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ABSTRACT the CONDENSATION algorithm [9]. Improvements of a techni-
cal nature to it were provided by Isard and Black [10] (importance
This paper presents a particle-filtering method for estimating sampling). Recently, particle filtering has become a popular way
formant frequencies of speech signals from spectrograms. First,to infer time-varying properties of a scene from images. The algo-
frequency bands corresponding to the analyzed formants are eXrithm has already seen applications to nonlinear and non-Gaussian
tracted via a two-step dynamic programming based algorithm. A Bayesian tracking of various targets [5] [7] [8] [12]. Moreover,
particle-filtering method is then used to accurately locate formants particle filtering and smoothing has also been introduced into the
in every formant areas based on the posterior pdf described by aaudio and speech enhancement community [4] [13]. In these ap-
set of support points with associated weights. Formant trajecto- plications, the speech signal is modeled as time-varying autore-
ries of voiced frames of a group of 81 utterances were manually gressive (TVAR) equivalent process submerged in white Gaussian
tracked and labeled, partly for model training and partly for algo- noise. By using sequential particle methods, an SNR improvement
rithm evaluation. In the experiments, the proposed method obtainsef the speech signals was achieved. Particle filtering has attracted
average estimation errors of 72, 115, and 113 Hz for the first threemych interest because it offers a framework for dynamic state es-
formants, respectively, whereas LPC based method induces 118timation where the underlying probability density functions (pdfs)
172, and 250 Hz deviations. The experimental results show thatneed not be Gaussian and state and measurement equations can be
the formants estimated by the proposed method are quite reliablenonlinear. These situations are commonly encountered in vision

and the trajectories are more accurate than LPC. and speech. In addition, the method has the ability for recovering
from tracking misses in intermediate frames.
1. INTRODUCTION While particle filtering has many advantages in target tracking,

Formant frequency is one of useful speech parameters to be spect-o the best of our knowledge, the use of particle filters for formant

ified by a vocal tract shape or its movements in various pronunci- tracking has not been proposed yet. Another contribution of this

ations. However, capturing and tracking formants accurately from paper 1S that. a set of formant trajectories are manyally_ labeled,
natural speech is difficult because of the variety of speech sounds.b.ased on which performanc_e of different formant estimation algo-
Typically, formant-tracking algorithms have three phases [1] [6]: _r|thms are evalu_ated numerically and eaS|I_y. The proposed method
signal conditioning (preemphasis), frame-dependent formant can-iS used in experimental te_sts that are carried out on Aurora?2 clean
didates generation, and tracking. For the second phase, linear pre§peeCh datapase. Ac_cordlng to the results, the presented approach
diction analysis (LPC) based methods have received considerablé)roduces reliable estimates of formant frequencies.
attention. Root-finding algorithms are employed to find the ze- 2. PROBLEM FORMULATION
ros of the LPC polynomial, or local maxima of the LPC envelope . . .
are searched using peak-picking techniques. However, the prob-Wek define the frequency position of tieth formant at timet as
lem with root-finding algorithms is that the determination of for- F". Based on the Bayesian rule, to locate this position is to
mant frequencies and bandwidths is only successful for complex- calculate the expectatiqﬁ(k> given the formant spectrum region
conjugate poles and not for real poles, while peak-picking tech- sequencé%ﬁ’?t) up to timet
niques are vulnerable to merged formants and spurious peaks. ’
This paper proposes a new formant tracking method based FR = P = g[F®|RM)] 1)
on gray-scale spectrograms. It is well known that the horizontal
bands in spectrograms with higher energy show the formant po-where the posterior pdf(F ") |R{*)) is often unknown and non-
sitions. This is why many researchers are capable of distinguish-Gaussian.
ing different phones just from spectrograms. In this paper, three  The speech data we have analyzed consist of a total of 81 clean
spectrogram-based features consistent with the human sense arfemale sentences randomly selected from the Aurora2 speech data-
used to describe the likelihood of a frequency value to a formant base. The speech signals are samplefl at 8 KHz. Two kinds
at a certain time frame. In order to provide an optimum set of of spectrograms are generated in this paper. One is wide-band
frequency segments each of which covers and concentrates on ongor formant labeling and the other is narrow-band for both model
formant spectrum region, a two step frequency range segmentatiortraining and formant tracking. For wide-band spectrograms, the
scheme based on dynamic programming is performed first. window size and frame step size are taken as 5 ms and 1 ms,
Additionally, the developed algorithm is an application of se- whereas for narrow-band, they are 20 ms and 10 ms, respectively.
qguential Monte Carlo methods (also known as patrticle filters) to Preemphasis and Hamming window are used before FFT for both
track horizontal bands with higher energy in spectrogram. Parti- types of spectrogram. In the formant labeling process, after being
cle filters were introduced to the vision community in the form of converted from log-energy to gray scale ranging from 0 to 255,
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the spectrograms are saved into bitmaps, based on which formant

