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Formant Location From LPC Analysis Data

Roy C. Snell, Member, IEEE, and Fausto Milinazzo

Abstract— The estimation of formant frequencies and band-
widths from the filter coefficients obtained through LPC analysis
of speech is discussed from several viewpoints. A new method for
locating roots within the unit circle is derived. This algorithm is
particularly well suited to computations carried out in fixed point
arithmetic using specialized signal processing hardware.

I. INTRODUCTION

N SPEECH PROCESSING, formants are resonances of the

vocal tract. The estimation of their locations and band-
widths (particularly during the production of voiced speech)
is important in many applications (see [1], [2], and [4]). The
particular application that motivated much of the development
presented in this correspondence was a project in the area
of speaker verification [13] in which the number of formants
present in several selected frequency ranges was used to
identify several phonetic events. This application required an
algorithm capable of operating in near real time.

A frequently used technique for formant location involves
the determination of resonance peaks from the filter coef-
ficients obtained through LPC analysis of segments of the
speech waveform [7]. Once the prediction polynomial A(z)
has been calculated, the formant parameters are determined
either by “peak-picking” on the filter response curve or by
solving for the roots of the equation A(z) = 0. Each pair of
complex roots is used to calculate the corresponding formant
frequency and bandwidth.

The computations involved in “peak-picking” consist of
either the use of the fast Fourier transform with a sufficiently
large number of points to provide the prescribed accuracy in
formant locations or the evaluation of the complex function
A(e??) at an equivalently large number of points [7]. Both
computations can be carried out efficiently on a general
purpose computer or by a digital signal processing (DSP)
chip such as the Texas Instruments TMS320. However, both
methods are frequently unable to distinguish closely spaced
resonances. A thorough discussion of this problem is given in
[8] and [10].

In spite of their advantages, the relative complexity of
polynomial root finding techniques frequently precludes them
as an approach to formant estimation. The LPC analysis,
which can be carried out efficiently, typically produces a
predictor polynomial of degree at least 10 which, due to
stability requirements, has all its roots within the unit circle.
The software used to determine the roots is often a standard
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general-purpose root solver available in a scientific subroutine
package. The computation time for these routines is, in many
cases, too long to allow the calculation of resonance peaks
in what may frequently involve several hundred LPC analysis
frames derived from just a few seconds of speech. In addition,
the major drawback to virtually all root-finding algorithms is
the requirement that they be implemented in relatively high
accuracy floating point arithmetic, making them unsuitable
for high speed implementation in the fixed point arithmetic
provided on most standard DSP chips.

The aim of this article is to present an algorithm for lo-
cating formants and estimating their bandwidths. Unlike most
root finding methods, this algorithm has minimal precision
requirements and need not be implemented in high precision
floating point arithmetic and indeed is very well suited for
implementation in the fixed point arithmetic available on most
DSP chips. The algorithm is described in Section II and test
results, indicating the efficiency and accuracy of the method in
both a high level implementation and an implementation using
fixed point arithmetic on a digital signal processing (DSP)
chip, are presented in Section III

II. ROOT LOCATION BY CONTOUR INTEGRATION

A. Relationships of Formant Frequencies/Bandwidths
to Root Locations

A number of standard references on speech processing (see,
for example, [7] and [12]) provide the following transfor-
mation from complex root pairs z = rpe*% and sampling
frequency f, to formant frequency F and 3-dB bandwidth B:

F=124,H2 o
2
@

Assuming that the prediction polynomial corresponds to a
second-order all-pole system, it may be shown that the formant
frequency and 3-dB bandwidth are

B= —élnron.
T
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It is easy to see that (3) and (1), and (4) and (2) give the same
result in the limit as 7o — 1. How well each pair of equations
agree for roots located close to the unit circle (ro &= 1) may be
seen by setting 7o = 1 — k and comparing the corresponding
Taylor series expansions of these equations about k£ = 0. A
short calculation yields the approximations

|F—F|= f—;k2|coteo||1 +k+O(k?)|

5)

and

|B-B|= fs K3 (1 + 3cot? 8o)]1 + O(k)|. ©6)

3

The estimates given by (5) and (6) indicate good agreement
between the two methods of computing the formants and the
bandwidths when the corresponding root is near the unit circle
(ro = 1,k = 0). For fixed rg, the differences are a minimum
for g = m/2 (corresponding to half the Nyquist frequency).
As is to be expected the estimates break down at 0 and =
(formant frequencies near 0 or the Nyquist frequency).

