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Definition of Random Process

 Consider we want to determine the probability of 

temperature at 12 pm in certain city

 The RV is  X = “temperature at 12 pm in city A”

 We have to record the data for many days to get pX(x)

 However, the temperature is a function of time

 The temperature varies between time to time and days to days

 The RV = “temperature in city A” is function of time

 An RV that is a function of time (or any other variable) is 

called a random process or stochastic process



Definition of Random Process

 The collection of all 

possible waveform is known 

as ensemble of the random 

process x(t)

 A waveform in the 

collection is called a sample 

function

 Sample-function amplitudes 

at some instant are the 

values taken by the RV in 

various trials



Definition of Random Process



Definition of Random Process

 A discrete-time stochastic process is one when the index 

set    is a countable set

 When the index set is continuous, it is called continuous-

time stochastic process

 Example:



Definition of Random Process

 The number of waveforms in an ensemble may be finite

or infinite

 Example of infinite waveform: temperature

 Example of finite waveform: output of binary signal 

generator

 Consider that we will examine the output over the period 0 to 

2T

 We will have only 22 = 4 waveforms



Definition of Random Process

 Note that the randomness occurs to the selection of 

waveforms

 The waveforms (in the ensemble) themselves are 

deterministic

 Example: In the experiment of tossing a coin four times, 

there are 16 possible outcomes. The randomness is which 

of the 16 outcomes will occur in a given trial



Specification of A Random Process

 How to specify random process:

 Analytical

 Experimental

 Analytical: mathematical expression

 Experimental: 

 We need to find some quantitatibe measure

 Random process can be seen as collection of infinite, 

independent number of RV 

 We need pdf



Autocorrelation

 The autocorrelation function is defined as
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Example

A random process X(t) is defined by

where Y is a discrete random variable with P(Y = 0) = ½ 

and P(Y = π/2) = ½. Find μX(1) and RXX(0,1)

Solution:

X(1) is a random variables with values             and

With probability ½ each
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Example (Cont’d)

Thus,

The autocorrelation will be searched for t = 0 and t = 1

The values of P[X(0) = 0, X(1) = 0] = ½

P[X(0) = 2, X(1) = 2] = ½

Thus, the autocorrelation is
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Classification of Random Process

 Stationary and Nonstationary random process

 A random process whose statistical characteristics do not 

change with time

 Random process X(t) and X(t+ε) have the same statistical 

properties

 In other words, time translation of a sample function results in 

another sample function of the random process having the 

same probability

 Example of stationary random process: noise

 If the statistical characteristics depend on time, it is called 

nonstationary random process

 Example of nonstationary random process: temperature



Classification of Random Process

 Wide-sense stationary process (WSS)

 The mean and autocorrelation function do not  vary with a 

time shift

 All stationary processes are WSS, but not vice versa
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Classification of Random Process

 Ergodic

 Ensemble averages are equal to time averages of any sample 

function
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Classification of Random Process



Example

 Show that                          , where      and      are 

constants and     is a random variable that is uniformly 

distributed over (0, 2π), is ergodic

Solution:

The ensemble average is

The time average is
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Power Spectral Density of A Random 

Process

 PSD depicts the power spread in frequency domain

 It is easy to get the frequency domain for deterministic 

signal by using Fourier transform

 How to compute the PSD for random signal?

 Random signals are power signals

 Several questions of determining the PSD for random 

process arise:

 We may not be able to describe the sample function 

analytically

 Every sample function may be different from another one

 PSD is defined for stationary (or WSS)



Power Spectral Density of A Random 

Process

 We have to define the PSD of random process as the 

ensemble average of the PSDs of all sample functions

 Suppose that            represents a sample function of a 

random process      . The truncated version of this sample 

function is obtained by multiplying the signals with 

rectangular function 
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Power Spectral Density of A Random 

Process

 The Fourier transform is

 The normalized energy in time interval (-T/2, T/2)
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Power Spectral Density of A Random 

Process

 The mean normalized energy is obtained by taking the 

ensemble average

 The normalized average power is the energy expended 

per unit time
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Power Spectral Density of A Random 

Process

 The definition of PSD is

 So that
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Power Spectral Density of A Random 

Process

 Wiener-Khintchine Theorem

When            is a wide-sense stationary process, the PSD can be obtained 
from the Fourier transform of the autocorrelation function

 x t

   x xR S f 

      2j ft

x x xS f F R f R e d 






    

     1 2j ft

x x xR F S f S f e df






    



Power Spectral Density of A Random 

Process

 Properties of PSD

PSD is always real

Let               , we have

Therefore, the PSD is even function when        is real 
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Power Spectral Density of A Random 

Process

 Properties of PSD (Cont’d)

When        is wide-sense stationary  x t
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White Noise Processes

 A random process       is said to be a white noise process 

if the PSD is constant over all frequencies

where      is a positive constant

 The autocorrelation function for the white noise process 

is obtained by taking the inverse Fourier transform
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Example

 Determine the autocorrelation and the power of a low-

pass random process with white noise PSD

Solution:

From the figure we have 
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Example (Cont’d)

We calculate the power

We can also calculate the power by using integral
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The Gaussian Random Process

 A random process        is said to be Gaussian if the 

random variables                                          have an N-

dimensional Gaussian PDF for any N and any 

 The N-dimensional Gaussian PDF can be written 

compactly by using matrix notation

 Let x be the column vector denoting the N random 

variables
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The Gaussian Random Process

 The N-dimensional Gaussian PDF is

where the mean vector is
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The Gaussian Random Process

 The covariance matrix C is defined by

where

 For WSS random process 
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The Gaussian Random Process

 The elements of the covariance matrix is then

 If     happen to be uncorrelated                 for        the 

covariance matrix becomes

where 
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The Gaussian Random Process

 Some properties of Gaussian processes:

 depends only on C and on m, which is another way of 

saying that the N-dimensional Gaussian PDF is completely 

specified by the first- and second-order moments

 Since the                  are jointly Gaussian, the              are 

individually Gaussian

 When C is a diagonal matrix, the random variables are 

uncorrelated

 A linear transformation of a set of Gaussian random variables 

produces another set of Gaussian random variables

 A WSS Gaussian process is also strict-sense stationary
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The Gaussian Random Process

 Theorem:

If the input to a linear system is a Gaussian random 

process, the system output is also a Gaussian process



Bandpass Random Process

 Bandpass waveform can be represented by

or

and

where
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Bandpass Random Process

 The spectrum of bandpass waveform is

 In communication systems, the random processes may be 

random signals, noise, or signals corrupted by noise

 If       is Gaussian process,       ,       , and       are Gaussian 

processes since they are linear functions of 

 But,        and         are not Gaussian because they are 

nonlinear functions of 
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Bandpass Random Process

 Theorem:

If       and      are jointly WSS processes, the real bandpass 

process                                                     will be WSS if 

and only if 
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Bandpass Random Process

 Theorem:

If       and      are jointly WSS processes, the real bandpass 

process                                                                     

will be WSS when     is an independent random variable 

uniformly distributed over (0,2π) 
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