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ABSTRACT

This paper presents a new scheme for developing a voice con-
version system that modifies the utterance of a source speaker
to sound like speech from a target speaker. We refer to the
method as Speaker Transformation Algorithm using Segmen-
tal Codebooks (STASC). Two new methods are described to
perform the transformation of vocal tract and glottal excita-
tion characteristics across speakers. In addition, the source
speaker’s general prosodic characteristics are modified using
time-scale and pitch-scale modification algorithms.
mal listening tests suggest that convincing voice conversion is
achieved while maintaining high speech quality. The perfor-
mance of the proposed system is also evaluated on a standard
Gaussian mixture model based speaker identification system,
and the results show that the transformed speech is assigned
higher likelihood by the target speaker model when compared
to the source model.

Infor-

1 Introduction

There has been a considerable amount of research effort di-
rected at the problem of voice transformation recently [1, 3,
4, 8]. This topic has numerous applications which include
personification of text-to-speech systems, multimedia enter-
tainment, and as a preprocessing step to speech recognition
to reduce speaker variability. In general, the approach to the
problem consists of a training phase where input speech train-
ing data from source and target speakers are used to formulate
a spectral transformation that would map the acoustic space
of the source speaker to that of target speaker. The acoustic
space can be characterized with a number of possible acous-
tic features which has been studied extensively in the liter-
ature. The most popular features used for voice transforma-
tion include formant frequencies [1], and LPC cepstrum coeffi-
cients [7]. The transformation is in general based on codebook
mapping [1, 3, 7]. That is, a one to one correspondence be-
tween the spectral codebook entries of the source speaker and
the target speaker is developed by some form of supervised
vector quantization method. In general, these methods face
several problems such as artifacts introduced at the bound-
aries between successive speech frames, limitation on robust
estimation of parameters (e.g., formant frequency estimation),
or distortion introduced during synthesis of target speech. An-
other issue which has not been explored in detail is the trans-
formation of the glottal excitation characteristics aside from
the vocal tract characteristics. Several studies proposed so-
lutions to address this issue recently [4, 7]. In this study, we
propose new and effective solutions to both problems with the
goal of maintaining high speech quality.

2 Algorithm Description

This section provides a general description of the STASC algo-
rithm. The training speech (sampled at 16 kHz) from source

and target speakers are first segmented automatically using
forced alignment to a phonetic translation of the orthographic
transcription. Codebooks of line spectral frequencies (LSF)
are used in order to represent spectral characteristics of source
and target speaker vocal tract characteristics. The reason for
selecting line spectral frequencies is that these parameters re-
late closely to formant frequencies [5], but in contrast to for-
mant frequencies they can be estimated quite reliably. In ad-
dition, they have a fixed range which makes them attractive
for real-time DSP implementation. The LSF codebooks are
generated as follows: The line spectral frequencies for source
and target speaker utterances are calculated on a frame-by-
frame basis and each LSF vector is labeled using the phonetic
segmenter. Next, a centroid LSF vector for each phoneme
is estimated for both source and target speaker codebooks
by averaging across all the corresponding speech frames. A
one-to-one mapping is established from the source and tar-
get codebooks to accomplish the voice transformation. The
transformation will be explained in detail later in this section.

Another factor that influences speaker individuality is glot-
tal excitation characteristics. The LPC residual can be a rea-
sonable approximation to the glottal excitation signal. It is
well known that the residual can be very different for different
phonemes (e.g., periodic pulse train for voiced sounds versus
white noise for unvoiced sounds). Therefore, we formulated
a "codebook based” transformation of the excitation char-
acteristics similar to the one discussed above for vocal tract
spectrum transformation. Codebooks for excitation charac-
teristics are obtained as follows: Using the segmentation in-
formation, the LPC residual signals for each phoneme in the
codebook are collected from the training data. Next, a short-
time average magnitude spectrum of the excitation signal is
estimated for each phoneme both for the source speaker and
the target speaker pitch synchronously. An excitation trans-
formation filter can be formulated for each codeword entry
using the excitation spectra of the source speaker and the tar-
get speaker. This method not only transforms the excitation
characteristics, but it estimates a reasonable transformation
for the "zeros” in the spectrum as well, which are not rep-
resented accurately by the all-pole modeling. Therefore, this
method resulted in improved voice conversion performance es-
pecially for nasalized sounds.

The flow diagram of the STASC voice transformation al-
gorithm is shown in Figure 1. The incoming speech is first
sampled at 16 kHz and preemphasized with the filter P(z) =
1 —0.95z"!. Next, 18th order LPC analysis is performed to
estimate the prediction coefficients. Based on the prediction
coefficients, an inverse filter, A(z), is formulated as:

P
1= az ", (1)
k=1

This filter is used to estimate gs(n) which is an approxima-
tion of the excitation signal for the source speaker. Next, line

Alz) =



spectral frequencies, w, are derived from the prediction coef-
ficients. In order to find the corresponding LSF vector for the
target speaker, the most likely phones in the source codebook
are estimated, and weights are assigned to each of them based
on their relative likelihoods. Next, the same set of weights
is used to construct the target LSF vector from target phone

codebook.
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Figure 1: Flow-diagram of STASC voice conversion algo-
rithm.

