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Abstract

Every speech recognition system requires a signal representation that parametrically models the temporal evolution
of the speech spectral envelope. Current parameterizations involve, either explicitly or implicitly, a set of energies from
frequency bands which are often distributed in a mel scale. The computation of those energies is performed in diverse
ways, but it always includes smoothing of basic spectral measurements and non-linear amplitude compression. Several
linear transformations are then applied to the two-dimensional time-frequency sequence of energies before entering the
HMM pattern matching stage. In this paper, a recently introduced technique that consists of filtering that sequence of
energies along the frequency dimension is presented, and its resulting parameters are compared with the widely used
cepstral coefficients. Then, that frequency filtering transformation is jointly considered with the time filtering trans-
formation that is used to compute dynamic parameters, showing that the flexibility of this combined (tiffing) approach
can be used to design a robust set of filters. Recognition experiment results are reported which show the potential of
tiffing for an enhanced and more robust HMM speech recognition. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Current speech recognition systems use a pat-
tern matching approach (Rabiner and Juang,
1993). The classifier, which is commonly based on
hidden Markov models (HMM), relies on a
speech spectrum representation that must be ad-
equate in two senses: (1) it has to carry the
acoustic features of speech that are relevant for
sound discrimination and (2) it has to be properly
adapted to the HMM paradigm. Additionally, if
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the classifier has to work in adverse conditions,
the speech representation has to be robust to
signal degradations.

A reasonable way of representing the time
evolution of the speech characteristics might be to
segment the signal in proper acoustic—phonetic
units and to subsequently model these units by a
set of spectral parameters. Something like tempo-
ral decomposition (Atal, 1983), where the signal
flow is broken according to overlapping windows
and a target spectrum is associated with each one.
However, for HMM-based speech recognition, an
approach like that has not proven yet to be more
useful than the straightforward frame-to-frame
procedure, where the waveform is regularly parti-
tioned in blocs or frames. Each frame is considered
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Fig. 1. Scheme of the parameterization front-end.

a segment of a realization of a stochastic process,
and it is modeled by a small set of parameters.

Fig. 1 shows the usual scheme for extracting a
parametric speech spectral representation from the
signal waveform in current speech recognition
front-ends. After an initial signal conditioning
(A/D conversion plus possible application of
speech enhancement techniques, filtering, etc.), the
pre-processed speech signal enters the short-time
spectral estimation step, where a set of spectral
measurements is carried out to obtain a parametric
representation of the spectral envelope for the
current frame.

Firstly, that vector of initial spectral parameters
is linearly transformed and then the temporal se-
quence of transformed vectors is filtered to com-
pute from it several new time sequences of vectors
(dynamic feature vectors), in such a way that the
resulting whole set of parameter vectors can ben-
efit more from the HMM formalism that is used in
the pattern-matching recognition stage than the
initial non-transformed vector. Finally, a linear
transformation (PCA or LDA) may be applied to
that set of vectors in order to either obtain an
uncorrelated and more compact representation or
increase the discrimination capacity of the speech
representation.

This paper will assume that the spectral mea-
surements are logarithmic filter-bank energies (log
FBEs), though most of the presented material is
also extendible to other types of spectral estima-
tion techniques, e.g. linear prediction. Usually, the
discrete cosine transform (DCT) is used to com-
pute from the log FBEs a set of uncorrelated pa-
rameters, the so-called mel-frequency cepstral
coefficients (MFCC) or mel-cepstrum, probably
the most used spectral representation in speech
recognition (Davis and Mermelstein, 1980). On the

other hand, orthogonal (Legendre) polynomial
filters are used to compute the supplementary dy-
namic (delta) feature vectors for each frame
(Furui, 1986). For example, the recent distributed
speech recognition (DSR) standard front-end for
clean speech (ETSI SQL W1007) establishes this
kind of speech representation.

In this paper, we mainly intend to address sev-
eral issues involved in that usual FBE-log-DCT-
Legendre parameterization scheme that has tradi-
tionally been considered unquestionable. In par-
ticular, the use of cepstral parameters is discussed,
and a computationally simple alternative to the
DCT, called frequency filtering (FF), is presented.
By performing a combination of decorrelation and
liftering, FF yields good recognition performance
for both clean and noisy speech. Furthermore, this
new linear transformation, unlike DCT, maintains
the speech parameters in the frequency domain.

In Section 2, FBEs are reviewed, focusing on
their quasi-optimality in statistical terms. In Sec-
tion 3, the frequency-filtered sequence of log FBEs
is presented. Time filtering is considered in Section
4, where the robustness of supplementary dynamic
features is discussed. In Section 5, by jointly con-
sidering time and frequency filtering (tiffing) as a
linear processing of the two-dimensional sequence
of spectral energies, the (two-dimensional) modu-
lation spectrum is presented as a tool for designing
a robust set of filters. A few tests with the Aurora
digit recognition setup and database that are cur-
rently used to develop the ETSI STQ WIO008
(Pearce, 1998) DSR standard for noisy speech are
also presented in that section. A comparison be-
tween frequency filtering and optimal techniques
for decorrelation (PCA) and linear discrimination
(LDA) is reported in Section 6. And, finally, con-
clusions are drawn in Section 7.
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2. Non-linearly compressed filter-bank energies

In current speech recognition front-ends, the
first parameterization step consists of extracting a
short-time representation of the spectral envelope
for each speech frame. There are many reported
techniques to estimate the set of spectral parame-
ters (Junqua and Haton, 1996; Picone, 1991), but
they always combine some kind of smoothing of
raw spectral measurements with non-linear oper-
ations.

2.1. Spectral smoothing

Spectral smoothing is used to remove the har-
monic structure of the speech spectrum corre-
sponding to pitch information and to reduce the
variance (error) of the speech spectral envelope
estimation. Additionally, an envelope representa-
tion with a small number of parameters is ob-
tained. That operation has basically been done in
two alternative ways: linear prediction (LP) anal-
ysis and spectral band energy estimation (Rabiner
and Juang, 1993). The strength of the LP method
arises from the fact that it matches the all-pole
model of speech production. In this way, it is able
to approximately separate the vocal tract response,
which corresponds to the spectral envelope, from
the glottal excitation.

However, the band energy parameters have
become increasingly popular. They separately
represent the energy at each frequency band
since they result from integrating the energy
values in the time-frequency area specified by the
frame length and the effective bandwidth. The
main reason of the usefulness of these energies is
perhaps the higher flexibility of the sub-band
approach with respect to the full-band approach
involved in LP modeling. In fact, it offers the
possibility of defining the width and shape of the

bands along the frequency axis. Also, if the
signal-to-noise ratio (SNR) of each band is
known, the band energy representation allows to
use it in straightforward ways: noise masking,
spectral subtraction, etc. (Junqua and Haton,
1996).

The computation of the band energies can be
performed in several ways. The classical imple-
mentation consists of a bank of filters that perform
time convolution followed by wave rectification
and low-pass filtering (Rabiner and Juang, 1993).
Currently, the most used implementation of the
filter-bank analysis operates in the frequency do-
main by computing a weighted average of the
magnitude (or, sometimes, the spectral magnitude)
of the DFT values of the windowed speech frame
in each frequency band, obtaining in this way the
so-called filter-bank energies (FBEs) (Davis and
Mermelstein, 1980). Fig. 2 shows the sequence of
operations involved in the computation of the
FBEs for a given windowed speech frame; it also
includes the posterior non-linear compression step
from Section 2.3.

Hybrid techniques that combine filter-bank
and LP analysis have also been proposed. The
best known one is PLP (Perceptual LP), which
applies LP modeling after FBE computation and
other perceptually motivated processing steps
(Hermansky, 1990). Note that, as the order of the
LP analysis is usually chosen low (Hermansky,
1998), the PLP parameterization involves an ad-
ditional smoothing effect. An inverse hybrid ap-
proach that performs LP before FB analysis has
also been considered so far (Rahim and Juang,
1996; Hernando and Nadeu, 1997b). Logically,
the first processing step of the hybrid techniques
heavily determines the characteristics of the
spectral estimate. A version of the inverse hybrid
approach will be used in this paper when the

Windowed (Square)
speech |::> DFT |::>
frame magnitude

frequency filtering technique, developed for
Frequency Non-linear

weighted I:\> compression ::>

average

Fig. 2. Usual scheme for computing the non-linearly compressed filter-bank energies for a given frame. Sometimes, a LP modeling

block is inserted at the end (like in PLP).
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FBEs, will be applied to LP spectral estimates
(see Section 3.5.1).