An examination of the root locations derived from 3400
frames of LPC analysis data showed that 76% of the roots
were of magnitude greater than 0.85; 64% greater than 0.90;
and 41% greater than 0.95. Thus, for data derived from the
LPC analysis of speech, the errors incurred in determining
formant frequencies and bandwidths by using (1) and (2) rather
than (3) and (4) are not significant.

We emphasize that (3) and (4) correspond to the formant
frequency and bandwidth for a single second-order factor of
the prediction polynomial A(z), but that interactions among
adjacent roots produce an overall response in which resonance
peaks are shifted and 3-dB bandwidth values undergo major
changes. For this reason, it is unrealistic to demand too high a
degree of accuracy in the determination of formant frequencies
and their corresponding bandwidths.

B. Algorithm Overview

The method described in this section permits the direct
computation of the number of roots of a polynomial P(z) = 0
that lie within any closed curve. We shall concentrate on the
case where the polynomial P(z) is the predictor polynomial
obtained from LPC analysis of a speech waveform. In one
application we will indicate how the method can be used to
determine the exact number of formants in a given frequency
range and, in a second, we extend the method to calculate the
locations of all formants determined by the LPC analysis.

In both applications, the closed curves of interest are the
boundaries of sectors of the unit circle consisting of rays at
angles ¢, and §;, with 0 < 6, < 6, < =, and the arc of
the circle. Since formants correspond to conjugate pairs of
complex roots, only sectors in the upper half of the unit circle
need to be considered.

If the information of interest is the number of formants
in the selected frequency range, then the algorithm that we
shall describe provides the answer directly. However, the
information most frequently required is a list of all formant
frequencies for the given analysis frame. In this case, the
technique is first used to isolate each single root within a sector

and then, using the bisection method, the formant is obtained
to a prescribed level of accuracy. It should be emphasized that
the ability to specify a relatively coarse formant resolution is
a significant advantage, and should be contrasted to standard
root-finding techniques where each complex root pair must be
estimated accurately in order to carry out the deflation of the
polynomial prior to the extraction of the next pair of roots.

C. Theoretical Background

The method presented in this paper is based on a number
of concepts from the theory of complex variables. Recall that
for any complex number z we have the polar representation
z = |z]e?® = |2[e/*8>, The function argz is multivalued
in z, each value differing by a multiple of 27. An important
quantity with regard to this article is the change in arg z as
z moves along a curve I'. We denote this change by [arg 2]r.
If a closed curve T circles the origin n(T) times, it is easy
to see that [arg z]p = 27n(T). The integer n(I") is known as
the winding number of the curve I". Using Cauchy’s integral
formula, n(T") can be expressed as

1 dz
TL(F) = % - ?

An elementary result of complex analysis can be used to
express the number of zeros enclosed by the closed curve
T, counting multiplicity, of the analytic function f (2) as the
contour integral

1 !
1 [r@,,
2ri Jp f(2)
Making the transformation w = f(z), it is clear that

L (), 1
% T f(Z) dz = 27 £(D) w ’

Hence, the number of zeros of the function f(z) enclosed by
the curve I' is the number of times that the curve f(T") circles
the origin, that is, n(f(I')) the winding number of f(I'). For
more details, see [5].

