
Chapter 7

Random Processes

7.1 Correlation in Random Variables

A random variable X takes on numerical values as the result of an experi-
ment. Suppose that the experiment also produces another random variable,
Y. What can we say about the relationship between X and Y ?.
One of the best ways to visualize the possible relationship is to plot the

(X,Y ) pair that is produced by several trials of the experiment. An example
of correlated samples is shown in Figure 7.1. The points fall within a some-
what elliptical contour, slanting downward, and centered at approximately
(4,0). The points were created with a random number generator using a
correlation coefficient of ρ = −0.5, E[X] = 4, E[Y ] = 0. The mean values
are the coordinates of the cluster center. The negative correlation coefficient
indicates that an increase in X above its mean value generally corresponds
to a decrease in Y below its mean value. This tendency makes it possible to
make predictions about the value that one variable will take given the value
of the other, something which can be useful in many settings.
The joint behavior of X and Y is fully captured in the joint probability

distribution. If the random variables are continuous then it is appropriate to
use a probability density function, fXY (x, y). We will presume that the pdf
is known or can be estimated. Computation of the usual expected values is
then straightforward.

E[XmY n] =

ZZ ∞

−∞
xmynfXY (x, y)dxdy (7.1)
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Figure 7.1: Scatter plot of random variablesX and Y. These random variables
have a correlation of ρ = −0.5.

7.1.1 Covariance Function

The covariance function is a number that measures the common variation of
X and Y. It is defined as

cov(X,Y ) = E[(X −E[X])(Y −E[Y ])] (7.2)

= E[XY ]−E[X]E[Y ] (7.3)

The covariance is determined by the difference in E[XY ] and E[X]E[Y ]. If
X and Y were statistically independent then E[XY ] would equal E[X]E[Y ]
and the covariance would be zero. Hence, the covariance, as its name im-
plies, measures the common variation. The covariance can be normalized to
produce what is known as the correlation coefficient, ρ.

ρ =
cov(X,Y)p
var(X)var(Y)

(7.4)

The correlation coefficient is bounded by−1 ≤ ρ ≤ 1. It will have value ρ = 0
when the covariance is zero and value ρ = ±1 when X and Y are perfectly
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correlated or anti-correlated.

7.1.2 Autocorrelation Function

The autocorrelation1 function is very similar to the covariance function. It
is defined as

R(X,Y ) = E[XY ] = cov(X,Y ) +E[X]E[Y ] (7.5)

It retains the mean values in the calculation of the value. The random
variables are orthogonal if R(X,Y ) = 0.

7.1.3 Joint Normal Distribution

If X and Y have a joint normal distribution then the probability density
function is

fXY (x, y) =
1

2πσxσy
p
1− ρ2
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(7.6)

The contours of equal probability are ellipses, as shown in Figure 7.2. The
probability changes much more rapidly along the minor axis of the ellipses
than along the major axes. The orientation of the elliptical contours is along
the line y = x if ρ > 0 and along the line y = −x if ρ < 0. The contours are
a circle, and the variables are uncorrelated, if ρ = 0. The center of the ellipse
is
¡
µx, µy

¢
.

7.2 Linear Estimation

It is often the case that one would like to estimate or predict the value of
one random variable based on an observation of the other. If the random
variables are correlated then this should yield a better result, on the average,
than just guessing. We will see this is indeed the case.

1Be careful to not confuse the term “autocorrelation function” with “correlation coef-
ficient”.
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Figure 7.2: The normal probability distribution shown as a surface plot on
the left and a contour plot in the center. A number of sample points are
shown overlaid on the contour plot in the right frame. The linear predictor
line is drawn in the right frame. ρ = −0.7, σx = σy = 1, µx = µy = 0.

The task is to construct a rule for the prediction of Y based on an obser-
vation of X. We will call the prediction Ŷ , and compute its value with the
simple linear equation

Ŷ = aX + b (7.7)

where a and b are parameters to be chosen to provide the best results. We
are encouraged to select this linear rule when we note that the sample points
tend to fall about a sloping line. We would expect a to correspond to the
slope and b to the intercept.
To find a means of calculating the coefficients from a set of sample points,

construct the predictor error

ε = E[(Y − Ŷ )2] (7.8)

We want to choose a and b to minimize ε. Therefore, compute the appropriate
derivatives and set them to zero.