2.2. Quasi-optimality of frequency averaging

LP speech spectral estimates are well estab-
lished theoretically, since they are based on the all-
pole model of speech production. However, the
theoretical foundations of the above-mentioned
FBEs have not received much attention so far, in
spite of becoming a kind of standard in speech
recognition. In the following, we are going to re-
view the quasi-optimality of the spectral estimator
from which the FBEs come out.

The spectral estimator that results from com-
puting the square magnitude of the Fourier
transform of a finite-length segment of signal is
called periodogram (Oppenheim and Schafer,
1989). If the set of weights used to compute the
FBEs is the same for each band, those band en-
ergies can be seen as samples (non-linear sampling
if a mel scale is used) of a spectral estimate that
results from convolving the periodogram with the
weighting function: the frequency-averaged peri-
odogram (FAP) (Nadeu et al., 1997b).

The FAP can be viewed as belonging to the
family of multiwindow (MW) spectral estimators,
i.e. those that result from averaging several peri-
odograms, each one computed with a different
window. Since Thomson’s introductory work
(Thomson, 1982), good statistical properties have
been claimed for the MW estimators that use a set
of orthogonal windows which arise from Karh-
unen-Loeve (KL) eigenequations. Unfortunately,
the FAP estimator does not match the optimal KL
formalism.

Nevertheless, as it was experimentally shown by
the authors (Nadeu et al., 1997b), when not only
variance and frequency resolution of the estimator
but also time resolution are taken into account, the
statistical performance of the FAP and that of the
estimator arising from the MW-KL formalism are
almost identical. Additionally, it can be shown
(Nadeu et al., 1998) that the FAP estimator is
equivalent, asymptotically and in terms of the first
and the second moments, to the optimal MW-
KL estimator that uses orthogonal sinusoids as
windows.

2.3. Non-linear compression

To compute the speech parameters, non-linear
processing is used in both axes of the spectral
representation. First, the bands are often distrib-
uted in a mel scale to mimic the properties of the
human auditory processing, giving less emphasis
to the high-frequency bands. And, secondly, non-
linear operators are used to compress the large
amplitude range of spectral measurements, pro-
ducing a distribution more similar to the Gaussian
one.

The most used non-linear operator is the loga-
rithm which has the additional advantage of con-
verting a gain factor in an additive component in
the feature space, which can be easily removed.
Although the logarithm is perhaps the most ap-
propriate non-linear operator for recognition of
clean speech, it may no longer keep its advantage
whenever additive noise is present. Other reported
non-linear operators, such as the root |E|" (Alex-
andre and Lockwood, 1993) and the lin-log
log(1 +JE) (Hermansky and Morgan, 1994),
where E denotes a spectral measurement (usually a
FBE), are alternative candidates to cope with the
problem of parameterizing noisy speech. Actually,
both have a parameter which can be adapted to
the SNR: y (Tian and Viikki, 1999) or J (Her-
mansky and Morgan, 1994). Recently, both tech-
niques were interpreted as masking procedures at
spectral valleys (Hunt, 1999). A few results with
the root will be presented in Section 4.2.

Alternatively, the DFT magnitude values can be
non-linearly compressed before spectral smooth-
ing (Deller et al., 1993). The band energies can be
computed by filtering the logarithmically com-
pressed DFT magnitude values along frequency
and subsequently decimating them in the fre-
quency axis to select one parameter for each band
(Silverman and Dixon, 1974). The decimation may
be non-uniform, implementing the mel scale
(Mashao et al., 1996). An alternative implemen-
tation of the same approach is based on liftering,
i.e. windowing in the cepstral domain. In fact,
both filtering and liftering techniques also imply a
weighted averaging in the frequency domain. On
the other hand, as will be seen in Section 3, an
explicit or implicit liftering is usually performed
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after the posterior linear transformation step in-
dicated in Fig. 1.

2.4. Compressed FBEs assumed in this work

Unless otherwise stated, we will henceforth
consider that the spectral parameters delivered by
the first block of the parameterization front-end
scheme from Fig. 1 are logarithmically compressed
FBEs at a given number Q of frequency bands.
The FBEs will be obtained by a triangular
weighted average of either the square magnitude
or the magnitude of the DFT values of the Ham-
ming-windowed signal in Q mel-scaled frequency
bands. However, when linear prediction is the final
spectral measurement step, we can still assume the
parameters are band energies; in fact, they can be
computed from the prediction coefficients by a
linear transformation that may consist of cascad-
ing the well-known recursive transformation to
cepstral coefficients (Oppenheim and Schafer,
1989) with a DFT to obtain the parameters in the
log spectral domain (as will be done in Section
3.5.1 to carry out a few recognition tests with these
LP-based energies).

The vector of log FBEs,

.S(0)", (1)

is then linearly transformed in order that the fea-
ture vectors supplied to the pattern matching stage
are better adapted to the assumptions of the
HMM formalism and take more advantage from
it. That vector undergoes at least two kinds of
linear transformations, one in the frequency do-
main and the other in the time domain. In the next
sections, both kinds of transformations will be
discussed, and also alternatives for improving the
recognition performance will be proposed.

S =(S(1) S(2)..

3. Linear transformation of the parameter vector

Usual HMMs assume that the acoustic obser-
vation vectors can be modeled by Gaussian dis-
tributions with diagonal covariance matrices, i.e.
they assume that the elements of those vectors are
uncorrelated. As the spectral measurements are
strongly correlated (e.g. the correlation coefficient

of log FBEs of adjacent bands for the TI digits
database and Q=12 is 0.92), the parameterization
front-ends require a linear transformation that
obtains a set of spectral parameters that are
globally decorrelated. In the following sections,
the conventional approach for parameter decor-
relation based on the cepstrum will be questioned,
and an alternative transformation that avoids
translating the spectral parameters to a non-fre-
quency domain will be proposed.

3.1. Disadvantages of cepstral coefficients for speech
recognition

Let us consider the elements of the vector S of
log spectral band energies in (1) to be a sequence
along the frequency index k. By approximating
this sequence S(k), k= 1,...,Q, with a first-order
Markov model, it follows that its corresponding
discrete Karhunen-Loe¢ve transform (DKLT) is
almost equivalent to the data-independent discrete
cosine transform (DCT), since the value of the real
pole of the model is close to 1 (0.92 for the above-
mentioned data base) (see, for instance, Akansu
and Haddad, 1992). Due to its closeness to the
optimal DKLT, the DCT is able not only to nearly
decorrelate the vector of logarithmically com-
pressed FBEs but also to sort the transformed
coefficients in variance order. Then, the resulting
vector is truncated to retain the highest energy
coefficients. It is the mel-frequency cepstral coef-
ficients (MFCC) representation, also called mel-
cepstrum. That truncation actually represents an
implicit liftering operation with a rectangular lifter
that smoothes the spectral envelope represented by
the frequency sequence of log FBEs S(k). On the
other hand, for some recognition systems em-
ploying Euclidean distances, cepstral coefficients
have been weighted (explicit liftering) in order to
enhance the discrimination of sounds (Paliwal,
1982; Juang et al., 1987; Tokhura, 1987; Hanson
and Wakita, 1987).

The cepstral coefficients show three disadvan-
tages for speech recognition:

1. They do not lie in the frequency domain, so
lacking a frequency meaning which may be use-
ful, especially for implementing robust tech-
niques.
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2. As most current HMMs use Gaussian distribu-
tions with diagonal covariance matrices and
ML-estimated standard deviations, those
HMDMs cannot benefit from a cepstral weight-
ing (liftering), since any multiplying factor that
is applied to the observations does not affect the
Gaussian exponent calculation.

3. They require a DCT computation.
An alternative set of speech parameters that avoids
these disadvantages has been recently presented by
the authors (Nadeu et al., 1995). This new pa-
rameter set is obtained with a very simple linear
transformation, called frequency filtering, that will
be summarized in the following section.

