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Logistics

e Time & Location: MWF 11-11:50 TECH L160

e Instructor: Hai Zhou haizhou®@ece.northwestern.edu
o Office: L461

e Office Hours: W 3-5P

e [eaching Assistant: Chuan Lin

e [exts:
VLSI Physical Design Automation: Theory & Practice, Sait
& Youssef, World Scientific, 1999.

e Reference:



An Introduction to VLSI Physical Design, Sarrafzadeh &
Wong, McGraw Hill, 1996.

e Grading: Participation-10% Project-30% Midterm-30%
Homework-30%

e Homework must be turned in before class on each due date,
late: -40% per day

e Course homepage:

www.ece.northwestern.edu/ "haizhou/ece357



What can you expect from the course

e Understand modern VLSI design flows (but not the details
of tools)

e Understand the physical design problem

e Familiar with the stages and basic algorithms in physical
design

e Improve your capability to design algorithms to solve
problems

e Improve your capability to think and reason



What do I expect from you

e Active and critical participation

— speed me up or slow me down if my pace mismatches
yours

— "Your role is not one of sponges, but one of whetstones;
only then the spark of intellectual excitement can
continue to jump over”

e Read the textbook

e DO your homeworks

— You can discuss homework with your classmates, but
need to write down solutions independently



VLSI (Very Large Scale Integrated) chips

e VLSI chips are everywhere
— computers
— commercial electronics: TV sets, DVD, VCR, ...
— voice and data communication networks

— automobiles

e VVLSI chips are artifacts

— they are produced according to our will ...



Design: the most challenging human activity

e Design is a process of creating a structure to fulfill a
requirement

e Brain power is the scarcest resource

— Delegate as much as possible to computers—CAD

e Avoid two extreme views:

— Everything manual: impossible—millions of gates

— Everything computer: impossible either



Design is always difficult
A main task of a designer is to manage complexity

e Silicon complexity: physical effects no longer be ignored

— resistive and cross-coupled interconnects; signal
integrity; weak and faster gates

— reliability; manufacturability

e System complexity: more functionality in less time
— gap between design and fabrication capabilities

— desire for system-on-chip (SOCQC)



CAD: A tale of two designs

e Target—hardware design

— How to create a structure on silicon to implement a
function

e Aid—software design (programming)

— How to create an algorithm to solve a design problem

e Be conscious of their similarities and differences



Emphasis of the course

e Design flow

— Understand how design process is decomposed into
many stages

— What are the problems need to be solved in each stage

e Algorithms
— Understand how an algorithm solves a design problem

— Consider the possibility to extend it

e Be conscious and try to improve problem solving skills



Basics of MOS Devices

e The most popular VLSI technology: MOS
(Metal-Oxide-Semiconductor).

e CMOS (Complementary MOS) dominates nMOS and
PMOS, due to CMOS's lower power dissipation, high
regularity, etc.

e Physical structure of MOS transistors and their schematic
icons: nMOS, pMOS.

e Layout of basic devices:
— CMOS inverter
— CMOS NAND gate
— CMOS NOR gate
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MOS Transistors
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A CMOS Inverter
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A CMOS NAND Gate
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A CMOS NOR Gate
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Current VLSI design phases

e Synthesis (i.e. specification — implementation)
1. High level synthesis (459 VLSI Algorithmics)
2. Logic synthesis (459 VLSI Algorithmics)

3. Physical design (This course)

e Analysis (implementation — semantics)

— Verification (design verification, implementation
verification)

— Analysis (timing, function, noise, etc.)

— Design rule checking, LVS (Layout Vs. Schematic)
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Physical Design

e Physical design converts a structural description into a

geometric description.

e Physical design cycle:

1.

I

Circuit partitioning
Floorplanning

placement, and pin assignment
Routing (global and detailed)

Compaction
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Design Styles
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Full Custom

Design Style
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Standard Cell Design Style
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Gate Array Design Style
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FPGA Design Style
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SSI/SPLD Design Style
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Comparisons of Design Styles

Full Standard Gate
custom cell array FPGA SPLD
Cell size variable | fixed height* fixed fixed fixed
Cell type variable variable fixed programmable | programmable
Cell placement variable in row fixed fixed fixed
Interconnections | variable variable variable | programmable | programmable

* Uneven height cells are also used.
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Comparisons of Design Styles

Full Standard | Gate

custom cell array | FPGA | SPLD
Fabrication time — — — - — + F+F JE3E
Packing density +++ +F + — — S
Unit cost in large quantity +++ ++ + S— —
Unit cost in small quantity — — — — = + N +
Easy design and simulation — — — - — — FF +
Easy design change — — — S — — FF FF
Accuracy of timing simulation — — — + +
Chip speed +++ ++ + — ——

+ desirable

— not desirable
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Design-Style Trade-offs
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Algorithims 101

e Algorithm: a finite step-by-step procedure to solve a
problem

e Requirements:
— Unambiguity: can even be followed by a machine
— Basic: each step is among a given primitives

