nature to it were provided by Isard and Black [10] (importance
sampling). Recently, particle filtering has become a popular way
to infer time-varying properties of a scene from images. The algo-
rithm has already seen applications to nonlinear and non-Gaussian
Bayesian tracking of various targets [5] [7] [8] [12]. Moreover,
particle filtering and smoothing has also been introduced into the
audio and speech enhancement community [4] [13]. In these ap-
plications, the speech signal is modeled as time-varying autore-
gressive (TVAR) equivalent process submerged in white Gaussian
noise. By using sequential particle methods, an SNR improvement
of the speech signals was achieved. Particle filtering has attracted
much interest because it offers a framework for dynamic state es-
timation where the underlying probability density functions (pdfs)
need not be Gaussian and state and measurement equations can be
nonlinear. These situations are commonly encountered in vision
and speech. In addition, the method has the ability for recovering
from tracking misses in intermediate frames.

While particle filtering has many advantages in target tracking,
to the best of our knowledge, the use of particle filters for formant
tracking has not been proposed yet. Another contribution of this
paper is that a set of formant trajectories are manually labeled,
based on which performance of different formant estimation algo-
rithms are evaluated numerically and easily. The proposed method
is used in experimental tests that are carried out on Aurora2 clean
speech database. According to the results, the presented approach
produces reliable estimates of formant frequencies.

2. PROBLEM FORMULATION

We define the frequency position of thek-th formant at timet as
F

(k)
t . Based on the Bayesian rule, to locate this position is to

calculate the expectation̄F (k)
t given the formant spectrum region

sequenceR(k)
1:t up to timet

F̂
(k)
t = F̄

(k)
t = E[F

(k)
t |R(k)

1:t ] (1)

where the posterior pdfp(F
(k)
t |R(k)

1:t ) is often unknown and non-
Gaussian.

The speech data we have analyzed consist of a total of 81 clean
female sentences randomly selected from the Aurora2 speech data-
base. The speech signals are sampled atfs = 8 KHz. Two kinds
of spectrograms are generated in this paper. One is wide-band
for formant labeling and the other is narrow-band for both model
training and formant tracking. For wide-band spectrograms, the
window size and frame step size are taken as 5 ms and 1 ms,
whereas for narrow-band, they are 20 ms and 10 ms, respectively.
Preemphasis and Hamming window are used before FFT for both
types of spectrogram. In the formant labeling process, after being
converted from log-energy to gray scale ranging from 0 to 255,
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the spectrograms are saved into bitmaps, based on which formant
trajectories are then directly labeled on a special screen using a
special pen. Voiced phone boundaries of the analyzing utterances
are also manually labeled with the aid of spectrograms. In model
training and formant tracking, the speech signals are limited to the
frequency band[fu, fs/2 − 200] Hz as in [14], for antialiasing
and for reducing influence of the strong fundamental components
on the estimation ofF (1). According to the average vocal tract
length of adult females,fu takes as 300 Hz and the lowest three
formantsF (1)-F (3) are estimated in the frequency band 0-4 KHz.

3. PARTICLE FILTERS FOR FORMANT TRACKING

Particle filtering is a technique for implementing a recursive Baye-
sian filter by Monte Carlo simulations. The key idea is to represent
the required posterior pdf by a set of random samples with asso-
ciated weights and to compute estimates based on them. As the
number of samples becomes infinite, the Monte Carlo characteri-
zation becomes an equivalent representation to the usual functional
description of the posterior pdf, and the particle filter approaches
the optimal Bayesian estimate.

3.1. Particle filters in general

In this subsection, following [3], a general framework of the parti-
cle filtering methods is described. Consider the following dynamic
system modelled in a state space form as

xt = ft(xt−1,vt−1) (2)

zt = ht(xt,ut) (3)

wherext is the state variable,zt is the observation, andvt andut

are state and observation noises. These variables are either scalars
or vectors. In the system, both state and measurement equations,
ft andht, are non-linear functions.