3.2. The frequency filtering technique

Actually, in current filter-bank analysis, the
extreme bands, that would be centered around
w=0 and w=mn, are not considered in the com-
puted energies S(k), k=1,...,Q. Since, in prac-
tical situations, these two extreme bands only
include a very small fraction of the signal energy,
we will extend the sequence S(k) by appending one
zero at each end, i.e.

{$(0) =0,5(1),...,5(0),5(Q+1) = 0}. (2)

Frequency filtering (FF) (Nadeu et al., 1995) is a
transformation of that set of spectral band ener-
gies consisting of a convolution between the se-
quence S(k), k=0,...,0+1, from (2) and a
given (impulse response) sequence /(k) to obtain a
new sequence of Q@ filtered parameters
Fk), k=1,...,0,ie.

F(k) = Sk) «h(k), k=1,...,0. (3)

Notice that the filtered parameters F(k) still lie in
the frequency domain, and only Q values are
computed. We will henceforth assume that A(k) is
either a first-order FIR filter or a second-order
FIR filter centered around & =0; in this way, only
the O + 2 values from (2) are needed to compute
F(k) in (3).

Expression (3) is a linear convolution. However,
the same values F(k), k=1,...,0, can be ob-
tained by the circular convolution F(k) between
the sequences S(k) and h(k), k=—-0...,0,...,
O+ 1, where ﬁ(k) is (k) extended with zeroes,

S(k) = S(k) for k=0,...,0+ 1, and the symme-
try of the log spectrum around the zero frequency
(k=0) implies that S(k) is an even sequence, i.e.
S(—k)=S(k) fork=1,...,0.

In the inverse DFT (cepstral) domain, that cir-
cular convolution can be expressed as the product

C(m) = C(m)H (m),
m=-0,...,0,..., 0+1,

where Cy(m), C(m) and H(m) are, respectively, the
inverse DFT of F(k), S(k) and h(k), k=
—-0,...,0,...,0+ 1. Since, according to the usual
definition of cepstrum (Oppenheim and Schafer,
1989), C(m) is a real valued cepstral sequence, Eq.
(4) expresses liftering, i.e. weighting in the cepstral
domain by H(m). Notice, however, that according
to (3), this liftering is implemented as a convolu-
tion in the spectral domain.

Fig. 3 illustrates the computations involved in
frequency filtering using as example a filter with
impulse response A(k) = {1, 0, —1}, which transfer
function is

H(z)=z—-z" (5

)

In matrix notation,
F =HS, (6)

where F is the vector whose components are F(k)
in (3), S was defined in (1), and

S(k)

1 k

"1 oo

& 5

l K
1

Fig. 3. Scheme of the FF computation with the filter z — z7'.
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0 1 0 0 0 0 0
-1 0 1 0 0 0 0
g-| 0 Lot 0 0 0
0 0 0 0 -1 0 1
0 0 0 0 0 -1 0

(7)

This filter, which will be proposed below as the
usual one, is computationally simple, since for
each band it only requires to subtract the log FBEs
of the two adjacent bands. Note that, for this filter,
the magnitudes of the shared endpoints in Fig. 3
are absolute energies. The FF technique will
herewith be denoted FF2 when this second-order
filter is employed.

The above filter has a zero at z=1, i.e. it cancels
the cepstral coefficient ¢(0). When the filter does
not possess this zero, the average value of the se-
quence S(k) of (2) is removed before the filtering
computations are performed (Nadeu et al., 1995).
It is worth to note that the outputs
F(k), k=2,...,0—1, of such a derivative-type
filter actually are spectral slope measures and, ac-
cording to Klatt, a phonetic distance based on the
spectral slope near the peaks correlates very well
with perceptual data, unlike other speech charac-
teristics such as the FBE values or the linear pre-
diction residual (Klatt, 1982).

3.3. FF and decorrelation of FBEs

The first goal of frequency filtering is to dec-
orrelate the parameter vector S(k) like cepstral
coefficients do. Assuming E{Cy(m)} =0 for every
m, it can be shown that, if the random variables
F(k)y=F(k), k=1,...,0, are uncorrelated, the
cepstral variance (spectrum of the sequence F(k)
E{|Cy(m)|*}) is constant for m =1,...,0.

Thus, to aim at decorrelating the spectral se-
quence of FBEs S(k), the filter i(k) should be de-
signed in such a way that its cepstral counterpart
H(m) equalizes the variance of cepstral coefficients
C(m)form =1,...,0 (Nadeu et al., 1995). A first-
order FIR filter that maximally equalizes the
variance of cepstral coefficients can be easily ob-
tained by least-squares modeling in the following
way. Firstly, the variance is estimated by averaging

over all the frames of a given database. Then, after
performing a DFT, the quotient r between the
values of the resulting sequence (the covariance of
S(k)) at index 1 and index 0 is computed. Thus, the
first-order FIR filter that maximally flattens the
variance will be

H(z)=1-rz"". (8)

Fig. 4 shows the estimated variance corresponding
to the TI digits database (Nadeu et al., 1995)
(decimated from 20 to 8 kHz and using Q=12
mel-scale frequency bands) along with the inverse
square magnitude of H(m), that was computed
following the above procedure. The resulting value
of r is 0.5. The coefficients of the least-squares
second-order FIR filter z—a; —a,z~' are a; =0.5
and a, =0.05, a fact that shows how a first-order
filter already obtains an accurate modeling of the
inverse variance. Note in Fig. 4 that the variance is
zero for m=0, since the average value of the se-
quence S(k) of (3) has been removed.

3.4. FF and discriminative liftering

Decorrelation is a desired property of spectral
features since diagonal covariance matrices are
currently assumed in HMM recognition systems.
Nevertheless, what is really relevant to the classi-
fication process is the discrimination capacity of

40

——a— Cepstral variance
—e— Inverse filter response

o T T T T T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13
Quefrency (m)

Fig. 4. Approximation of the TI digits estimated variance with
the inverse square magnitude of the filter 1 — 0.5z
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those features. ! Therefore, in this section, we are
going to analyze the probability expressions in-
volved in the HMM formalism, assuming that
covariance matrices are diagonal and spectral pa-
rameters are log FBEs S(k), k=1,...,0.

In continuous observation Gaussian density
HMM (CDHMM), using one Gaussian with di-
agonal covariance matrix per state, the log prob-
ability that the given observation vector § in (1)
has been generated by a given state ¢ is

2Zlog2na

12
2k:1

log p(S/q) =

: ©)

where u(k) and ¢*(k) are, respectively, the mean
and variance of the kth spectral parameter in the
state q.

Note that, given the state ¢, the first term in (9)
is constant, so thereby we will only consider the
last term, which depends on the frequency se-
quence S(k). To facilitate the reasoning, we will
assume the same variance for all states (grand
variance). In this way, the variance sequence is
estimated over all the data. We will consider it as
constant along k, i.e. 6*(k) = ¢, k=1,...,0; this
is reasonable, since a constant value can be ob-
tained by a proper signal pre-emphasis.

In the following, we will express the last term in
(9) in terms of the cepstral sequence C(m) corre-
sponding to S(k). First, note that we can write it in
terms of the even sequences S(k) and j(k),

k=-0,...,0,...,0+ 1, where fi(k) is formed as
was S(k) in Sectlon 3.2. Slnce S(0)=80+1)=0
and S(—k) = S(k) = S(k), the last term in (9) is

proportional to

0+1

Z ’s ‘ (10)

Then, by applying the Parseval relation (Oppen-
heim and Schafer, 1989) it follows that that term is
also proportional to

! Herewith, we use the term discrimination in a general sense,
as synonym of recognition.

0+1

> [Cm) = M(m)P?, (11)
=0

where the even cepstral sequences C(m) and M(m),
m=-0,...,0,...,0+ 1, are, respectively, the
inverse DFT of the even frequency sequences S(k)
and fi(k).

Expression (11) shows that, although the HMM
framework uses observations lying in the spectral
domain, the probability can be computed from the
cepstral coefficients. Since M(m) is also the mean
of C(m) in the state g, every cepstral coefficient
C(m) contributes in an additive way to the prob-
ability according to its square distance to the mean
value in the state, exactly like S(k) in (10). How-
ever, although the grand variance of the observa-
tions has been equalized in (10), it is not so in (11).