∂ε

∂a
= −2E[(Y − Ŷ )∂Ŷ

∂a
] = 0 (7.9)

∂ε

∂b
= −2E[(Y − Ŷ )∂Ŷ

∂b
] = 0 (7.10)
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upon substitution of Ŷ = aX + b and rearrangement we get the pair of
equations

E[XY ] = aE[X2] + bE[X] (7.11)

E[Y ] = aE[X] + b (7.12)

These can be solved for a and b in terms of the expected values. The expected
values can be themselves estimated from the sample set.

a =
cov(X,Y)

var(X)
(7.13)

b = E[Y ]− cov(X,Y)
var(X)

E[X] (7.14)

The prediction error with these parameter values is

ε = (1− ρ2)var(Y) (7.15)

When the correlation coefficient ρ = ±1 the error is zero, meaning that
perfect prediction can be made. When ρ = 0 the variance in the prediction
is as large as the variation in Y, and the predictor is of no help at all. For
intermediate values of ρ, whether positive or negative, the predictor reduces
the error.

7.3 Random Processes

We have seen that a random variable X is a rule which assigns a number to
every outcome e of an experiment. The random variable is a function X(e)
that maps the set of experiment outcomes to the set of numbers. A random
process is a rule that maps every outcome e of an experiment to a function
X(t, e). A random process is usually conceived of as a function of time, but
there is no reason to not consider random processes that are functions of other
independent variables, such as spatial coordinates. The function X(u, v, e)
would be a function whose value depended on the location (u, v) and the
outcome e, and could be used in representing random variations in an image.
In the following we will deal with one-dimensional random processes to

develop a number of basic concepts. Having them in hand, we can then go
on to multiple dimensions.
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The domain of e is the set of outcomes of the experiment. We assume
that a probability distribution is known for this set. The domain of t is a
set, T , of real numbers. If T is the real axis then X(t, e) is a continuous-time
random process, and if T is the set of integers then X(t, e) is a discrete-time
random process2.
We can make the following statements about the random process:

1. It is a family of functions, X(t, e). Imagine a giant strip chart record-
ing in which each pen is identified with a different e. This family of
functions is traditionally called an ensemble.

2. A single function X(t, ek) is selected by the outcome ek. This is just
a time function that we could call Xk(t). Different outcomes give us
different time functions.

3. If t is fixed, say t = t1, then X(t1, e) is a random variable. Its value
depends on the outcome e.

4. If both t and e are given then X(t, e) is just a number.

The particular interpretation must be understood from the context of the
problem.

7.3.1 Averages

BecauseX(t1, e) is a random variable that represents the set of samples across
the ensemble at time t1, we can make use of all of the concepts that have
been developed for random variables.

Moments

For example, if it has a probability density function3 fX(x; t1) then the mo-
ments are

mn(t1) = E[X
n(t1)] =

Z ∞

−∞
xnfX (x; t1) dx (7.16)

2We will often suppress the display of the variable e and write X(t) for a continuous-
time RP and X[n] or Xn for a discrete-time RP. Always go back to the basic definition
when you need to be sure that an idea is clear.

3We will do the development in terms of random variables in which X has a continuous
range of values. If X has a discrete set of possible values, then the integrals are replaced
by sums, etc.
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We need the notation fX(x; t1) because it is very possible that the probability
density will depend upon the time the samples are taken. The mean value is
µX = m1, which can be a function of time. The central moments are

E[(X(t1)− µX(t1))n] =
Z ∞

−∞
(x− µX(t1))n fX (x; t1) dx (7.17)

Correlation

The numbers X(t1, e) and X(t2, e) are samples from the same time func-
tion at different times. This is a pair of random variables which we could
write conveniently in terms of a doublet (X1, X2). It is described by a joint
probability density function4 f(x1, x2; t1, t2). The notation includes the times
because the result surely can depend on when the samples are taken.
From the joint density function one can compute the marginal densities,

conditional probabilities and other quantities that may be of interest. A mea-
sure of particular interest is the correlation and covariance. The covariance
is5