Let z1:t = (z1, · · · , zt). From a Bayesian perspective, the
tracking problem is to recursively calculate some degree of belief
in the statext at timet, taking different values, given the dataz1:t

up to timet, and the optimal solution is

x̂t = x̄t = E[xt|z1:t] =

Z
xt

xtp(xt|z1:t)dxt (4)

Thus it is required to construct the pdfp(xt|z1:t).
It is defined that{xn

t , wn
t }Ns

n=1 is a random measure that char-
acterizes the posterior pdfp(xt|z1:t), where{xn

t , n = 1, · · · , Ns}
is a set of support points with associated normalized weights{wn

t ,

n = 1, · · · , Ns} such that
PNs

n=1 wn
t = 1. Then the posterior pdf

at timet is approximated as

p(xt|z1:t) ≈
NsX

n=1

wn
t δ(xt − xn

t ) (5)

where

wn
t ∝ p(xn

t |z1:t)

q(xn
t |z1:t)

(6)

The proposal functionq(·) is called an importance density from
whichxn

t are easily generated. In recursive calculation, the weight-
update equation is

wn
t ∝ wn

t−1

p(zt|xn
t )p(xn

t |xn
t−1)

q(xn
t |xn

1:t−1, zt)
(7)

The most common and convenient choice of importance den-
sity is the conditional prior

q(xn
t |xn

1:t−1, zt) = q(xn
t |xn

t−1, zt) = p(xn
t |xn

t−1) (8)

since it is intuitive and simple to implement, yielding

wn
t ∝ wn

t−1p(zt|xn
t ) (9)

Then the weights need to be normalized. Subsequently, the opti-
mal Bayesian estimate of statext is calculated as follows

x̂t =

Z
xt

xt

NsX
n=1

wn
t δ(xt − xn

t )dxt =

NsX
n=1

wn
t xn

t (10)

A common problem with particle filtering is the degeneracy
phenomenon, which is that the variance of the importance weights
only increase over time. To reduce the effects of degeneracy, a
resampling process is used. The basic idea of resampling is to
eliminate particles that have small weights and to concentrate on
particles with large weights. The resampling step involves select-
ing a number of, sayNn, children for each particlexn

t such thatPNs
n=1 Nn = Ns. There is a variety of resampling schemes with

varying performance in terms of the variance of the particles . The
residual resampling [2] which has smaller variance of the particles
and is computationally cheaper is used in this paper.

3.2. Formant tracking using particle filters

Taking the unknownk-th formantF (k)
t as the state variable and

the formant spectrum regionR(k)
t as the observation, the problem

described in (1) is solved via the particle filtering method. Based
on the framework described in the previous subsection and choos-
ing (8) as the importance density, the optimal estimation in (1)
becomes

F̂
(k)
t = E[F

(k)
t |R(k)

t , F̂
(k)
t−1] (11)

and therefore, we need to train the priorp(F (k)), conditional prior
p(F

(k)
t |F (k)

t−1) and likelihoodp(R(k)|F (k)), respectively. The like-
lihood p(R(k)|F (k)) is used to measure if the spectrum local fea-
turesLF (k) on frequencyF (k) are similar to those of the key point
in terms of the appearance. It is simplified to

p(R(k)|F (k)) = p(LF (k) |F (k)) (12)

In this paper, all of the pdfs are modeled and learned as Gaussian
or products of Gaussians. In details, the prior and conditional prior
pdfs are written as

p(F (k)) ∼ N (F (k); µF (k) , σF (k)) (13)

p(F
(k)
t |F (k)

t−1) ∼ N (F
(k)
t ; F

(k)
t−1, σF

(k)
t|t−1

) (14)

and the likelihood distribution is decoupled into

p(LF (k) |F (k)) = p(EF (k) |F (k))p(AF (k) |F (k))p(BF (k) |F (k))
(15)

whereEF (k) means the average gray scale in the frequency band
centered atF (k), andAF (k) andBF (k) are the rate-of-descent of
the average gray scale when moving the band to a little bit lower
and higher frequencies, respectively:

AF (k) = EF (k)/EF (k)−Fsh
(16)

BF (k) = EF (k)/EF (k)+Fsh
(17)
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whereFsh denotes the shift ofF (k). In this paper, the frequency
band covers 250 Hz andFsh equals 180 Hz. The three pdfs in (15)
are also modeled as Gaussian distributions.

By using the formant trajectories manually labeled, all the pa-
rameters in above Gaussian distributions are easily learned. Then
the optimal estimate of thek-th formantF̂ (k)

t is computed by using
the particle filtering method frame by frame. The iteration of the
algorithm is described by Algorithm 1. In this paper, the number
of particlesNs is set to 1000.