Consequently, if the cepstral coefficients had to
contribute uniformly to the probability computa-
tion, they should be weighted in such a way that
their variance was equalized. Interestingly enough,
the same conclusion was reached in the last section
by aiming at decorrelated FBEs.

However, an even contribution of all cepstral
coefficients to the probability computation may
not be well suited to recognition purposes since the
various coefficients may show different levels of
discrimination capacity. In particular, cepstral
variance equalization may imply an excessive
weighting of the high quefrency coefficients. Ac-
tually, these coefficients represent fast oscillations
of the sequence of FBEs S(k), which may be un-
reliable (Juang et al., 1987) and may not carry
much useful information for phone discrimination,
especially for a high number of bands Q. This
problem could be avoided by choosing a small
number of bands, but if Q is too small, there is not
sufficient resolution in the spectral representation
given by S(k). By the way, notice that in the FF
approach the number of bands Q is the number of
transformed parameters as well, so it determines
the size of the feature vectors that are delivered to
the pattern matching step. A way of avoiding that
constraint is to decimate the filtered sequence to
retain a number of parameters M lower than Q; in
this case, the filter should be designed to avoid
aliasing.
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Several reported works (Juang et al., 1987;
Tokhura, 1987, Hanson and Wakita, 1987) have
shown that a sort of inverse variance weighting of
low quefrency components enhances the discrimi-
nation capacity of speech recognizers that are
based on the Euclidean distance and use linear
prediction cepstral coefficients (LPCC) as spectral
parameters. As the variance of C(m) shows a de-
creasing tilt along m (see Fig. 4), this kind of lif-
tering deweights the low quefrency components.
Additionally, those proposed lifters do not aim at
equalizing the variance of the high quefrency
components but they also deweight them. For
those lifters, the non-deweighted middle quefrency
components lie between m=6 and m =8 (for a 8
kHz sample frequency), indexes that correspond to
oscillations of the spectral envelope that show
between 3 and 4 peaks up to w =7 (4 kHz), which
is the average formant rate.

The cepstral response H(m) of the frequency
filter H(z) =z —z! has a sine shape, as depicted
in Fig. 5, which is exactly like the lifter shape used
in (Juang et al., 1987). Due to this shape, that
simple data-independent filter deweights both low
and high quefrencies, showing a rather good per-
formance for a broad range of conditions (Nadeu
et al., 1995), as we will see in the following sec-
tions. In particular, when Q lies between values 12
and 14, which have been found experimentally
optimum for speech signals sampled at 8 kHz,
H(m) shows its maximum value between m = 6 and
m =38, exactly the same values that correspond to
the formant rate mentioned in the above para-
graph. Since for this particular filter the two end-
points of the filtered sequence actually are absolute
energies, not differences, the full-band energy is
usually neglected in the speech representation.

H(m)

| >

m

Fig. 5. Sine shape of the cepstral lifter corresponding to the

frequency filter z — z7!.

In summary, the best strategy for filtering the
sequence of FBEs for HMM speech recognition
using diagonal covariance matrices may not be
aiming at a complete decorrelation, since the lifter
shape that yields the best recognition performance
probably will not coincide with the one that
equalizes the variance of cepstral coefficients.
Consequently, the filter has to be properly de-
signed to balance decorrelation and discriminative
liftering.

3.5. Recognition tests with static parameters

In this section, frequency-filtered parameters
are empirically compared with cepstral coefficients
for clean and noisy speech conditions, using the
static features alone, i.e. with no addition of sup-
plementary dynamic features, and training with
clean speech. The adult portion of the TI English
digit database will be used (Leonard, 1984). It
consists of 112 speakers for training and 113 for
testing. Each speaker utters two repetitions of the
11 single digits and 55 digit strings ranging from 2
to 7 digits.

A speech recognition system based on contin-
uous observation Gaussian density hidden Mar-
kov models (CDHMM) (HTK software, Young
et al., 1997) was used to carry out the tests. Each of
the 11 left-to-right HMMs for the digit words
consisted of eight effective states, and the silence
model had three states. No skips were allowed and
only one diagonal covariance Gaussian was em-
ployed per state.

3.5.1. Clean speech tests

First of all, let us report several digit recogni-
tion results for clean speech. Most of them were
already presented in the FF introductory paper
(Nadeu et al., 1995). After decimating the signals
from 20 to 8 kHz sampling rate, and pre-empha-
sizing them with a zero at z=0.95, Hamming
windowed frames of 30 ms were taken every 10 ms.
Then, QO mel-scale filter-bank energies were com-
puted for each frame and logarithmically com-
pressed. Each energy was obtained by a triangular
weighting average (the one implemented in HTK)
of the square magnitude of the DFT coefficients of
the windowed frame in the given band. Unless
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otherwise stated, 12 bands (Q=12) are used for
the FF parameters, since this value yielded the
highest recognition scores in our tests. After tun-
ing the system to MFCC, 20 frequency bands
(Q=20) and 8 cepstral coefficients (M =8) were
chosen as the empirically optimal parameters,
though the differences with respect to Q=20 and
M =12 were slight.

Using only single (isolated) digits for training
and testing (according to the partition of the set
of utterances between training and testing that is
given with the TI database), MFCC recognition
rate was 97.42% when the (non-normalized)
frame energy was not included and 97.51% when
it was. The result for FF with the database-in-
dependent second-order filter z—z"! in (5) was
98.11%. When both single and connected digit
utterances were employed for training and test-
ing, the recognition errors shown in Table 1 were
obtained. Three different filters were tested: (1)
the first-order least-squares variance-equalizer
filter proposed in Section 3.3 (Equalizer 1); (2)
the second-order least-squares variance-equalizer
filter that also was already mentioned in that
section (Equalizer 2); and (3) the second-order
filter in (5).

Note, in Table 1, the significant improvement
achieved by the frequency-filtered log FBEs with
respect to conventional MFCC: 21.7% relative
improvement in string error rate (z —z~! filter),
and 28% in word error rate (first-order equalizer).
The second-order equalizer yields almost exactly
the same rates as those of the first-order filter,
since the second coefficient is very small. The
computationally inexpensive filter z —z! yields
the lowest string recognition error rate, although
its word error rate is a little higher than those from
the equalization filters, but still much lower than
the MFCC one.

It is worth noting that the FF-FBE represen-
tation can improve its performance if the fre-
quency filter is empirically optimized. Recognition
percentage increased 1% using the filter
(1=0.7z7")(1 + 0.3z). That filter attenuates low
and high quefrencies less than the above filter
z—z' = (1 —z")(1 +z) so that it has a response
closer to that of the first-order equalizer
1—-0.527".

When the frame energy is included as an addi-
tional parameter, the string recognition error rate
for MFCC decreases down to 20.81%. Notice that
the improvement is larger than for isolated digits.
Conversely, the inclusion of the frame energy is
not beneficial for the frequency-filtered FBEs since
the error increases up to 19.45%. These results
suggest that the FF-FBE parameterization some-
how includes the energy information through both
endpoints of the filtered frequency sequence, since
their values actually are the log energies of the
second and the next to last (with a minus sign)
bands.

Applying principal component analysis (PCA)
(or Karhunen-Logve transform) to the average-
subtracted log FBEs in order to globally decorre-
late them, 20.60% string error rate and 7.49% word
error rate were obtained, scores worse than those
of the frequency-filtered log FBEs. This result re-
inforces the discussion about decorrelation and
discrimination presented in Section 3, since if only
decorrelation were meaningful, PCA should ob-
tain better results than any other transformation
including FF.