In our case f(z) = P(z), the polynomial obtained from
the LPC analysis and I" is the perimeter of a sector of the
unit circle. Fig. 1 illustrates both I" and P(T") for two different
sectors containing one and two roots, respectively. In Fig. 1(a),
P(T') circles the origin once indicating that one root of P(z)
lies within the corresponding sector. Fig. 1(b) illustrates the
case where the sector contains two roots. Hence, the problem
of determining the number of roots in a sector I of the unit
circle has been reduced to determining the number of times
that the curve P(T') circles the origin. The method described
in the next section was motivated by an algorithm given in [5].

dw

D. Numerical Implementation

Given a predictor polynomial P(z) and a closed curve
T consisting of a sector of the unit circle determined by
rays at angles 0 < 6; < 6, < =, the winding number
can be obtained numerically by parameterizing the curve
[(€) : 0 < € < 1 and choosing a sequence of points
0<& <6 <2 <& =1 that are sufficiently dense that
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Fig. 1. T and P(T). The two curves I and P(T') are illustrated for two
different cases. (a) one root in the sector bounded by I'. (b) two roots in the
sector bounded by T'.

P(T") can be approximated by P(T")'— the curve consisting of
the sequence of straight line segments joining P(I'(¢;)) and
P(T'(&;41)). The approximation need only be close enough
that the winding number n(P(T")) = n(P(T)’).

For the boundary of a sector bounded by the unit circle and
the rays § = 6, and § = 69, the obvious partitions are as
follows:

0<a; < <ap, =1

0 =06: 2 =ae’, <
<o Kby =1

. — 12
0=02.zi—bie] 2,

arc 1 z; = 61[914‘0&(92—91)],

In order to ensure that the sequence {z;} is sufficiently
dense, the following criterion is used. First, the complex plane
is partitioned into the octants:

Cy = {zlk% <arg(z) < (k+ 1)%}, fork =01, 7.

The parameterization of the ray involves the selection of an
initial partition of each [0, 1] interval and a refinement of the
partition so that the values P(z;) and P(z;4;) lie in adjacent
octants. Although it is impossible to ensure that no complete
circles about the origin take place undetected between 2; and
z;41, it is clear that such an event can be prevented if enough
points are chosen for the original partitions of the [0, 1]
intervals.

Once sufficiently fine partitions of the three curves that
constitute the sector boundary have been obtained, the esti-
mated winding number of P(I') (and hence the number of
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roots enclosed by the curve) is calculated by recording the
two values:

N, = the number of transitions from region
C to region Cy

N_ = the number of transitions from region
Cy to region C.

as the curve is traversed in a counter clockwise direction. The
estimate of n(P(T')) is the difference n(P(I')’) = N, — N_.

The efficiency of the algorithm can be improved dramat-
ically by using an analytic estimate for the change in argz
along the arc. The modification is based on the observation
that

P(z)=2"+ am-12™" 4+t a1z+ap = 2™

when |z| is large. Therefore, on an arc of radius R >> 1 as
arg z goes from 6 to 02, P(z) goes from

P(Re?%) = R™eI™% to P(Re?%) = R™eI™02
and the change in argument can be calculated directly as

Aarg = m(6s — 61). @)

Hence, by replacing the arc with radius R = 1 by one with
large radius, it is possible to avoid all polynomial evaluations
on the arc. It should be noted that, since all of the roots for a
stable filter must lie within the unit circle, the replacement of
an arc unit radius by one at larger radius does not affect the
root count for the sector.

Since much of the “circling” of the origin by the curve P(I")
takes place on the arc, this analytic estimate given by (7) saves
a large number of polynomial evaluations. The only drawback
is that the use of an arc of radius R > 1 requires that the
parameterization of each of the rays be extended out to that
radius as well. In practice we have found that an arc of radius
R = 2 serves very well. As all roots of P(z) lie within the
unit circle, few polynomial evaluations are needed to extend
the partition from R = 1 to R = 2.

Since only the rays need be processed numerically, the
algorithm can be formulated to allow the separate processing
of each ray. This is done by constructing a function N(#) with
the property that the number of roots in the sector bounded by
the rays 6, and 65, with 6; < 5, is given by N(6,) — N(62).

To define N(f) we assume that a ray has been chosen at
angle 6 and that a parameterisation for this ray is given in
terms of the parameter ¢. For any real value ¢ with ¢ > 0,
let C(t) denote the region containing the point P(te’®). If
t;,i =0toi = M is a partition of the ray, we let p(¢;,t;41)
denote the number of octants (modulo 8) between C(t;) and
C(t;41). The definition of N(6) then proceeds as follows.