C(t1, t2) = E[(X1−µ1)(X2−µ2)] =
ZZ ∞

−∞
(x1−µ1)(x2−µ2)f(x1, x2; t1, t2)dx1dx2

(7.18)
The correlation function6 is

R(t1, t2) = E[X1X2] =

ZZ ∞

−∞
x1x2f(x1, x2; t1, t2)dx1dx2 (7.19)

C(t1, t2) = R(t1, t2)− µ1µ2 (7.20)

Note that both the covariance and correlation functions are symmetric in t1
and t2. C(t1, t2) = C(t2, t1) and R(t1, t2) = R(t2, t1)
The average power in the process at time t is represented by

R(t, t) = E[X2(t)] (7.21)

and C(t, t) represents the power in the fluctuation about the mean value.
4Here we will not use subscripts on the function, as in fX1X2(x1, x2; t1, t2), to avoid

becoming overly baroque. The subscripts are implied by the argument. Here we see a
reason why this is such a common practice in probability publications.

5Although not explicitly shown, the mean values can be functions of t1 and t2.
6This correlation function is called autocorrelation when it is necessary to clearly indi-

cate that the variable is being correlated with itself rather than another variable, which is
called cross-correlation.
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Example 7.3.1 Poisson Process Let N(t1, t2) be the number of events
produced by a Poisson process in the interval (t1, t2) when the average rate is
λ events per second. The probability that N = n is

P [N = n] =
(λτ)n e−λτ

n!
(7.22)

where τ = t2 − t1. Then E[N(t1, t2)] = λτ . A random process can be defined
as the number of events in the interval (0, t). Thus, X(t) = N(0, t). The
expected number of events in t is E[X(t)] = λt. For a Poisson distribution
we know that the variance is

E[(X(t)− λt)2] = E[X2(t)]− (λt)2 = λt (7.23)

from which we readily find that the “average power” in the function X(t) is

E[X2(t)] = λt+ λ2t2 (7.24)

A graph of X(t) would show a function fluctuating about an average trend
line with a slope λ. An example is shown in Figure 7.3.
Finding the correlation R(t1, t2) = E[X(t1)X(t2)] has to solve the problem
that X(t1) and X (t2) have overlapping ranges. If t2 > t1 then X(t1) and
X(t2)−X (t1) are statistically independent because the ranges do not overlap.
Then expand the identity

E [X(t1)X(t2)] = E[X(t1) (X (t1) +X(t2)−X (t1))]
= E[X2(t1)] +E[(X (t1) (X(t2)−X (t1))] (7.25)

E[X(t1) (X(t2)−X (t1))] = E[X(t1)]E[X(t2)−X (t1)] = λt1λ (t2 − t1)
(7.26)

Combining Equations 7.24, 7.25 and 7.26 we now have

R(t1,t2) = λt1 + λ2t21 + λt1λ (t2 − t1) = λt1 + λ2t1t2 for t2 ≥ t1 (7.27)

Because R(t1,t2) = R(t2,t1) we can get the result for the case t1 ≥ t2 by
interchanging variables. The final result is

R(t1,t2) =

½
λt2 + λ2t1t2, t1 ≥ t2
λt1 + λ2t1t2, t2 ≥ t1

(7.28)
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Figure 7.3: An ensemble of 20 Poisson random processes. The rate is λ = 5
so that in t = 10 seconds one would expect λt = 50 events. Note that the
variance about the trend line increases with time.

The Poisson process provides an illustration of the content of a photon
detector over time. If one had an array of twenty photon detectors, then the
photon count in the individual detectors may be like the individual tracks in
Figure 7.3. For this process the correlation function is clearly a function of
both t1 and t2. In many instances the result is a function only of |t2 − t1| .
We will see an example of this below.