The reasoning in Section 3.4 assumes only one
Gaussian mixture per state. To validate the rec-
ognition improvement yielded by FF with respect
to MFCC for a higher number of Gaussians, an
experiment with eight Gaussians and using the
first-order equalizer was performed. The percent-

Table 1

Percentage of connected digit recognition errors for MFCC and three different frequency-filtered parameter sets®
Error % String Word Deletions Substitutions Insertions
MFCC 22.59 8.09 3.63 4.46 1.07
Equalizer 1 18.02 5.79 1.98 3.81 1.27
Equalizer 2 18.08 5.81 2.01 3.80 1.30
z—z! 17.69 6.00 1.97 4.03 0.91

#The error is measured with string error rate, word error rate, and the percentage of deletions, substitutions and insertions.
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Table 2

Percentage of connected digit recognition errors for LPCC and two different frequency-filtered parameter sets
Error % String Word Deletions Substitutions Insertions
LPCC 24.03 7.76 2.47 5.29 2.10
Equalizer 1 19.71 6.92 2.31 4.61 0.99
z—z"! 19.67 6.90 2.21 4.60 1.08

ages of relative improvement were 16% for string
recognition error and 25% for word error. Note
that these relative improvement scores with respect
to MFCC are not much lower than those from the
one-Gaussian results from Table 1 (20% for string
and 28% for word error).

Let us show a few experiments with the inverse
hybrid LP-FBE approach mentioned in Section
2.1 (Nadeu et al., 1995). After computing 13
cepstral coefficients C(m), m=0,...,12, from a
10th-order LP analysis, they were transformed to
the spectral domain using a 24-point DFT. The
obtained 13 spectral values were considered as log
FBEs, and thereby they were filtered as it was done
with the above mel-scaled DFT-based FBEs. The
value of the zero of the optimal first-order equal-
izer is, in this case, 0.53, quite similar to that of the
previous DFT-based case. Table 2 shows the rec-
ognition results for the conventional LPCCs and
two frequency-filtered LP-based log FBE. These
results are not so good as those from Table 1, but
FF improves again the recognition performance
with respect to cepstrum.

3.5.2. Noisy speech tests

The TI single digit database has also been used
to carry out experiments with additive artificial
noise and SNR = 10 dB. To set this SNR value, the
mean power of each utterance was computed only
in the speech portion (the speech signal had been
manually endpointed) and the noise power was
chosen to obtain the specified SNR in that speech
portion. Training is performed again with clean
speech. The recognition setup is like the one used
for the above clean speech tests, except that pre-
emphasis is not performed in this case and the
frame energy is not included.

First of all, results with white noise will be
presented. Four techniques have been compared

using the same number of (static) parameters for

each one (12 parameters):

1. MFCC with Q =20 bands and M =12 cepstral
coefficients per frame. M =12 was found to be
preferable to M =8 for noisy speech.

2. FF with Q =12 bands and the second-order dif-
ference filter in (5) (FF2).

3. A modification of FF2 that discards F(Q), a pa-
rameter whose magnitude is the absolute energy
of the 12th band. In this case, O =13 was used,
but the number of spectral parameters F(k) is
still 12.

4. FF with Q=12 bands and the first-order differ-
ence filter 1 — z~! (FF1). Note that F(Q) in this
case is not an absolute energy.

Note in Table 3 that FF2 yields a higher recogni-

tion rate than MFCC for noisy speech, but it

performs even better if F(Q) is discarded, since this
high-frequency energy shows a relatively low

SNR. However, when F(Q) is discarded, the large

improvement that FF obtains for clean speech

with respect to MFCC is substantially reduced.

Additionally, the first-order difference filter im-

proves even more the recognition rate for 10 dB

noisy speech. However, its performance for clean
speech is worse.

Also, by comparing the results in Table 3 for
clean speech tests with the ones reported at the
beginning of the last section, we notice that while

Table 3

Single digit recognition performance corresponding to four
parameterizations: MFCC, the usual FF2 technique, the mod-
ified FF2 that discards F(Q), and FF1

Recognition % Clean 10 dB
MFCC 96.70 28.53
z—z! 98.03 41.85
z —z~! modified 97.26 50.34
1—z7! 96.82 57.59
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MFCC performs significantly better when pre-
emphasis is carried out, the improvement for FF is
much smaller.

It is worth noting a few results with an artifi-
cially generated low-pass noise with 10 dB SNR
and cut-off frequency 1.1 kHz. Actually, all the
frequency filtering techniques considered in Table
3 give lower scores than MFCC for this kind of
noise when only static parameters are used, e.g.
whereas MFCC yields 24.59% recognition rate, the
modified FF2 (the third technique in Table 3) gets
17.06%. A similar observation was already re-
ported in (Hernando and Nadeu, 1997b) for real
low-pass noise. There are two possible reasons for
the degradation of FF results with noises that are
concentrated in a low-pass frequency band: (1) the
first frequency-filtered parameter is the absolute
energy of the second band, so it is strongly cor-
rupted by noise; and (2) a few FF parameters are
affected by the step of the transition band of the
noise spectrum. However, as will be discussed in
Section 5, the noise stationarity will allow the time
filters to attenuate these effects and, therefore, FF
will obtain better recognition performance than
MFCC.

Similar conclusions about the performance of
FF with respect to MFCCs for speech corrupted
by white noise have been recently reported by
Paliwal (1999) using the same basic FF idea. In
that work, he also arrives to the conclusion that
the filter in (5) is a good option. However, he does
not include the end parameters F(1) and F(Q).
That is probably the reason why his results for
clean speech are not as good as those presented
here.

3.5.3. Conclusion

Other recognition experiments have been per-
formed in our laboratory during the last years to
assess the FF technique: for different speech rec-
ognition tasks (acoustic—-phonetic decoding (Na-
deu et al., 1995), and word spotting with phone
units (Nadeu et al., 1996)), different noise condi-
tions (Hernando and Nadeu, 1997b), speaker rec-
ognition (Hernando and Nadeu, 1997a), and also
using features that were not obtained from an
usual filter-bank but from LP modeling (Hernan-
do and Nadeu, 1997b). More results are also pre-

sented in the following sections by using dynamic
feature sets along with the static one. From the
whole set of tests, it appears that FF generally
offers better recognition performance than MFCC.
Summarizing, we can conclude that frequency
filtering is a simple and effective operation that
performs a combination of decorrelation and lif-
tering, while still maintaining the speech parame-
ters in the frequency domain, so avoiding the
disadvantages of cepstral coefficients that were
listed in Section 3.1. Note in particular that FF
coefficients may be especially useful whenever their
frequency localization property is convenient. For
instance, to use them in a missing feature para-
digm, like it is done in (de Veth et al., 1999).

3.6. Alternative combination of FF and non-linearity

In this section, we are going to break the clear
separation we have maintained above between the
two main parameterization blocks of the scheme in
Fig. 1: spectral measurements and linear trans-
formations. Since the frequency-filtered spectral
parameters lie in the frequency domain, we can
speculate about placing FF before the non-linear
operator or at least performing both operations
jointly. In fact, if FF was applied to the linear
spectral energies E; instead of the non-linearly
compressed ones, it might better attenuate an ad-
ditive white noise component. To illustrate it, let
us assume that the filtered sequence of log spectral
energies of (3),

F(k) = (logEy) * h(k), (12)
is substituted by

G(k) :E"*Tf(k). (13)

Notice that if i(k) were a differentiator,
G~ F(K), (14

where Q — oo means that the frequency variable
becomes continuous. Note that, for the second-
order filter H(z) = z — z7!, G(k) in (13) are relative
spectral differences, and, although a white noise
component can be removed from the numerator,
its influence remains in the denominator.
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A few speech recognition tests were performed
with G(k) and the filter H(z) =z —z"!, for both
clean speech and speech contaminated with white
noise, using the T1 isolated digits database and the
same recognition setup as in Section 3.5.2. As can
be expected, the recognition rate decreased for
clean speech with respect to the FF parameters
F(k), from 98.03% to 97.14%. However, it notice-
ably increased for 10 dB noisy speech from 41.85%
to 66.32%.

4. Temporal filtering

The pattern-matching formalism based on
HMM assumes that each acoustic observation
vector is uncorrelated with its temporal neighbors.
This assumption cannot be fulfilled by the trans-
formed vectors for the usual frame shifts (typi-
cally, 10 ms). That has been the reason to justify
the inclusion of smoothed time derivatives as ad-
ditional parameter vectors (they are also referred
to as “dynamic” features (Furui, 1986)). Thus, not
only the first-order differential parameter vector
but often the second-order one are appended to
the basic “‘static” vector (for the sake of simplicity
of the explanation, we will assume in the following
that the global energy, if used, and its differences
are already included in the parameter vectors).
These two new temporal sequences of differential
vectors are computed by filtering the basic time
sequence of spectral parameter vectors.