The most common and convenient choice of importance den-

trajectories are then directly labeled on a special screen using asity is the conditional prior
special pen. Voiced phone boundaries of the analyzing utterances

are also manually labeled with the aid of spectrograms. In model
training and formant tracking, the speech signals are limited to the
frequency bandf., fs/2 — 200] Hz as in [14], for antialiasing

and for reducing influence of the strong fundamental components

on the estimation of""). According to the average vocal tract
length of adult femalesf,, takes as 300 Hz and the lowest three
formantsF(V-F® are estimated in the frequency band 0-4 KHz.

3. PARTICLE FILTERS FOR FORMANT TRACKING

Particle filtering is a technique for implementing a recursive Baye-
sian filter by Monte Carlo simulations. The key idea is to represent

the required posterior pdf by a set of random samples with asso- PR - : 7
fhenomenon, which is that the variance of the importance weights

ciated weights and to compute estimates based on them. As th

number of samples becomes infinite, the Monte Carlo characteri-

a(xt X1, 2¢) = q(x7'[xi- 1, 20) = p(xi'[x¢21)  (8)
since it is intuitive and simple to implement, yielding
wy o wi—1p(ze[xt) ©)

Then the weights need to be normalized. Subsequently, the opti-
mal Bayesian estimate of state is calculated as follows

f(t:/
Xt

A common problem with particle filtering is the degeneracy

Ng
n n
Wy Xy

Ng
Xy Z wid(xe — x¢)dx; =

n=1

(10)

n=1

only increase over time. To reduce the effects of degeneracy, a

zation becomes an equivalent representation to the usual functional€S@mPpling process is used. The basic idea of resampling is to

description of the posterior pdf, and the particle filter approaches
the optimal Bayesian estimate.

3.1. Particle filters in general

In this subsection, following [3], a general framework of the parti-
cle filtering methods is described. Consider the following dynamic
system modelled in a state space form as

@)
®)

wherex; is the state variables; is the observation, and; andu.

ft(thl,thl)

ht(Xu ut)

Xt

Zy

eliminate particles that have small weights and to concentrate on
particles with large weights. The resampling step involves select-
ing a number of, sayV,,, children for each particl&}" such that
Zf:’il N,, = N,. There is a variety of resampling schemes with
varying performance in terms of the variance of the particles . The
residual resampling [2] which has smaller variance of the particles
and is computationally cheaper is used in this paper.

3.2. Formant tracking using particle filters

Taking the unknowrk-th formantFt(’” as the state variable and

the formant spectrum regioﬁik) as the observation, the problem
described in (1) is solved via the particle filtering method. Based

are state and observation noises. These variables are either scalaf¥! the framework described in the previous subsection and choos-

or vectors. In the system, both state and measurement equation
ft andh:, are non-linear functions.

Letzi.y = (z1, - ,2z:). From a Bayesian perspective, the
tracking problem is to recursively calculate some degree of belief
in the statex; at timet, taking different values, given the data,
up to timet, and the optimal solution is

X = X = E[x¢|21:¢] (4)

/ xep(Xe|Z1:0)Oxs
x¢

Thus it is required to construct the polfx:|z1:¢).