Example 7.3.2 Telegraph Signal Consider a random process that has the
following properties: (1) X(t) = ±1, (2) the number of zero crossings in the
interval (0, t) is described by a Poisson process, and (3) X(0) = 1. We will
remove the third condition later in the example, but it is helpful in setting
up the result. We first find the expected value at time t. Let N(t) equal the
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Figure 7.4: An example of a telegraph signal. The zero cossings are described
by a Poisson process, with an average rate of λ = 1 per second.

number of zero crossings in the interval (0, t). with t ≥ 0. Then

P (N = n) =
(λt)n e−λt

n!
(7.29)

P [X(t) = 1] = P [N = even number]

= e−λt
"
1 +

(λt)2

2!
+
(λt)4

4!
+ · · ·

#
= e−λt coshλt (7.30)



7.3. RANDOM PROCESSES 133

P [X(t) = −1] = P [N = odd number]

= e−λt
"
λt+

(λt)3

3!
+
(λt)5

5!
+ · · ·

#
= e−λt sinhλt (7.31)

The expected value is

E[X(t)] = e−λt coshλt− e−λt sinhλt = e−2λt (7.32)

Note that the expected value decays toward x = 0 for large t. That is be-
cause the influence of knowing the value at t = 0 decays exponentially. The
autocorrelation function is computed by finding R(t1, t2) = E [X (t1)X (t2)] .
Let x0 = −1 and x1 = 1 denote the two values that X can attain. For the
moment assume that t2 ≥ t1. Then

R(t1, t2) =
1X
j=0

1X
k=0

xjxkP [X(t1) = xk]P [X(t2) = xj|X(t1) = xk] (7.33)

The first term in each product is given above. To find the conditional proba-
bilities we take note of the fact that the number of sign changes in t2 − t1 is
a Poisson process. Hence, in a manner that is similar to the analysis above,

P [X(t2) = 1|X(t1) = 1] = P [X(t2) = −1|X(t1) = −1] = e−λ(t2−t1) coshλ(t2−t1)
(7.34)

P [X(t2) = −1|X(t1) = 1] = P [X(t2) = 1|X(t1) = −1] = e−λ(t2−t1) sinhλ(t2−t1)
(7.35)

Hence

R(t1, t2) = e−λt1 coshλt1
£
e−λ(t2−t1) coshλ(t2 − t1)− e−λ(t2−t1) sinhλ(t2 − t1)

¤
−e−λt1 sinhλt1

£
e−λ(t2−t1) coshλ(t2 − t1)− e−λ(t2−t1) sinhλ(t2 − t1)

¤
After some algebra this reduces to

R(t1, t2) = e
−λ(t2−t1) for t2 ≥ t1 (7.36)

A parallel analysis applies to the case t2 ≤ t1, so that

R(t1, t2) = e
−λ|t2−t1| (7.37)
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The autocorrelation for the telegraph signal depends only upon the time dif-
ference, not the location of the time interval. We will see soon that this is a
very important characteristic of stationary random processes. We can now
remove condition (3) on the telegraph process. Let Y (t) = AX(t) where A is
a random variable independent of X that takes on the values ±1 with equal
probability. Then Y (0) will equal ±1 with equal probability, and the telegraph
process will no longer have the restriction of being positive at t = 0. Since A
and X are independent, the autocorrelation for Y (t) is given by

E [Y (t1)Y (t2)] = E[A
2]E [X(t1)X (t2)] = e

−λ|t2−t1| (7.38)

since E[A2] = 1.

7.3.2 Stationary Random Processes

The random telegraph is one example of a process that has at least some
statistics that are independent of time. Random processes whose statistics
do not depend on time are called stationary. In general, random processes
can have joint statistics of any order. If the process is stationary, they are
independent of time shift. We will explain this by building up the description.
The first order statistics are described by the cumulative distribution

function F (x; t). If the process is stationary then the distribution function at
times t = t1 and t = t2 will be identical. An example of a random process
is shown in Figure 7.5. At any particular time, F [x; t] = P [X ≤ x; t] is just
the cumulative distribution function over the random variable X(t). The
distribution function is independent of time for a stationary process. Given
the distribution function, we can compute other first-order statistics such as
the probability density.
The second-order statistics are described by the joint statistics of ran-

dom variables X(t1) and X (t2) . The second-order cumulative distribution
function is

F (x1, x2; t1, t2) = P [X(t1) ≤ x1,X(t2) ≤ x2] (7.39)

from which one may compute the density

f(x1, x2; t1, t2) =
∂2F (x1, x2; t1, t2)

∂x1∂x2
(7.40)

When the process is stationary these functions depend on the time separation
(t2 − t1) but not on the location of the interval.
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Figure 7.5: Several snapshots of sample functions of a random process are
shown. Particular times t = t1 and t = t2 are labeled.