1) Starting with the initial partition of the interval [0, 2]
given by [0, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0], refine the
partition to a sequence [tg,%1, - - -, tpr] with the property
that p(¢;,t;+1) < 1. The partition is refined by bisecting
the interval on which p > 1.

2) For the sequence {t;}, let N1(f) = N, — N_ as the ray
is traversed from tg to .
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TABLE I
AN EXAMPLE OF A PARTITION OF P(T'). THE VALUES OF {t;, C(?;)} ARE GIVEN FOR TWO RAYS CORRESPONDING TO THE
SECTOR FROM 420 T0 1890 Hz. P(z) Is A TENTH-ORDER LINEAR PREDICTION POLYNOMIAL DERIVED FROM SPEECH DATA

On the Ray 6, (F = 420 Hz)

t; 0.0 0.2 0.4 0.438 0.441 0.444 0.8 0.9 1.0 1.063 1.125 1.5 2.0
C(T) 0 7 6 7 0 1 0 7 6 5 4 3
On the Ray 62 (F = 1840 Hz)
t; 0.0 0.1 0.2 04 0.6 0.863 0.872 0..875 0.9 1.0 2.0
C(T) O 7 6 5 4 3 2 1 0 0
3) Define N(6) = N1(6) + [m8/2x], where [ ] denotes [1ow
the greatest integer function.
For the sector bounded by the rays corresponding to 6,
and 63,n(P(T)) is the sum of Ny — N_ on the rays B
and arc which form the boundary. On the ray given by 100 = a 1000
61, Ny — N_ = N;y(6;). Since the ray 6, is traversed from ¢,
to to, N. — N_ = —N;(62). From (7), the analytic estimate k
of the contribution from the arc is
L-1000
Aarg  m(fz - 0:1)
er | 2r @
Since we are interested only in the number times that the
origin is circled, we have
"

n(P(TY) = Na(6) = Na(8s) + H%H ®

For any two real numbers a > b > 0,[a — b] = [a] — [b],
hence we have

n(P(T)) = Ni(61) — N1(62)

Bl
= N(61) — N(62).

At this point it is worth emphasizing that the contribution to
n(P(I')’) from each of the two rays has been isolated.

As an illustration, consider the case of a sector defined by
61 = 0.26389 and #; = 1.18752 (corresponding to formant
frequencies 420 and 1890 Hz, respectively for data sampled at
10 kHz). The partitions generated for a particular 10th order
linear prediction polynomial along the two rays are given in
Table 1. Fig. 2 shows P(T") and the points '(&;).

For the ray 6,, there are two transitions from octant 0 to
octant 7 and 1 transition from octant 7 to octant 0 so N1(6;) =
1-2=-1,m8,/2r = 0.42 and N(6;) = 1. — [0.42] = 1.
Similarly, for the ray 62, there are two transitions from octant
0 to octant 7 and no transitions from octant 7 to octant 0 so
N1(02) = —2,m02/27r = 1.89, and N(az) =-2-1=3.
Hence, the number of roots in this sector is

n(P(T)) = n(P(T)') = N(61) — N(62)
=-1-(3)=2.

(b)

Fig. 2. P(T') for a particular tenth-order polynomial. (a) The entire
curve P(T') curve is given with —1000 < Re(P(z)) < 1000 and
—1000 < Im(P(z)) < 1000. (b) A blow-up of the curve P(I') near the
origin is shown. The numbers on the two curves correspond to those given
in Table L

III. TEST RESULTS

It is worthwhile at this point to examine the computational
considerations involved in using the method outlined in Sec-
tion II-D to determine the number of formants in a given range
of frequencies. The fundamental operation is the evaluation of
the polynomial P(z) at a sequence of points on the sector
boundary. The procedure is made particularly attractive by the
fact that P(z) need only be calculated accurately enough to
place it in the correct octant Cy. In fact, the magnitude of
P(z) is of no consequence. Even an error in P(z) that places
it in the wrong octant will only result in an error if N_ or
N, is affected. The test results described in Section III-A,
indicate that the average number of polynomial evaluations
required per sector is approximately 15 so the computational
demands of the algorithm are low in operation count and each
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evaluation does not require a very high level of numerical
precision. These computational features of the algorithm make
it well suited for implementation in fixed-point arithmetic on
any of a number of widely used specialized DSP chips. The
results obtained from one such implementation on a Texas
Instrument TMS320C25 DSP chip are given below.