Itis defined thafx}’, wy }), is a random measure that char-
acterizes the posterior pgfx¢|z1.¢), where{x},n =1,--- , N5}
is a set of support points with associated normalized weights
n=1,---, Ny} such thatzf;1 wy = 1. Then the posterior pdf
at timet is approximated as

Ns
plxelan) = 3 wis(xe — x7) )
n=1
where
:L p(xilzlit) (6)
q(x}'|z1.¢)

The proposal functiorng(-) is called an importance density from
whichx}® are easily generated. In recursive calculation, the weight-
update equation is

p(ze|xi)p(x7'[xi-1)

q(x7 X1, %)

n
X Wy—1

@)

n
Wy

%19 (8) as the importance density, the optimal estimation in (1)

ecomes " PN
P =E[F" R, B (12)
and therefore, we need to train the prigi"*), conditional prior
p(F™|F™)) and likelihoodp(R*) | F*)), respectively. The like-
lihood p(R™|F™*)) is used to measure if the spectrum local fea-
turesL .., on frequencyr ™ are similar to those of the key point
in terms of the appearance. It is simplified to
p(REFY) = p(Lpos [FP) (12)

In this paper, all of the pdfs are modeled and learned as Gaussian
or products of Gaussians. In details, the prior and conditional prior
pdfs are written as

(13)
(14)

P(F®) ~ N(FY; e, 0p00)
k k k k
pEPIED) ~ N ES o )

and the likelihood distribution is decoupled into

(Lo |F™Y = p(E iy [FE)p(A i |[F®)p(B ooy |[F X))
15)

whereE .y means the average gray scale in the frequency band
centered af"*), and A ..y and B, are the rate-of-descent of
the average gray scale when moving the band to a little bit lower
and higher frequencies, respectively:

(16)
17
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whereFy, denotes the shift of®). In this paper, the frequency
band covers 250 Hz anfl;, equals 180 Hz. The three pdfs in (15)
are also modeled as Gaussian distributions.

By using the formant trajectories manually labeled, all the pa-

rameters in above Gaussian distributions are easily learned. Then

the optimal estimate of thieth formantﬁt(k) is computed by using
the particle filtering method frame by frame. The iteration of the
algorithm is described by Algorithm 1. In this paper, the number
of particlesN; is set to 1000.

Algorithm 1: Particle Filters based Formant Tracking
Fort=1:T
e Forn =1: N,, assign weightsw? = N;*
e Forn=1: Ng,
(k)| (k)
- Draw F (n) ~ p(Fz(mlFt_l(n)) t>1
p(F™") t=1
k
P9 ([ (1)
e Forn = 1: N, normalize weightsty = w}'/ SN wi
o EstimateF*) = 32N i B (n)

n=

e Residual resampling

- Calculatewy = p(L

4. DYNAMIC PROGRAMMING FOR FREQUENCY
RANGE SEGMENTATION

So far we have considered the tracking algorithm of the sikgle

th formantFt('c> in regionRiM only. We now assume thdt for-
mant regions exist in the whole frequency axis, with boundaries
Ju < i< fi <0 < fk < fk < fs/2 — 200 where fi

and f¢ are the starting and ending position of theéh segment.
Similar to [15], we use a dynamic programming based algorithm
for finding the optimum segment boundaries, but with a different
objective function. The algorithm consists of two steps, a rough
segmentation and a more accurate second step.

The smaller the values d?;f), PJEZ:D, and|Pf<i’“) - P;fjll)| are,

the more possible a transition takes place, so the parameters in
above equation are experimentally set as follows= 0, o1
0.8, andoy = 0.1.