Algorithm 1: Particle Filters based Formant Tracking
For t = 1 : T
• Forn = 1 : Ns, assign weights:wn

t = N−1
s

• Forn = 1 : Ns,

- DrawF
(k)
t (n) ∼

�
p(F

(k)
t |F (k)

t−1(n)) t > 1

p(F (k)) t = 1

- Calculatewn
t = p(L

F
(k)
t (n)

|F (k)
t (n))

• Forn = 1 : Ns, normalize weights:̃wn
t = wn

t /
PNs

m=1 wm
t

• EstimateF̂ (k)
t =

PNs
n=1 w̃n

t F
(k)
t (n)

• Residual resampling

4. DYNAMIC PROGRAMMING FOR FREQUENCY
RANGE SEGMENTATION

So far we have considered the tracking algorithm of the singlek-
th formantF (k)

t in regionR
(k)
t only. We now assume thatK for-

mant regions exist in the whole frequency axis, with boundaries
fu ≤ fs

1 < fe
1 ≤ · · · ≤ fs

K < fe
K ≤ fs/2 − 200 wherefs

k

andfe
k are the starting and ending position of thek-th segment.

Similar to [15], we use a dynamic programming based algorithm
for finding the optimum segment boundaries, but with a different
objective function. The algorithm consists of two steps, a rough
segmentation and a more accurate second step.

In the rough segmentation , a set of successive boundaries are
found, i.e.,fs

k = fe
k−1. To deal with the effects of the fundamental

frequency and the possible higher formant presented by an unex-
pected longer vocal tract, two auxilary segments 0 andK + 1 are
added. The local probability that one frequency pointfi belongs
to segmentk, sayR(k), is defined as

p(fi ∈ R(k)) = p(Lfi , fi|k) = p(Lfi |fi, k)p(fi|k) (18)

which is calculated by (15) and (13). The inter-frame continu-
ity probability is taken asp(fi|F̂ (k)

t−1, k) and computed by (14).
To calculate the intra-frame segment-transition probability, a new
variable is established by multiplying the local probability by the
inter-frame continuity probability asP (k)

fi
= p(fi ∈ R(k))p(fi|k,

F̂
(k)
t−1). P

(k)
fi

is then rescaled into range [0,1] in terms of frequency

P
(k)
fi

=
P

(k)
fi

−minfi(P
(k)
fi

)

maxfi(P
(k)
fi

)−minfi(P
(k)
fi

)
(19)

Then the intra-frame transition probability of segmentk to k+1 at
the frequency pointfi is calculated by using the product of three
Gaussian distributions

p(fi+1 ∈ R(k+1)|fi ∈ R(k)) ∼ N (P
(k)
fi

; µ, σ1)

×N (P
(k+1)
fi+1

; µ, σ1)×N (|P (k)
fi

− P
(k+1)
fi+1

|; µ, σ2) (20)

The smaller the values ofP (k)
fi

, P
(k+1)
fi+1

, and|P (k)
fi

− P
(k+1)
fi+1

| are,
the more possible a transition takes place, so the parameters in
above equation are experimentally set as follows:µ = 0, σ1 =
0.8, andσ2 = 0.1.

Once the local, inter-frame continuity and intra-frame transi-
tion probabilities are obtained, a dynamic-programming algorithm
is used for frequency range segmentation within one frame. If
we define a pair(f, k) as a point at frequencyf and segmentk,
the dynamic programming algorithm searches the optimal path be-
tween starting point(fu, 0) and the end point(fs/2−200, K +1)
from left to right and bottom to up with the maximum accumulated
probability (the sum of all log-probabilities on the path). Segments
0 andK+1 can be skipped, i.e., the starting point could be(fu, 1)
and the end point could be(fs/2− 200, K). Therefore, the num-
ber of segments isK to K + 2, and only the segments labeled as
1 toK are used later.

After the rough segmentation, the frequency range is separated
into K to K + 2 successive parts. The problem of directly using
this result is that the likelihood distributions used in the particle
filtering step within one segment often have more than one peak,
and therefore, the expectation in (11) will deviate from the real
value. To make the segments more concentrated on the true for-
mant, another dynamic programming algorithm is used. Suppose
there are at most 3 subsegments in one segment. The local proba-
bility that one frequency pointfi ∈ [fs

k , fe
k ] in segmentk belongs

to subsegmentj, sayR(kj), at timet is defined as

p(fi ∈ R(kj)) = p(fi ∈ R(k))×N (fi|k, j) (21)

where the first item at the right side is calculated from (18), and the
second item is computed from a Gaussian distribution with mean
µkj = {fs

k , (fs
k + fe

k)/2, fe
k} with respect toj = {1, 2, 3} and

varianceσk = (fe
k − fs

k)/4. The inter-frame continuity proba-
bility is the same as in rough segmentation, and the intra-frame
transition probability of subsegmentj to j + 1 in segmentk at
the frequency pointfi is calculated using the similar function to
(20) with a different variance ofσ1 = 0.2. Like the rough seg-
mentation, the first and last subsegments (j = 1 and 3) can also
be skipped. The final subsegment is the one which has the highest
value of the variable in (19).