Codebook Weight Estimation Method

Line spectral frequency vector w is compared with each LSF
centroid, S;, in the source codebook and the distance, d;,
corresponding to each codeword is calculated. The distance
calculation is based on a perceptual criterion where closely
spaced line spectral frequencies which are likely to correspond
to formant locations are assigned higher weights. The weights
of the line spectral frequencies are calculated based on the
formulation proposed in [6],

1

h, = : k=1,...,P
argmin(|wr — Wi_1|, [Wi — Wi1])
P

di = th|wk—Slk| i=1,...,L (2)
k=1

where L is the codebook size. In addition to above weight-
ing, for voiced segments, lower order LSFs, and for unvoiced
segments, higher order LSFs are weighted more by an expo-
nential weighting factor. Based on the distances from each

codebook entry, an approximate line spectral frequency vec-
tor can be expressed as a weighted sum of the source codebook
line spectral frequencies [2]:

—d, .
A = ﬁ 1= 1,...,L
1=1
‘i’k = EiLZI ViSik k = 1, 7P (3)

where the value of « for each frame is found by an incre-
mental search with the criterion of minimizing the perceptual
weighted distance between the approximated LSF vector w
and original LSF vector w. However this set of weights may
still not be the optimal set of weights that would represent the
original speech spectrum. In order to improve the estimate of
weights a gradient descent algorithm is employed. The pre-
viously estimated weights are used as the initial seed to the
gradient descent algorithm. The weights v; are constrained to
have positive values after each iteration of the gradient descent
algorithm to prevent unreasonable estimates. The weight es-
timation algorithm can be summarized as follows:
Codebook Weight Update by Gradient Descent

Initialize: E° = oo
n = 1
Loop
e = h.(w-Sv')
E" = 3 lex
vy = v?71+7)eTSi i=1,...,L
vi = max(v}’,0) i=1,...,L
n = n+l
until E* > E"T'—1.0etE"T!

where S is a P X L size matrix whose columns represent a
codeword LSF vector, and 7 is a constant which controls the
rate of convergence. In our implementation, in order to re-
duce computation 7 is adjusted after each iteration based on
the reduction in error E™ with respect to E™ !. If there is
significant amount of reduction in error then 7 is increased,
otherwise it is decreased. It was also observed that only a
few codebook entries were assigned significantly large weight
values (i.e. v¥). Therefore in order to save computational re-
sources the gradient descent algorithm was performed on only
5 most likely codeword weights. Using the gradient descent
method, a 15-20% additional reduction in average Itakura-
Saito distance between the original and approximated spectra
was achieved. The average spectral distortion (SD), which is
a commonly used measure for spectral quantizer performance
evaluation, was also reduced from 1.8 dB to 1.4 dB.

Glottal Excitation Mapping

The estimated set of codebook weights can be regarded as in-
formation about the phonetic content of the current speech
frame. It can be utilized in two separate domains:, i) trans-
formation of the glottal excitation characteristics, ii) transfor-
mation of the vocal tract characteristics. For transformation
of the glottal excitation, the set of weights is used to construct

an overall filter which is a weighted combination of excitation



codeword filters:

H(w) = sz‘ U%-t(w) (4)

where U;*(w) and U;*(w) denote average target and source
excitation spectra for the i** codeword respectively. The tar-
get excitation spectrum G(w) can be obtained by applying
this filter to the DFT of the source speaker excitation signal

gs(n):

Gi(w) = H(w)DFT{g.(n)}. (5)
Spectral Mapping _
The same set of codebook weights (v, ¢ = 1,...,L) are ap-

plied to target LSF vectors (T;, : = 1,..., L) to construct the
target line spectral frequency vector w':

L

_t

Wy, = E viTik,
i=1

Next, target line spectral frequencies are converted to predic-
tion coefficients, a‘, which in turn are used to estimate the
target LPC vocal tract filter:

F=1,...,P (6)

1
Vi(w) = . 7
t( ) 1_2521 ake—j’“’ ( )

The weighted codebook representation of the target spectrum
results in expansion of formant bandwidths. In order to cope
with this problem a new bandwidth modification algorithm is
proposed.

Bandwidth Modification Method

The bandwidth modification algorithm makes use of the
knowledge that average formant bandwidth values of the tar-
get speech should be similar to that of source speech. Once
an estimate of the source speech bandwidths is obtained, the
bandwidths of the target speech can be forced to be similar
to this estimate by modifying the distance between line spec-
trum pairs representing each formant. The algorithm can be
formulated as follows. First, estimate the average formant
bandwidth across first four formant frequencies from both the
source speech spectrum and current estimate of the target
speech spectrum to find the ratio r:

4 4
bs:iz;bsi bt:izl:bti

ro= Pe (8)
b,
In the above formulation bandwidths are approximated by the
difference of closely spaced LSFs. Next, find the line spectral
pairs in the target LSF vector that correspond to each formant
frequency location f;, ¢ = 1...4. Finally, apply the estimated
bandwidth ratio to adjust the line spectral pairs:

wi = Wit (1=r)« (6 —w))