Filtering of each time sequence of spectral pa-
rameters (TSSP) has also been used for robust
speech recognition with another goal: to remove
its dc and slowly variant components when they
are carrying undesired perturbations as linear
distortion (convolutional noise, additive in the log
spectral domain). That is the aim of both the
cepstral mean subtraction (CMS) technique (Ro-
senberg et al., 1994) and the IIR filter with a pole
close to 1 that is used in the so-called RASTA
processing (Hermansky and Morgan, 1994).

4.1. Modulation spectrum analysis

The effect of temporal filtering (TF) can be
better understood in the frequency domain. The

frequency counterpart of the frame index 7 is the

modulation frequency 6 (Houtgast and Steeneken,

1985). For this reason, the TSSP spectrum has

been called modulation spectrum (MS) (Greenberg

and Kingsbury, 1997). From the analysis of the

MS of filtered TSSP, it can be concluded that

(Nadeu et al., 1994, 1997a):

1. Each dynamic TSSP emphasizes a given band
of meaningful modulation frequencies. This ef-
fect is achieved with an approximate equaliza-
tion of the static MS in that band.

2. The modulation frequency bands of the various
TSSP (static and dynamic) are distributed along
an interval of the modulation frequency axis in
such a way that the function that results from
adding their MS is rather flat in that interval,
which is phonetically relevant and does not
carry an excessive spectral estimation noise.

3. If a single dynamic vector is employed to re-
place (not to supplement) the static vector, a
very large single digit recognition improvement
was achieved by enhancing the 3-4 Hz band,
which roughly corresponds to the syllable rate.

It was conjectured from these observations that
the 34 Hz band is important for speech recogni-
tion as it is for speech intelligibility (e.g. the in-
telligibility study in (Arai et al., 1996)). And also
that that strong improvement was possible due to
the relatively low temporal spreading of unit
boundaries caused by the filter when: (1) the
lengths of the modeled units are large, and (2) the
units to recognize appear in isolation.

Note that the assertion in point 3 contradicts
the classical statement that, for clean speech, dy-
namic features do not perform well on their own.
In fact, if only one parameter vector is employed, a
dynamic feature vector may yield higher recogni-
tion rates than the static vector for clean speech,
provided that the temporal filter is properly de-
signed. This was observed in (Nadeu et al., 1997a)
with both whole-word models (isolated and con-
nected digits) and context-dependent subword
models.

4.2. Temporal filters for robust speech recognition

It is not a fact under discussion that time-fil-
tered features are less affected by convolutional



106 C. Nadeu et al. | Speech Communication 34 (2001) 93—114

noises than the static features, so that they can
help the recognition system to cope with mis-
matches between training and testing data. How-
ever, that is not so clear for additive noises
(Hanson et al., 1996). In the following, some rec-
ognition results will be presented attempting to
gain an insight into the effect of time filtering on
the robustness of the speech representation for real
additive noises. Moreover, the role of the modu-
lation spectrum to guide the filter design will be
illustrated.

The recognition tests were performed with the
TT single digit database and the same experimental
setup as in Section 3.5.2, except that, for FF2,
0 =13. Moreover, the modified technique in Sec-
tion 3.5.2 that discards the endpoint F(Q) (third
row of Table 3) was employed for tests with white
noise. Also, a few tests were carried out applying
to the FBEs the root compression with y=0.03125
instead of the logarithm (see Section 2.3) before
performing FF.

Additionally, tests with the MFCC three-fea-
ture-set front-end standard for clean speech (ETSI
SQL W1007) were also performed to have refer-
ence scores. This standard front-end uses Q=23
bands and M =12 cepstral coefficients. Unlike the
FF front-ends used in these experiments, the
standard one uses pre-emphasis filter 1 — 0.97z7",
DFT magnitude instead of square magnitude, and
25 ms window length instead of 30 ms. Addition-
ally, the standard employs the usual orthogonal
polynomial with length 7 to compute the deriva-
tive parameters, der(7), and the same kind of filter
with length 5 to compute the acceleration param-
eters, acc(11), from the derivatives ones (so the
length of the composite filter is 11).

Slepian FIR filters are used in combination with
FF to have more flexibility in the filter design
procedure. The following Slepian filters have been
used in cascade with the equalization filter
H(z) =1-0.97z"! (see (Nadeu et al., 1997a) for
the notation and the design procedure): TF1(15):
k=1, W=12, L=14; TF2(15): k=2, W=12,
L=14; TF1(8): k=1, W=16, L=". The number
in the parenthesis is the length of the whole filter.
Figs. 6(a) and (b) illustrate the simulated modu-
lation spectra of time-filtered speech parameters,
which were obtained by using the spectral response
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Fig. 6. Simulated modulation spectra of time-filtered feature

sets for: (a) del(7) and acc(11) filters; (b) TF1(15), TF2(15) and
TF1(8) filters.

of the filter 1/(1 — 0.97z7") as an approximation of
the mean modulation spectrum (Nadeu and Juang,
1994; Nadeu et al., 1997a).

Training was carried out with clean speech. For
tests with noise, speech was contaminated by pub,
railway station and white noises with SNR =10 dB
(both real noises were extracted from the SUN-
ROM-1 noise database ?). Fig. 7 shows recogni-
tion percentages for FF2, using the static features
alone and also using one and two time-filtered
feature sets. Additionally, it includes results for FF
and two features sets, using the root non-linearity
instead of the logarithm; and, finally, the results
corresponding to the above-mentioned standard
MFCC parameterization are also shown.

2 Produced in the European Esprit-2094 project.
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Fig. 7. Isolated digit recognition rate for FF2 using: (1) the static feature set, (2) one time-filtered feature set (TF1), (3) two time-
filtered feature sets (TF1 and TF2), and (4) the root non-linearity instead of the logarithm with two features sets. Also, results from the
standard three-feature set MFCC front-end are included as reference.

By comparing the first two bars of the various
noise conditions (static and TF1 features), it is
apparent that the time filter TF1 improves signif-
icantly the recognition rate for both clean and
noisy speech. This seems to indicate that dynamic
features can be less affected than static features by
additive noises provided that the filter is properly
designed. Furthermore, using two time-filtered
feature sets instead of one, the FF2 results
improve.

Notice that FF2 with only one (dynamic) fea-
ture set even yields a higher recognition rate than
the standard parameterization with three MFCC
feature sets for both clean and noisy speech.
However, if CMS is employed in the standard
front-end, its results increase noticeably, especially
for noisy speech, but still remain below the FF2
results with two feature sets. For example, for
white noise, which is the noise condition that un-
dergoes the largest improvement, the recognition
percentage increases from 30.78% to 64.83%.

Using the empirically optimized exponent value
in the root compression, good results have been
obtained for the station and white noises, and bad
results in the case of pub noise, which is speech-
like. Actually, the root compression leads to
spectra with more dynamic range than log spectra
at peaks, so it may enhance the high-power nar-
row-band components of the pub noise.

When the temporal filter TF1(8) is used instead
of TF1(15), the recognition rate does not change
for clean speech and diminish for the station and
white noises, but it noticeably increases for pub

noise (from 73.76% to 84.67%). In Fig. 6(b), it can
be observed that the modulation spectrum from
the filter TF1(8) shows a broader band than the
one from the filter TF1(15). Moreover, both filters
TF1(15) and TF2(15) together cover a modulation
frequency band similar to the TF1(8) one. Ap-
parently, that inclusion of higher modulation fre-
quencies with respect to the filter TF1(15) alone
accounts for the better performance with pub
noise since: (1) when using both TF1(15) and
TF2(15) feature sets, the recognition rate of pub
noisy speech also increases significantly up to
82.01%, as shown in Fig. 7; and (2) a test with two
FF feature sets using del(7) and acc(11) temporal
filters, which show a broader band than TF1(15)
and TF2(15) (see Fig. 6(a)), yields even a higher
recognition rate for pub noise, 85.15%.