It must be emphasized that the algorithm presented above
is not well suited as a general method of finding roots of
polynomials. It is easy to see that the number of polynomial
evaluations will be large whenever multiple roots are located
within a small sector. However, for polynomials obtained from
LPC analysis the following sections show that the method
works well.

A. Formant Estimation

The data used to test the algorithm described in Section
II-D were obtained through the pitch synchronous analysis of
speech data from a number of speakers. A total of 1613 frames
of data were used consisting of seven utterances recorded
by six different speakers. The data used were sampled at
10 kHz and stored in a 12-bit data format. For the seven
utterances, three were analyzed using the covariance technique
and four using autocorrelation. The data in four cases was pre-
emphasized and in the other three it was not. For five of the
analyses, a window was applied and in the remaining two
there was no windowing. In all cases the LPC filter order was
10. The data represents a mixture of the results that would
have been obtained through a typical application of LPC data
analysis.

The algorithm as described in Section II-D can be used
directly to determine the number of formants in any specified
frequency range. In addition, by using the bisection technique,
formant frequencies can be estimated to any prescribed level
of accuracy. An implementation of the algorithm in Fortran
using single precision arithmetic was used to test the accuracy
of the method both to determine the number of formants in a
given frequency range and to locate formant frequencies to a
prescribed accuracy. In each case, the results were compared to
the formant frequencies obtained by using a double-precision
implementation of Muller’s method [11] with deflation to
determine roots of the LPC polynomials for each of the 1613
frames of test data.

To test the ability of the algorithm to estimate the number of
formants in a specified frequency range, the test data described
above was processed repeatedly using randomly generated
formant ranges and the number of formants determined by the
algorithm to lie in each range was compared to the number
obtained by using root finding. Statistics relating to the number
of polynomial evaluations required for each application of the
algorithm were also gathered.

In more than 170 000 random trials, the algorithm produced
only 10 errors in the estimated number of formants. The
average number of polynomial evaluations per trial was 14.78
indicating a very low computational load for the algorithm.
It should be noted that, of the 10 errors that occurred, the
location of the formant that caused the error was within 1 Hz
(0.000628 rad) of a sector boundary in six cases and within 5
Hz (0.00314 rad) in all 10 cases.
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The same Fortran implementation was used in conjunction
with the bisection technique to determine all formants for
each data frame. Here, the first step is to determine a sector
bounded by two rays #; and 62(6; < 02) such that the sector
contains exactly one root. This means that N(6;) = N(62)+1.
Hence, the sub-sector containing the root can be obtained
by comparing N((f; + 62)/2) with N(6;) and N(82). A
significant advantage of this approach over root finding is the
ability to halt the bisection at any point when the required
accuracy has been achieved.

The frequency range, 1504500 Hz, which was exam-
ined encompasses all generally prescribed formant frequency
ranges for 10-kHz data (see [8], [9], and [1]). Bisection was
carried out until all formants were located to within 1 Hz.

The 1613 test frames contained 6820 formants for an
average of 4.23 formants per frame. Only five of the 6820
formants were not located to within the prescribed accuracy.
Of these errors, three were between 5 and 10 Hz, and two
were between 10 and 20 Hz. The average error was 0.553 Hz
and the average number of polynomial evaluations per frame
was 537.9 (126.22 evaluations per formant) indicating that the
algorithm is very efficient.

The algorithm was coded in assembly language to run on
a 10-MHz TMS320C25 signal processor. Again, bisection
was used to locate formants within 1 Hz and the average
number of evaluations per frame was 530.2 For the fixed-
point implementation, the average error was 1.13 Hz with an
error rate that decreases as follows: 215 formant errors (3.15%)
greater than 5 Hz; 83 errors (1.22%) greater than 10 Hz; and
29 errors (0.43%) greater than 20 Hz.