Wi = Wi+ (1—r)* (f—wjyq)

where w; and W;+1 represent a line spectral frequency pair
around f;. In order to prevent the estimation of unreasonable
bandwidths the minimum bandwidth value is set to be 50
Hz. Using this processing method resulted in more accurate
bandwidth estimation for the vocal tract filter V;(w) based on
detailed observations and subjective listening tests.
Combined Output
The vocal tract filter is next applied to the spectrum of the
estimated target excitation signal to get an estimate of the
spectrum corresponding to the preemphasized target speech:
Y(w) = Ge(w)Vi(w). (10)
Next, inverse DFT is applied to produce the synthetic target
voice,

y(n) = Real{IDFT{Y (w)}}. (11)
Finally preemphasis is removed from the speech by applying
inverse preemphasis filter:

1

P i) ——
(2) = T—gg5.-1

(12)
The next section discusses the evaluations conducted to test
the performance of the STASC algorithm.

3 Evaluations

In order to evaluate the performance of the STASC algorithm
we used a simple speaker identification system. The idea is
that if we can make the speaker identification (ID) system se-
lect the target speaker after processing source speaker utter-
ance, it means that the voice conversion algorithm is perform-
ing well. Of course besides checking for the binary decision
between the two speakers, one would like to have a confi-
dence measure on the decision as well. For this reason, the
log-likelihood ratio of the target speaker to that of the source
speaker is adopted as an objective measure in our evaluations.
The performance measure 6s; can be formulated as:

P(X]|A:)
P(X]|\s)
log P(X|X¢) — log P(X]As)

gst = log

(13)

where X is the observation vector sequence, \; is the tar-
get speaker model, and A is the source speaker model. The
speaker ID system employs Gaussian mixture models in order
to represent the source and target speaker characteristics. The
24 dimensional feature vector consists of 12 Mel-Cepstrum co-
efficients and their delta coefficients. Initial vector quantiza-
tion was done using binary split vector quantization method.
This was followed by 2 iterations of Forward-Backward train-
ing. During data collection sessions each speaker was asked
to read a different story to the tape recorder. The recorded
speech was approximately one hour long for each speaker.
Forty-five minutes of the recording was used as training data
(both for speaker ID models and voice transformation code-
books), and fifteen minutes of speech was set aside for testing.
The average likelihood of the first speaker’s speech data for



Speaker ID Evaluation of Voice Conversion Algorithm
Testcase 0s: before conversion | s after conversion

Spl— > Sp2 -5.59 +5.47

Spl— > Sp3 -4.29 +3.22

Sp2— > Spl -6.22 +1.51

Sp2— > Sp3 -6.55 +3.98

Sp3— > Spl -3.57 +0.47

Sp3— > Sp2 -4.70 +4.53

Table 1: The speaker ID evaluation for voice conversion.
Spl: first speaker, Sp2: second speaker, Sp3: third speaker.

the first speaker model, log P(X]|A1), was -70.53. After using
STASC for transformation to the second speaker, first speaker
model likelihood reduced to -72.62, and second speaker model
likelihood increased from -76.12 to -67.15. This is expressed
in the Table 1 in terms of log-likelihood ratio as an increase
from -5.59 to +5.47. The transformation was not as successful
for every speaker combination. For instance after conversion
from third speaker (Sp3) to first speaker (Spl) the likelihoods
showed smaller differences (631 : —3.57 — +0.47). However,
in all cases the likelihoods moved in the right directions for
source and target speakers (i.e., away from the source speaker,
and towards the target speaker). In Figure 2, the illustration
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Figure 2: Illustration of speaker conversion algorithm per-
formance in terms of speaker ID system likelihoods across
time (solid line:source speaker likelihood, dashed line: target
speaker likelihood).

of the algorithm performance using speaker likelihood crite-
rion on a sample test utterance is shown. Here, it can be seen
that the voice conversion performance also depends on the
context, and for some phonemes it is more successful, whereas
it does not perform as well for others. Part of this can be

explained by the fact that same VQ indices are not forced to
be used in speaker ID system, and another mixture combina-
tion from the source speaker may represent the target speaker
characteristics in some cases.

4 Conclusion

In this study, a new voice conversion algorithm is devel-
oped. The algorithm is based on a codebook mapping idea,
however it uses a weighted average of codewords to repre-
sent each speech frame which results in smoother transition
across successive frames. Both vocal tract characteristics and
glottal excitation characteristics are transformed within the
same framework which makes the algorithm computation-
ally tractable. In addition, average prosodic characteristics
are modified by time-scale and pitch-scale modification al-
gorithms. As a result, high quality speech which character-
izes the target speaker was obtained after the STASC algo-
rithm was employed for voice conversion. The performance
of the algorithm was tested by a standard speaker 1D sys-
tem as well as informal listening tests. The objective evalua-
tions verified that the target speaker characteristics are cap-
tured after spectral transformation is employed. The algo-
rithm produces very convincing speech output with high qual-
ity. The current algorithm performs the prosody modification
and spectrum+excitation transformation sequentially. As a
future study, the integration of these two components in a
single framework will be investigated.
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