5. Tiffing (time and frequency filtering)

Let us consider the two-dimensional (2-D) se-
quence of log FBEs S(k, n), where the index k
denotes the frequency band and the index n de-
notes the time frame. In the above sections, we
have presented filtering as being separately per-
formed in the dimensions k and n. However, the
effect of filtering is remarkedly similar in both di-
mensions. In fact, time and frequency filters show
similar characteristics since both perform a kind of
smoothed derivative. Concretely, both the fre-
quency filter and the time filters used in this
work can be viewed as the combination of three
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operations (Nadeu et al., 1996): (1) removal (or
severe attenuation) of the average value; (2) ap-
proximate variance or power equalization in the
transform domain (quefrency for k, or modulation
frequency for n) with a first-order high-pass FIR
filter; and (3) smoothing of the resulting sequence
with a low-pass filter that shapes the (equalized)
band. Additionally, the effects of both kinds of
filters are not orthogonal; for example, the dc
component of the 2-D time-frequency sequence
S(k, n) may be removed by both filters.

On the other hand, frequency-filtered log FBEs
seem more able to benefit from temporal filtering
than cepstral coefficients. Actually, in the tested
cases where MFCC outperforms FF with only
static parameters, the use of dynamic parameters
reverse the comparison result. There are two sets
of experiments that account for that. In Section
3.5.2, for low-pass noise, whereas MFCC yielded
24.59% recognition rate, the modified FF2 tech-
nique obtained 17.06%. However, using the tem-
poral filter TF1(15) defined in Section 4.2, the
scores for the one feature set are 75.94% for
MFCC and 77.14% for the modified FF2 tech-
nique. The other set of experiments will be re-
ported in Section 5.4.

These observations lead us to think that there is
something of a synergy effect between both types
of filtering operations. Consequently, in this sec-
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tion we are going to consider both types of filters
together as applied to a 2-D frequency-time se-
quence. Therefore, the 2-D modulation spectrum
(2D-MS) (Macho and Nadeu, 1998), can be help-
ful for designing and analyzing them.

5.1. The two-dimensional modulation spectrum
(2D-MS)

The 2D-MS T(m, 0) is estimated from the 2-D
sequence of log FBEs S(k, n) by computing and
averaging over a speech database the power 2-D
transform function |C(m, 0)|°, which is computed
as

IDFT, 2

Stk )" e (m, ) C(m, )L | C(m, 07, (15)

i.e. the function C(m, 0) is obtained with an inverse
DFT to translate S(k, n) from the frequency do-
main k to the quefrency domain m followed by a
Fourier transform of the resulting sequence c¢(m, n)
from the time domain n to the modulation fre-
quency domain 6. Fig. 8(a) shows the 2D-MS
obtained from the isolated TIdigits database.

The 2D-MS can be used to investigate which
are the most important quefrency-modulation
frequency (QMF) regions for speech recognition,
and also to observe the mismatch between clean
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Fig. 8. (a) 2-D modulation spectrum computed over the whole adult portion of the TI isolated digit database; (b) mismatch in the 2-D
modulation spectrum between clean and noisy speech for SNR =10 dB.
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speech and speech contaminated by noise. The
mismatch is defined as the difference

|Cn0isy(m> 9) - Cclean (ma 0) |2
for all m and 6.

(16)
Note in Fig. 8(b) that, for additive white noise, the
largest mismatch between the 2D-MS of clean and
noisy speech is located at the low QMF region.

5.2. 2D-MS-assisted design of the time and fre-
quency filters for robust speech recognition

The 2-D modulation spectrum can be used to
guide the design of time and frequency filters. As
observed in Fig. 8(a), T(m, 0) decreases along both
axes so the highest energy is located at the low
QMF region. This region represents the slowest
oscillations of the 2-D sequence S(k, n), i.e. the
spectral tilt (in k) and the long-term time changes
(in n). However, the most discriminative informa-
tion probably lies in the alternation of peaks
(formants) and valleys in the spectral domain, and
in the alternation of stationary and transitional
segments of speech in the time domain, which are
represented by higher QMF components.

For noisy speech, there is an additional reason
to select higher QMF components: the largest
mismatch is situated at low QMF, being its max-
imum at the (0, 0) point. Using time and frequency
filtering, we aim to balance the enhancement of
discriminatively important 2-D regions with the
attenuation of 2-D regions that are strongly af-
fected by noise. Each feature set can emphasize its
own QMF region so that a different time filter and
a different frequency filter are employed for each
region.

A 2D-MS region with potentially high dis-
crimination capacity was investigated in (Macho
et al., 1999b). The quotient between the between-
class and the within-class variances of the 2-D
modulation spectrum, that was used for that pur-
pose, achieved high values around 6 =3-4 Hz and
m=3-4 for the TI isolated digits database (see
Fig. 9).

Several recognition tests were performed for the
TI single digits database and 10 dB white noise.
The experimental set-up was like the one in Sec-

Varbetween / Varwithin

Modulation 0o
frequency [Hz]

Quefrency

Fig. 9. The quotient Variancepepyeen/Varianceyimin for isolated
digits.

tion 4.2. Three feature sets, obtained with different
time filters, were tested: static (no filter), TF1-fil-
tered and TF2-filtered. TF1 and TF2 are the same
two time filters of length 15 defined in Section 4.2.
The approximated modulation frequency bands
where the time-filtered parameters show maximum
energy are, respectively, 0-3 Hz and 2-9 Hz. Two
different frequency filters defined in Section 3.5.2
were employed: FF1 (1 —z7!) and FF2 (z —z7").
The latter was used with Q=13 and discarding
F(Q), like in Section 4.2. The former is a first-order
filter, so it does not include the high-frequency
absolute energy, only the low-frequency one: F(1).

As can be observed from the results shown in
Fig. 10 for noisy digits, the preferred frequency
filter for static and TF1-filtered parameters is FF1,
the one that attenuates low quefrencies. However,
for TF2-filtered parameters, which have a band
located at higher modulation frequencies, the fre-
quency filter that yielded the best rate was FF2,
which emphasizes middle quefrencies. Thus, as
shown in the bottom part of Fig. 10, the best re-
sults are achieved using a different frequency filter
for each time filter (black bar).

5.3. Tiffing versus cepstral-time matrices

A 2-D cepstrum representation can be com-
puted by applying a 2-D discrete Fourier trans-
form to a spectral-time matrix (Pai and Wang,
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Fig. 10. Recognition rates for clean and noisy (SNR =10 dB)
digits for different time and frequency filters. The black bar
corresponds to the pair of time-frequency filters TF1-FF1 and
TF2-FF2.

1992). The cepstral-time matrix (CTM) represen-
tation (Vaseghi et al., 1993) is a running 2-D
cepstrum where the spectral-time matrix is built
with L parameter vectors around the current one.
So the CTM Ccrm(m, i) is computed by applying a
2-D DCT to L stacked adjacent log FBE vectors.
Since the 2-D DCT can be decomposed in two 1-D
DCTs, the CTM computation can be performed in
the following way:

Sk, ) ™S eper (m, n) =" Corm (m, i). (17)

Thus, by applying the first DCT to the frequency
index k, a 2-D time sequence of cepstral coeffi-
cients is obtained. The second DCT transforms a
time sequence of L stacked cepstral vectors to the
modulation frequency domain. A band in the
modulation frequency domain can be associated to
each DCT basis sequence, with a central frequency
that depends upon both the number of cepstral

vectors L and the frame rate. Consequently, a
modulation frequency can be assigned to each
column of a CTM. Analogously, each row of a
CTM corresponds to a different value of quefrency
index m.

Typically, only a low-indexed sub-matrix of
CTM is used for recognition. In this way, it is an
alternative to tiffing for selecting a QMF region.
Actually, CTMs can, similarly to tiffing, benefit
from the conclusions that can be drawn from the
analysis performed on the 2D-MS.

Recently, both tiffing parameters and CTMs
were comparatively tested for the TI single digit
database (Macho et al., 1999b). It is worth noting
that CTM works particularly well with a small
number of parameters for this task and clean
speech. Although the differences in recognition
rate between both approaches were not large,
tiffing parameters showed a consistently better
performance for both clean speech and speech
contaminated with real additive noises.