5. EXPERIMENTAL RESULTS

In this section, we present experimental results of formant esti-
mation in order to illustrate the properties of the proposed algo-
rithm. First, 72 sentences are randomly selected from the total 81
utterances whose formant trajectories have been manually labeled.
Model parameters in particle filters are trained on the selected data.
The remaining 9 digit strings are used to test the performance of
the proposed algorithm. Fig. 1 shows an example of frequency-
range segmentation superimposed on the spectrogram. This figure
displays the result for the digit string672spoken by female talker
BR. There are two types of horizontal lines for segment bound-
aries, rough boundaries (solid lines) and accurate boundaries (dash
lines). This example indicates that the proposed algorithm for fre-
quency range segmentation is reliable for extracting the exact for-
mant areas.

Fig. 2 presents examples of formant tracks superimposed on
the spectrograms. The left column is for digit string357 spoken
by female talkerES, whereas the right column is for digit string
1532ospoken by female talkerAI. Fig. 2(a) shows the manually
labeled trajectories, Fig. 2(b) displays the raw (no-smoothing) for-
mant contours estimated by the particle filtering method proposed
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Fig. 1. Example of frequency range segmentation.

in this paper, and Fig. 2(c) gives the corresponding results com-
puted bySpeech Filing System(SFS) [11] which uses an LPC
based method as references. Though most part of two kinds of tra-
jectories in (b) and (c) are very similar to each other, we find more
gross errors in (c) than in (b). In contrast with the LPC method,
the formant trajectories by the proposed method are continuous
and legible. Furthermore, the estimated formant trajectories of the
9 test sentences are compared with the manually labeled formant
values on the frame level. The mean and standard deviation of
the estimation errors are shown in the first line in Table 1. This
experiment has been repeated for 5 times with different training
and test data selected at random. Estimation errors by the other
4 experiments are also listed in the Table. As a reference, error
information of SFS for each experiment is shown below the corre-
sponding line by particle filters. The average mean errors by parti-
cle filtering method are 72, 115, and 113 Hz for the first three for-
mants, where as the average mean errors by SFS are 118, 172, and
250 Hz, respectively. Fig. 2(c) demonstrates that there are several
frames which do not have enough formants obtained by SFS due
to the shortage of LPC and therefore contain formant alignment er-
rors. To calculate the estimation error properly, formants in such a
frame are aligned and the vacancy is filled by a valid value in a near
frame. The numbers in the table indicate that the formant frequen-
cies by the proposed method are more accurate than LPC. More
experimental results can be found at http://research.microsoft.com/
˜echang/projects/particleformant/particleformant.htm.
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(b) By particle filters
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(c) By SFS
Fig. 2. Spectrograms and formant frequency contours.

6. CONCLUSION

We have proposed a particle filtering method for estimating for-
mant frequencies of speech signals from spectrograms. First, fre-
quency segments corresponding to the analyzing formants are ex-

Table 1. Error Information of Formant Estimation

Exp #frames F (1)(Hz) F (2)(Hz) F (3)(Hz)
mean std mean std mean std

1 769 73 70 103 136 91 107
S 1 769 117 118 152 324 219 499
2 854 68 58 109 119 106 108

S 2 854 113 111 140 250 199 359
3 880 76 86 110 97 148 236

S 3 880 154 208 283 533 421 875
4 510 63 59 151 271 94 98

S 4 510 106 109 149 286 197 403
5 1003 80 80 103 104 125 167

S 5 1003 101 94 137 233 212 341

Average 72 71 115 145 113 143
S Average 118 128 172 325 250 495

tracted via a two-step dynamic programming based algorithm. The
first step is a rough segmentation which only divides the frequency
axis into several parts, whereas the second step extracts from each
part the most likely area which the likelihood distribution concen-
trates on, which is benefit to particle filters. A particle filtering
method is then used to accurately locate formants in every seg-
ments based on the posterior pdf described by a set of support
points with associated weights. In the experiment, formant tra-
jectories of voiced frames of 81 utterances are manually tracked
and labeled for both model training and algorithm evaluation. In
the experiments, we obtain average estimation errors of 72, 115,
and 113 Hz for the first three formants by particle filtering, and
118, 172, and 250 by SFS. The experimental results show that
the formants estimated by the proposed method are quite reliable.
The trajectories convince us that they are caused by the correct
phoneme sequence of a given word. In addition, the proposed
method is superior to LPC in the stability of the estimation.
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