— Finite: it will terminate for every possible input
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A game

e An ECE major is sitting on the Northwestern beach and
gets thirsty, she knows that there is an ice-cream booth
along the shore of Lake Michigan but does not know
where—not even north or south. How can she find the
booth in the shortest distance?

e Primitives: walking a distance, turning around, etc.
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A first solution

e Select a direction, say north, and keep going until find the
booth

e Suppose the booth is to the south, she will never stop... of
course, with the assumption she follows a straight line, not
lake shore or on earth
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Another solution

e Set the place she is sitting as the origin

e Search to south 1 yard, if not find, turn to north
e Search to north 1 vard, if not find, turn to south
e Search to south 2 vyard, if not find, turn to north
e Search to north 2 yard, if not find, turn to south

e ... (follow the above pattern in geometric sequence 1, 2, 4,
8, ...)
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OR

o n—=—1;
e While (not find) do
—n=n-+1;
— Search to south 2™, and turn;

— Search to north 2™, and turn;
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Correctness proof

e Each time when the while loop is finished, the range from
south 2™ to north 2" is searched. Based on the fact that
the booth is at a constant distance = from the origin, it will
be within a range from south 2¥ to north 2% for some N.
With n to increment in each loop, we will find the booth in

finite time.

e Is this the fastest (or shortest) way to find the booth?
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Analysis of algorithm
e Observation: the traveled distance depends on where is the
booth
e Suppose the distance between the booth and the origin is x

e When the algorithm stops, we should have 2™ > x but

e [ he distance traveled is
3.2"42(2-2" 142972 4. 4 9)< T 2"
e Which is smaller than 14z

e \We know that the lower bound is xz, can we do better?
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Complexity of an algorithm

e [ WO resources: running time and storage

e [ hey are dependent on inputs: expressed as functions of
input size

— Why input size: lower bound (at least read it once)

e Big-Oh notation: f(n) = O(g(n)) if there exist constants ng
and ¢ such that for all n > ng, f(n) <c-g(n).

— Make our life easy: is it 13x instead of 14x in our game

— The solution is asymptotically optimal for our game
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Time complexity of an algorithim

e Run-time comparison: 1000 MIPS (Yr: 200x), 1 instr. /op.

Time Big-Oh n = 10 n = 100 n = 103 n = 10°
500 O(1) 5x10"sec | 5x10"sec | 5x10 " sec | 5x 10 " sec
3n O(n) 3x10%sec | 3x1077"sec | 3x107% sec 0.003 sec
nlogn | O(nlogn) | 3 x 108 sec | 2x 107" sec | 3 x 1079 sec 0.006 sec
n? O(n?) 1x1077"sec | 1x107° sec 0.001 sec 16.7 min
n’ O(n?) 1 x 1076 sec 0.001 sec 1 sec 3 x 10° cent.
2n O(2") 1 x 1079 sec | 3 x 107 cent. - -

n! O(n!) 0.003 sec - - -

e Polynomial-time complexity: O(p(n)), where n is the input
size and p(n) is a polynomial function of n.
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Complexity of a problem

e Given a problem, what is the running time of the fastest
algorithm for it?

e Upper bound: easy—find an algorithm with less time
e Lower bound: hard—every algorithm requires more time
e P: set of problems solvable in polynomial time

e NP (Nondeterministic P): set of problems whose solution
can be proved in polynomial time

e Millennium open problem: NP # P?

— Fact: there are a set of problems in NP resisting any
polynomial solution for a long time (40 years)
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NP-complete and NP-hard

e Cook 1970: If the problem of boolean satisfiability can be
solved in poly. time, so can all problems in NP.

e Such a problem with this property is called NP-hard.
e If a NP-hard problem is in NP, it is called NP-complete.

e Karp 1971: Many other problems resisting poly. solutions
are NP-complete.
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How to deal with a hard problem

e Prove the problem is NP-complete:

1. The problem is in NP (i.e. solution can be proved in
poly. time)

2. It is NP-hard (by polynomial reducing a NP-complete
problem to it)

e Solve NP-hard problems:

— Exponential algorithm (feasible only when the problem
size is small)

x Pseudo-polynomial time algorithms

— Restriction: work on a subset of the input space
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— Approximation algorithms: get a provable
close-to-optimal solution

— Heuristics: get a as good as possible solution

— Randomized algorithm: get the solution with high
probability
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Algorithmic Paradigms

e Divide and conquer: divide a problem into sub-problems,
solve sub-problems, and combine them to construct a

solution.

— Greedy algorithm: optimal solutions to sub-problems will
give optimal solution to the whole problem.

— Dynamic programming: solutions to a larger problem are
constructed from a set of solutions to its sub-problems.

e Mathematical programming: a system of optimizing an
objective function under constraints functions.

e Simulated annealing: an adaptive, iterative,
non-deterministic algorithm that allows “uphill” moves to
escape from local optima.
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e Branch and bound: a search technique with pruning.

e EXxhaustive search: search the entire solution space.
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