Once the local, inter-frame continuity and intra-frame transi-
tion probabilities are obtained, a dynamic-programming algorithm

is used for frequency range segmentation within one frame. |If
we define a paif f, k) as a point at frequency and segment,

the dynamic programming algorithm searches the optimal path be-
tween starting pointf., 0) and the end pointf, /2 — 200, K +1)

from left to right and bottom to up with the maximum accumulated
probability (the sum of all log-probabilities on the path). Segments

0 andK +1 can be skipped, i.e., the starting point could lfg, 1)

and the end point could ke, /2 — 200, K). Therefore, the num-

ber of segments i& to K + 2, and only the segments labeled as
1to K are used later.

After the rough segmentation, the frequency range is separated
into K to K + 2 successive parts. The problem of directly using
this result is that the likelihood distributions used in the particle
filtering step within one segment often have more than one peak,
and therefore, the expectation in (11) will deviate from the real
value. To make the segments more concentrated on the true for-
mant, another dynamic programming algorithm is used. Suppose
there are at most 3 subsegments in one segment. The local proba-
bility that one frequency poinf; € [f:, fi] in segmenk belongs
to subsegment, sayR‘*s), at timet is defined as

p(fi € R¥ ) = p(fi € R®) x N(filk, 5)

where the firstitem at the right side is calculated from (18), and the
second item is computed from a Gaussian distribution with mean
py = LI (7 + ££)/2, ¢} with respect toj = {1,2,3} and
varianceor, = (fg — fi)/4. The inter-frame continuity proba-
bility is the same as in rough segmentation, and the intra-frame
transition probability of subsegmeritto j + 1 in segmentt at

the frequency poinf; is calculated using the similar function to

(21)

In the rough segmentation , a set of successive boundaries ar¢20) with a different variance of; = 0.2. Like the rough seg-

found, i.e..f;; = fi_,. To deal with the effects of the fundamental

mentation, the first and last subsegmernits<( 1 and 3) can also

frequency and the possible higher formant presented by an unex-be skipped. The final subsegment is the one which has the highest

pected longer vocal tract, two auxilary segments 0 Andt 1 are
added. The local probability that one frequency pginbelongs
to segment, sayR® | is defined as

p(fi € R®) = p(Ly,, filk) = p(Ly, | fs, k)p(filk)

which is calculated by (15) and (13). The inter-frame continu-
ity probability is taken a$(f¢|Ft(l_“>l, k) and computed by (14).
To calculate the intra-frame segment-transition probability, a new
variable is established by multiplying the local probability by the
inter-frame continuity probability aB;'“> = p(fi € R®)p(filk,
Fz('ﬂ). P}f) is then rescaled into range [0,1] in terms of frequency

(18)

P — miny, (P{*)

maxy, (P{) — ming, (P{)

(k) _
sz‘ -

(19)

Then the intra-frame transition probability of segmeno k£ + 1 at
the frequency poinf; is calculated by using the product of three
Gaussian distributions

p(firr € R¥V|fi € R®) ~ N(PY; 1, 00)

k k k
XN (PSHD; 1, 00) x NP — Pt

s p02)  (20)

value of the variable in (19).

5. EXPERIMENTAL RESULTS

In this section, we present experimental results of formant esti-
mation in order to illustrate the properties of the proposed algo-
rithm. First, 72 sentences are randomly selected from the total 81
utterances whose formant trajectories have been manually labeled.
Model parameters in particle filters are trained on the selected data.
The remaining 9 digit strings are used to test the performance of
the proposed algorithm. Fig. 1 shows an example of frequency-
range segmentation superimposed on the spectrogram. This figure
displays the result for the digit strirgj2 spoken by female talker
BR There are two types of horizontal lines for segment bound-
aries, rough boundaries (solid lines) and accurate boundaries (dash
lines). This example indicates that the proposed algorithm for fre-
gquency range segmentation is reliable for extracting the exact for-
mant areas.