5.4. Recognition tests with the Aurora database and
recognition setup

To conclude this section, let us mention a very
recent result corresponding to the clean and noisy
connected TI digit recognition task proposed by
the Aurora project to standardize a robust front-
end for distributed speech recognition (ETSI STQ
WI008) (Pearce, 1998). Four different types of
noises are used in the recognition task: hall (Noise
1), babble (Noise 2), train (Noise 3) and car (Noise
4). Instead of training from clean speech, like in all
the results reported above, training is performed in
this task in a multicondition way (i.e. the training
corpus contains both clean and noisy speech sig-
nals, for various noise conditions). The set of test
utterances corresponding to a given type of noise is
tested with both clean speech and six different
SNRs (20, 15, 10, 5, 0 and -5 dB), but noise
conditions 0 and —5 dB are not used for training.
An average word recognition accuracy for noisy
speech is computed by considering all the test
conditions for noisy speech except —5 dB.

In the HTK (Young et al., 1997) recognition
back-end established by the Aurora project that is
used in our tests, digit HMMs have 16 states and 3
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Gaussians per state. A short pause model is used in
addition to the silence model. The MFCC recog-
nition system is the standard front-end for clean
speech (ETSI SQL W1007) already presented in
Section 4.2. The tiffing front-end differs from it in
the three pre-processing steps already mentioned
in that section. FF2 was used with Q =13, so both
parameterizations use the same number of pa-
rameters (MFCC includes 12 cepstral coefficients
plus energy).

Table 4 shows the average word recognition
accuracy scores for noisy speech tests and clean
speech tests. First of all, FF was tested along with
MFCC by using static features alone, i.e. with no
addition of supplementary dynamic features. The
average accuracy score for noisy conditions for
MFCC is better than for FF. However, when three
feature sets are used for both MFCC and FF, and
the same time filters der(7) and acc(11) of the
standard parameterization, which were presented
in Section 4.2, are also used for both MFCC and
FF, the average accuracy score is higher for FF
(third and fourth rows in Table 4). At the begin-
ning of Section 5, it was already noted that static
FF parameters alone do not perform so well as
MFCC ones for low-pass noise, but the oppo-
site occurs also when dynamic parameters are
included.

The last row in Table 4 shows the average
speech recognition accuracy results for the tiffing
parameters, i.e. when the time filters are also
changed. For that purpose, we used two Slepian-
type filters that had been empirically optimized to
recognize T1 connected digits with models trained
with clean digit utterances (Macho et al., 1999a).
They are Slepian-type filters: the filter TF1(8) al-
ready presented in Section 4.2, and the filter

Table 4
Average performances for the TI connected digit Aurora task
for DSR standardization

Recognition accuracy Average Average
clean noisy
MFCC - static set 95.39 76.24
FF — static set 95.54 74.88
MFCC - 3 feature sets 98.57 86.34
FF - 3 feature sets 98.91 87.07
Tiffing — 3 feature sets 98.94 87.68

TF2(10) whose specifying parameters are k=2,
W=16 and L=09.

The relative improvements of average accuracy
rates are meaningful: 25.8% and 9.8% for clean
and noisy recognition, respectively, in comparison
to the standard front-end. The detailed results for
both the standard parameterization and the tiffing
one are presented in Table 5. As specified by the
Aurora project, the average score in the right
bottom corner of the table is computed over all
types of noise but only for SNR conditions from
20 dB to 0 dB. Notice that tiffing outperforms in
average terms the usual mel-cepstrum representa-
tion for every kind of noise and SNR. Further-
more, tiffing performs significantly better than the
MFCC standard front-end when the tested con-
ditions are not seen during training (i.e., for the
SNRs equal to 0 dB and -5 dB) for noises 1, 3 and
4 in Table 5. However, for the speech-like noise
(noise 2), tiffing works better in matched condi-
tions.

5.5. Conclusion: advantage of time and frequency
filtering

When extracting conclusions about the recog-
nition performance of spectral parameter post-
processing techniques, we have to carefully dis-
tinguish between the different recognition tasks
and the various types of modeled phonetic units.
In this paper, results have mostly been reported
from experiments with clean and noisy speech for:
(1) isolated digit recognition, using whole word
models and clean speech training; and (2) con-
nected digit recognition, using whole word models
and for either clean speech training or multicon-
dition training (Aurora task).

In our experimental work, the tiffing technique
has rarely yielded worse results than a standard
and tuned MFCC parameterization with dynamic
parameters, neither for clean nor for noisy speech
tests. However, large vocabulary continuous
speech recognition tests should also be performed
to assess the tiffing technique in a more complete
way. In a recognition task like that, in which
subword units are involved, the time filters must be
shorter, so that there exists less freedom to design
them than using whole-word models.
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Table 5

Recognition accuracy for the Aurora task
Recognition accuracy Noise 1 Noise 2 Noise 3 Noise 4 Average
(a) Standard MFCC
Clean 98.65 98.49 98.48 98.64 98.57
20 dB 97.60 96.67 98.03 98.43 97.68
15dB 96.16 93.80 97.26 98.12 96.34
10 dB 92.85 86.40 94.78 97.59 92.91
5dB 83.11 70.25 88.22 94.72 84.08
0 dB 47.31 49.27 66.51 79.67 60.69
-5dB 18.61 31.68 30.63 47.24 32.04
Average 83.41 79.28 88.96 93.71 86.34
(b) Tiffing
Clean 98.93 98.88 98.72 99.23 98.94
20 dB 97.57 96.89 97.85 98.89 97.80
15dB 95.95 95.22 96.96 98.21 96.59
10 dB 92.08 89.30 94.75 97.28 93.35
5dB 82.78 74.09 87.35 93.80 84.51
0dB 60.73 48.79 71.67 83.52 66.18
-5dB 27.36 26.03 37.73 53.84 36.24
Average 85.82 80.86 89.72 94.34 87.68

In this work, filter design has been based on an
experimental approach; statistically optimal de-
signs can be alternatively pursued, either based on
a linear discriminant analysis approach (Aven-
dano et al.,, 1996; Hermansky, 1998) or on a
maximum likelihood approach (Paches-Leal et al.,
1999).

6. Optimal transformations of the whole set of
features: PCA and LDA

Dynamic parameter vectors are correlated be-
tween them and with the static vector (Ljolje,
1994). Therefore, the whole set of parameters may
still be linearly transformed to either reduce the
number of features or to improve the recognition
performance. That linear transformation has also
been applied so far to a set of several adjacent
static vectors.

Principal component analysis (PCA) (or the KL
transform) (Fukunaga, 1990) uses a data-depen-
dent matrix to decorrelate any of the two sets and
sort the transformed parameters in terms of vari-
ance, so allowing a dimensionality reduction of the
final feature vector.

Alternatively, we may apply a linear transfor-
mation that provides an increased class separa-
bility. LDA (Fukunaga, 1990) has been used so far
for this purpose (Hunt and Lefebvre, 1989). Most
of the reported works that propose an LDA
technique consider HMM states as classes, despite
that the classes should ideally be linguistic units.
LDA assumes that the data in each class can be
modeled by a single Gaussian distribution that
shares its covariance matrix with all the other
classes. Therefore, the LDA transformation matrix
has to be calculated carefully, and it should be
retrained for every new acoustic modeling.

Those two linear transformations were com-
pared along with MFCC and frequency-filtered
log FBEs (Batlle et al., 1998). Using an acoustic—
phonetic decoding task on the TIMIT database, it
was observed that PCA and LDA can improve the
recognition rate and reduce the number of re-
quired features. Both transformations showed
their potential better when applied to the whole set
of parameters, i.e. including the dynamic ones; in
fact, using only the current static vector, FF and
LDA vyielded a similar recognition score. Addi-
tionally, it was also observed that LDA and FF
outperformed the others for the same number of
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final features. Note that FF, which was applied
with the data-independent filter z — z~!, does not
require either a matrix training nor a class defini-
tion.

7. Conclusions

In this paper, the linear transformations of non-
linearly compressed spectral band energies that
implement current speech recognition systems
have been reviewed and discussed, and a few re-
cent contributions related to them have been pre-
sented.

According to what has been reported in this
paper, frequency-filtered FBEs are a robust speech
representation which, unlike cepstral coefficients,
maintains the frequency meaning, so being a real
alternative to them. Also, we have observed how
the recognition performance can benefit from an
appropriate time filter design, and that an addi-
tional advantage can be obtained from jointly
considering time and frequency filters.
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