The statistics of a random process can be defined for any order n and any
set of sample times {t1, . . . , tn} . For a stationary process, F [x1, . . . , xn;xt, . . . , xt]
is independent of translatiion through time so long as the relative locations
of the sample times are maintained. If the process is stationary for all values
of n then it is said to be strict-sense stationary.

Wide-sense Stationary Processes

In practice it is not possible to determine the statistics at all orders of n,
although they may be postulated in a model. But we often are particularly
interested in processes that are stationary up to at least order n = 2. Such
processes are called wide-sense stationary (wss). If a process is wss then
its mean, variance, autocorrelation function and other first and second order
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statistical measures are independent of time. We have seen that a Poisson
random process has mean µ(t) = λt, so it is not stationary in any sense.
The telegraph signal has mean µ = 0, variance σ2 = 1 and autocorrelation
function R(t1, t2) = R(τ) = e−λτ where τ = |t2 − t1| . It is a wss process.
When a process is wss it is common practice to not show the variable t in
first-order parameters, to replace t2 − t1 by τ , and to use the notation R(τ)
instead of R(t1, t2). The following is true for the autocorrelation function of
a wss process

R(τ) = E[X(t)X(t+ τ)] (7.41)

for any value of t. Then
R(0) = E[X2] (7.42)

The covariance function is

C(τ) = E[(X(t)− µ) (X(t+ τ)− µ)] = R(τ)− µ2 (7.43)

C(0) = E[(X(t)− µ)2] = σ2 (7.44)

Two random processes X(t) and Y (t) are called jointly wide-sense stationary
if each is wss and their cross correlation depends only on τ = t2 − t1. Then

Rxy(τ) = E[X(t)Y (t+ τ)] (7.45)

is called the cross-correlation function and

Cxy(τ) = Rxy(τ)− µxµy (7.46)

is called the cross-covariance function.

7.3.3 Filtered Random Processes

It is often the case that we need to describe the output of a system when the
input is a random process. This is generally the case with all communication
systems and sensor systems. This is clearly a very large class of systems.
Here we will deal only with linear systems because they lend themselves to
general results. Nonlinear systems must be treated with special analytical
tools on a case-by-case basis.
Let X(t, e) be a random process. For the moment we show the outcome

e of the underlying random experiment that selects a particular function of
time. An operation can be done on the time function to produce an output
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Y (t, e) = L [X(t, e)] . Clearly, Y (t, e) is an ensemble of functions selected by
e, and is a random process. We will now discontinue display of the outcome
e.
Let X1(t) and X2(t) be any two random processes that are permitted

as system inputs and let a1 and a2 be any scalar multipliers. The system
represented by the operation L is linear if

L[a1X1(t) + a2X2(t)] = a1L[X1(t)] + a2L[X2(t)] (7.47)

The coefficients may themselves be random variables without affecting the
definition of linearity. The system is time-invariant if the response to a time-
shifted input is just the time-shifted output.

Y (t+ τ) = L[X(t+ τ)] (7.48)

A time-invariant linear system can be represented by its impulse response,
h(t), so that the output and input are related through the convolution:

Y (t) =

Z ∞

−∞
X(t− s)h(s)ds (7.49)

Mean Value

The following result holds for any linear system, whether or not it is time
invariant and even stationary.

E[LX(t)] = LE[X(t)] = L[µ(t)] (7.50)

When the process is stationary we find µy = L[µx], which is just the response
to a constant of value µx.

Output Autocorrelation

We would like to know the autocorrelation function Ryy(τ) of the output of
a linear system when its input is a wss random process. When the input is
wss and the system is time invariant the output is also wss.
Let us first find the cross-correlation function

Rxy(τ) = E [X(t)Y (t+ τ)]

=

Z ∞

−∞
E [X(t)X(t+ τ − s)]h(s)ds

=

Z ∞

−∞
Rxx(τ − s)h(s)ds (7.51)
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The cross-correlation Rxy(τ) is the convolution of the autocorrelation func-
tion Rxx(τ) with the impulse response of the system, a very important result
in its own right.
Now, multiply through Equation 7.48 by Y (t) and take averages.