Fig. 2 presents examples of formant tracks superimposed on
the spectrograms. The left column is for digit strid§7 spoken
by female talkelES whereas the right column is for digit string
15320spoken by female talkekl. Fig. 2(a) shows the manually
labeled trajectories, Fig. 2(b) displays the raw (no-smoothing) for-
mant contours estimated by the particle filtering method proposed
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Table 1. Error Information of Formant Estimation

Speaker: FBR, String: 672

4000
Exp | #frames| F®(Hz) F®(Hz) FG)(Hz)

3000 mean| std | mean| std | mean| std
gzooo:-’;:. 1 769 73 70 103 | 136 | 91 107
g S1 769 117 | 118 | 152 | 324 | 219 | 499
1000 2 854 68 58 109 | 119 | 106 | 108
e, S2 854 113 | 111 | 140 | 250 | 199 | 359
% 02 04 06 08 1 12 14 3 880 76 86 110 97 148 | 236

Time

S3 880 154 | 208 | 283 | 533 | 421 | 875
4 510 63 59 | 151 | 271| 94 98
S4 510 106 | 109 | 149 | 286 | 197 | 403

Fig. 1. Example of frequency range segmentation.

in this paper, and Fig. 2(c) gives the corresponding results com-
puted bySpeech Filing SystefSFS) [11] which uses an LPC 855 1883 18001 gg igg %gg ;ig ;21
based method as references. Though most part of two kinds of tra——

jectories in (b) and (c) are very similar to each other, we find more Average 72 | 71 | 115 | 145] 113 | 143
gross errors in (c) than in (b). In contrast with the LPC method, S Average 118 | 128 | 172 | 325| 250 | 495

the formant trajectories by the proposed method are continuoust ted via a two-step d . ina based algorithm. Th
and legible. Furthermore, the estimated formant trajectories of the racted via a two-step dynamic programming based aigoritnm. ine

9 test sentences are compared with the manually labeled formanf‘irs.t §tep is a rough segmentation which only divides the frequency
values on the frame level. The mean and standard deviation of®S into several parts, whereas the second step extracts from each

the estimation errors are shown in the first line in Table 1. This part the most likely area which the likelihood distribution concen-

experiment has been repeated for 5 times with different training trates on, which is benefit to particle filters. A particle filtering

and test data selected at random. Estimation errors by the othelmethtOdb's tk(ljen uiﬁd to e:cc_urateal%/ (Ijocatt_abfodrngants mt evfery seg-t
4 experiments are also listed in the Table. As a reference, errorMeNts based on the posterior pdt described by a Set of suppor

information of SFS for each experiment is shown below the corre- _p0|tnts_ W'thf as_socdlafted welgptssi I?t the experiment, forlina:nt tlia;j
sponding line by particle filters. The average mean errors by parti-Jec Ores of voiced frames ol 6. utterances are manually tracke
cle filtering method are 72, 115, and 113 Hz for the first three for- and labeled for both model training and algorithm evaluation. In

mants, where as the average mean errors by SFS are 118, 172, antHe experiments, we _obtain average estimation_erro_rs O.f 72, 115,
250 Hz, respectively. Fig. 2(c) demonstrates that there are severaf'0 113 HZ for the first three formants by particle filtering, and

frames which do not have enough formants obtained by SFS duethlal’c 172, ?nd 550 tb)(/j ﬁFtSh The expedrlme?r:aldresults .tShOV‘l'. tglat
to the shortage of LPC and therefore contain formant alignment er- € formants estimated by the proposed method are quite reliable.

rors. To calculate the estimation error properly, formants in such aTL'cemtéiicg'eseﬁggvc')?C: uif,ézavtvct,?gy ?rr]eagzlijﬁsoe: l;?kyl/etheroccz)r;eegt

frame are aligned and the vacancy is filled by a valid value in a nearP thod i que 0 LPCg the st bI f1h t', ti prop

frame. The numbers in the table indicate that the formant frequen-me od11s superiorto In the stability of the estimation.

cies by the proposed method are more accurate than LPC. More

experimental results can be found at http://research.microsoft.com/

“echang/projects/particarmant/particleformant.htm. [1] A. Acero. “Formant analysis and synthesis using hidden Markov
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