The execution speed of the algorithm depends on the
formant range selected and on the required resolution. Test
speeds varied from 52 frames per second using a 50-4950 Hz
range and 1 Hz resolution to 161 frames per second with a
range of 1000-3000 Hz and 10 Hz accuracy.

Parsons [10] uses a specific eighth-order polynomial with
formants and bandwidths (assuming a sampling frequency of
10 kHz) at 475 Hz (Bandwidth = 25 Hz), 1850 Hz (40 Hz),
1950 (50 Hz) and 3150 Hz (100 Hz) to examine methods
for resolving closely spaced formants. For this example, the
second and third formants cannot be resolved by peak picking
but may be obtained using the pole-enhancement methods
proposed by McCandless [8] and Kang and Coulter [6]. Using
the algorithm outlined in this paper, the four formants were
located with a maximum error of 0.5 Hz. A total of 548
polynomial evaluations was required.

B. Bandwidth Estimation

While many applications require only estimates of formant
locations, some require, in addition, estimates of the corre-
sponding 3-dB bandwidths. For a complex root z = rqe’%
of the LPC polynomial, the bandwidth estimate provided by
(2) requires the determination of the root modulus 7¢. The
obvious approach is to conduct a line search along the ray
0 = 6, to determine the radius at which f(r) = |P(re’%)]
is minimized. This method was applied to the same data that
was analyzed in the last section.
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The bandwidth estimation algorithm was implemented in
Fortran with single precision floating point arithmetic. Formant
estimates were obtained to the same 1-Hz precision as were
the results of the previous tests. Bandwidths were determined
for all 6820 formants by using a simple line search [3].

For the data that was processed, the behaviour of the
function f(r) was characterized by two patterns. In most
instances there was a single minimum but, for some of the
data, there were two minima, one near 7 = 1 and the other
closer to r = 0. To locate the global minima of f(r) the
interval [0, 1] was divided in three parts and the above line
search was applied to each part.

The line search required an average of 45 function eval-
uations per formant to estimate the root modulus and hence
the formant bandwidth. The average error was 0.95 Hz. These
results indicate that a line search provides a good bandwidth
estimate using an algorithm that is easily implemented in
fixed point arithmetic and increases the computational load
by approximately 35% following formant estimation.

For this data an average of about 175 polynomial evalu-
ations were required to locate a formant and determine its
bandwidth. The 6820 formants and bandwidths can be found
using Muller’s method to find all the roots of each polynomial
at a cost of about 45 polynomial evaluations per formant.
Although Muller’s method requires about one quarter the
number of polynomial evaluations, it must be implemented
in relatively high precision in order to carry out the deflation
of the polynomial.

IV. CONCLUSIONS

In this paper, we have discussed the estimation of formant
frequencies and bandwidths using the roots of the predic-
tion polynomial derived from linear prediction analysis of a
speech waveform. The relationship between root location and
formant/bandwidth estimates (3) and (4) was presented and
compared with the formula most frequently cited in the paper,
(1) and (2). The difference was shown to be small for roots
near the unit circle. An examination of results derived from
actual speech data indicate that a large percentage of the roots
associated with formants are located near to the unit circle.
Hence, we conclude that it is justified to use (1) and (2) in
practice.

In addition, a new technique of determining formant loca-
tions was presented. The method determines the number of
roots in any given sector of the unit circle by numerically
estimating the winding number n(P(I")) where P(z) is the
prediction polynomial and I' is the boundary of the sector.
In contrast to most root finding methods, there is no need to
determine each root accurately. The ability to specify a coarse
tolerance in resolving formant locations makes the algorithm
particularly well suited for real-time processing of speech
data. The algorithm is computationally efficient requiring
an average of approximately 15 polynomial evaluations per
sector for data derived from a tenth-order LPC analysis. As
well, the computations involved can be easily implemented in
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fixed point arithmetic with little loss in accuracy, allowing
high-speed implementations of the algorithm on standard
fixed-point DSP hardware.
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