Ryy(τ) = LE[X(t+ τ)Y (t)] = LRxy(τ) (7.52)

Applying the shift-invariant linear filter as the operator,

Ryy(τ) =

Z ∞

−∞

Z ∞

−∞
Rxx(τ − s1 + s2)h(s1)h(s2)ds1ds2 (7.53)

Example 7.3.3 Filtering a white noise process White noise is defined
as a stationary process W (t) with the property that the Rw(τ) = σ2wδ(τ).
The process is completely uncorrelated. If the input to a linear tim-invariant
system is X(t) =W (t) then

Rxy(τ) =

Z ∞

−∞
Rxx(τ − s)h(s)ds

=

Z ∞

−∞
σ2wδ(τ − s)h(s)ds

= σ2wh(τ) (7.54)

We can measure the impulse response by finding the cross-correlation between
the input and output when the input is white noise. The autocorrelation
function of the output is

Ryy(τ) =

Z ∞

−∞
σ2wh(τ + s)h(s)ds = σ2wRhh(τ) (7.55)

The mean-squared value of the output is

Ryy(0) = σ2w

Z ∞

−∞
h2(s)ds = σ2wEh (7.56)

where Eh is the “energy” in the impulse response function. These results
indicate how one might construct a random process that has a particular
autocorrelation function of interest. Simply select an impulse response that
has the right properties and use it to filter white noise.
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Figure 7.6: Ensemble of outputs of digital filter with white noise input and
filter equation y[n] = x[n] + 0.9y[n− 1], which represents a low-pass digital
filter.

Example 7.3.4 Discrete Low-pass Filter Let X[n] be a discrete ren-
dom process with autocorrelation function Rxx[m] = E[X[n]X[n + m]] =
σ2xδ(n−m). Consider the random process Y that is represented by the differ-
ence equation

Y [n] = X[n] + aY [n− 1] (7.57)

where a is a constant. This difference equation represents a digital filter with
impulse response

h[n] = anstep(n) (7.58)

Then the cross-correlation function is given by the difference equation

Rxy[m] = E[Y [n]X[n−m]] = σ2xδ(m) + aRxy(m− 1) (7.59)
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This can be solved recursively to find Rxy[m] = amRxy[0]. This function is
bounded if |a| < 1. The impulse response of this filter is h[m] = amstep[m].
The autocorrelation function of the output is

Ryy[m] = σ2x

∞X
n=0

anan+m =
σ2xa

|m|

1− a2 (7.60)

where we use |m| because Ryy(−m) = Ryy(m).

7.3.4 Ergodic Random Process

A practical problem arises when we want to calculate parameters such as
mean or variance of a random process. The definition would require that
we have a large number of examples of the random process and that we
calculate the parameters for different values of t by averaging across the
ensemble. Often we are faced with the situation of having only one member
of the ensemble—that is, one of the time functions. Under what circumstances
is it appropriate to use it to draw conclusions about the whole ensemble? It
is appropriate to use this approach if and only if the process is ergodic.
A random process is ergodic if every member of the process carries with

it the complete statistics of the whole process. Then its ensemble averages
will equal appropriate time averages. Of necessity, an ergodic process must
be stationary, but not all stationary processes are ergodic.
The definition of an ergodic process does not help us much when we need

to determine whether or not a particular process is ergodic. We will proceed
with some examples.

Mean-ergodic Processes

Let X(t, e) be a random process. We know that the mean value, calculated
over the ensemble, is µx(t) = E[X(t, e)]. If the process is stationary then µx
is independent of t, a necessary condition for ergodicity. Suppose that we
have a particular sample function, say X(t, e0). We can calculate its time
average with an operation such as

X̃T (e0) =
1

2T

Z T

−T
X(t, e0)dt (7.61)



7.3. RANDOM PROCESSES 141

The answer is a random variable for any value of T. The mean value of such
measures (computed across the ensemble!) is

E[X̃T (e)] =
1

2T

Z T

−T
E[X(t, e)]dt =

1

2T

Z T

−T
µxdt = µx (7.62)

We expect (hope) that the variation will decrease with increasing T, and
the law of large numbers leads us to expect a decrease in the variance in
proportion to 1/T. Do we also expect that we would get the same result with
a different sample function, say X(t, e1)? If the function is ergodic then we
will measure the same mean value using the time average approach and the
measured mean will converge on µx. A process with this property is called
mean-ergodic.
The covariance of X(t, e) is C(t1, t2) = E[X(t1, e)X(t2, e)] − µ2x. The

random process is mean-ergodic if and only if7

lim
t→∞

1

4T 2

ZZ T

−T
C(t1, C2)dt1dt2 = 0 (7.63)

As a corrolary, a wss process is ergodic if and only if the autocovariance
C (τ) = R (τ)− µ2 is such that

lim
t→∞

1

2T

Z T

−T
C (τ)

µ
1− |τ |

2T

¶
dτ = 0 (7.64)

A sufficient condition for a process to be mean-ergodic is that it be wss andZ ∞

−∞
|C (τ)| dτ <∞ (7.65)

A wss random process is mean-ergodic if the random variables X(t) and
X(t+ τ) are uncorrelated for large τ . This is a condition that does hold for
most physical processes.

Example 7.3.5 Filtered White Noise We have seen in Equation 7.55
that filtered white noise has the autocorrelation function Ryy (τ) = σ2wRhh(τ).
Since the mean value is zero, this is also the autocovariance function. If the
filter is such that

R∞
−∞ |Rhh (τ)| dτ <∞ then the filter output is mean-ergodic.

This is a condition that holds for most filters because the impulse response
declines toward zero for a stable system.

7A. Popoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill,
1984, p.247.
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Distribution-Ergodic Processes

If a process is mean-ergodic then the mean value can be found as the time
average over a single sample function from the random process. But what if
we want to measure the probability distribution. How and when might we
do that? It turns out that the cumulative distribution function can be found
from a sample function by a simple circuit.

Figure 7.7: The fraction of the time that a random process is lower than
a threshold level x is equal to the cumulative distribution function F (x) =
P [X ≤ x]. The fraction of the area that is shaded in the lower figure equals
F (x).

Recall that the cumulative distribution function is

F (x) = P [X(t) ≤ x] (7.66)
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If the processis stationary, which is a necessary condition for ergodicity, then
F [x] is independent of t. The above probability is measured across the en-
semble at any t.
Given any sample functionX(t, e0), we can measure the above probability

by finding the fraction of the time that X(t) is less than x. Consider passing
X(t) through a system that has the input-output relationship

Yx(t) =

½
1, X(t) ≤ x
0, X(t) > x

(7.67)

This is a random process in its own right. It has the property that, for any
t,

E[Yx(t)] = F (x) (7.68)

If Yx(t) is mean-ergodic then we can measure its expected value by computing
the time average Ỹx. The fraction of the area under a sample Yx(t) waveform
will equal the value of F (x). By changing x and measuring the area, we find
F (x). This is illustrated in Figure 7.7. A process X(t) is distribution-ergodic
if the related process Yx(t) is mean-ergodic for every value of x.

Correlation-Ergodic Processes

We would often like to find the autocorrelation function of a random process.
If X(t) is wss then Rxx (τ) = E[X(t)X(t+ τ)]. To compute this average over
time, construct the function

Zτ(t) = X(t)X(t+ τ) (7.69)

This is a random process with the property that Rxx (τ) = E [Zτ(t)] . If Zτ(t)
is mean-ergodic then we can compute the average over time for any sample
function of the random process. Let us denote this average by a script R to
differentiate it from the ensemble average R.

Rxx (τ) = Z̃τ = lim
T→∞

1

2T

Z T

−T
X(t)X(t+ τ)dt (7.70)

When we say that a stationary random process is ergodic we mean that
any average that we may want to find can be computed from any sample
function of the process by an appropriate average over time. We will make
use of the ergodic assumption when we examine the spectrum of random
processes.


