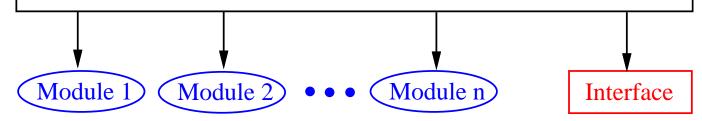
Partitioning

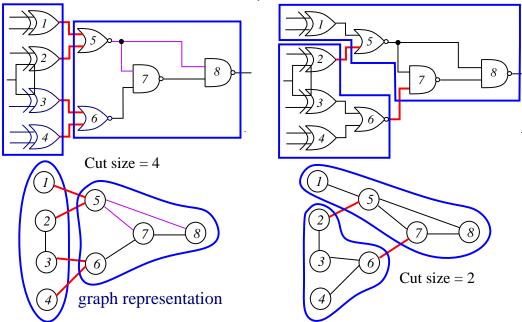
system design

- Decomposition of a complex system into smaller subsystems.
- Each subsystem can be designed independently speeding up the design process.
- Decomposition scheme has to minimize the interconnections among the subsystems.
- Decomposition is carried out hierarchically until each subsystem is of managable size.



Circuit Partitioning

- **Objective:** Partition a circuit into parts such that every component is within a prescribed range and the # of connections among the components is minimized.
 - More constraints are possible for some applications.
- Cutset? Cut size? Size of a component?



Problem Definition: Partitioning

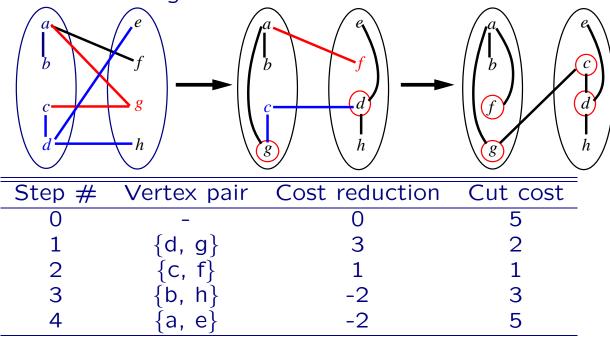
- k-way partitioning: Given a graph G(V, E), where each vertex $v \in V$ has a **size** s(v) and each edge $e \in E$ has a **weight** w(e), the problem is to divide the set V into k disjoint subsets V_1, V_2, \ldots, V_k , such that an objective function is optimized, subject to certain constraints.
- Bounded size constraint: The size of the *i*-th subset is bounded by B_i $(\sum_{v \in V_i} s(v) \leq B_i)$.
 - Is the partition balanced?
- Min-cut cost between two subsets: Minimize $\sum_{\forall e=(u,v)\land p(u)\neq p(v)} w(e)$, where p(u) is the partition # of node u.
- The 2-way, balanced partitioning problem is NP-complete, even in its simple form with identical vertex sizes and unit edge weights.

Kernighan-Lin Algorithm

- Kernighan and Lin, "An efficient heuristic procedure for partitioning graphs," The Bell System Technical Journal, vol. 49, no. 2, Feb. 1970.
- An iterative, 2-way, balanced partitioning (bi-sectioning) heuristic.
- Till the cut size keeps decreasing
 - Vertex pairs which give the largest decrease or the smallest increase in cut size are exchanged.
 - These vertices are then **locked** (and thus are prohibited from participating in any further exchanges).
 - This process continues until all the vertices are locked.

Kernighan-Lin Algorithm: A Simple Example

• Each edge has a unit weight.



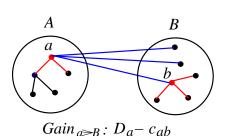
- Questions: How to compute cost reduction? What pairs to be swapped?
 - Consider the change of internal & external connections.

Properties

- Two sets A and B such that |A| = n = |B| and $A \cap B = \emptyset$.
- External cost of $a \in A$: $E_a = \sum_{v \in B} c_{av}$.
- Internal cost of $a \in A$: $I_a = \sum_{v \in A} c_{av}$.
- D-value of a vertex a: $D_a = E_a I_a$ (cost reduction for moving a).
- Cost reduction (gain) for swapping a and b: $g_{ab} = D_a + D_b 2c_{ab}$.
- If $a \in A$ and $b \in B$ are interchanged, then the new D-values, D', are given by

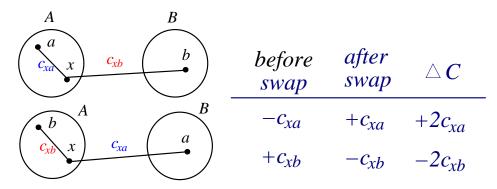
$$D'_{x} = D_{x} + 2c_{xa} - 2c_{xb}, \forall x \in A - \{a\}$$

$$D'_{y} = D_{y} + 2c_{yb} - 2c_{ya}, \forall y \in B - \{b\}.$$



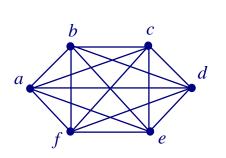
 $Gain_{b \gg A}$: $D_b - c_{ab}$

Internal cost vs. External cost

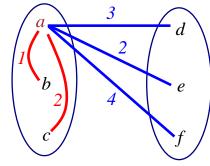


updating D-values

Kernighan-Lin Algorithm: A Weighted Example



				d			
a	0 1 2 3 2 4	1	2	3	2	4	
b	1	0	1	4	2	1	
c	2	1	0	3	2	1	
d	3	4	3	0	4	3	
e	2	2	2	4	0	2	
f	4	1	1	3	2	0	
Ĭ							



costs associated with a

Initial cut cost =
$$(3+2+4)+(4+2+1)+(3+2+1) = 22$$

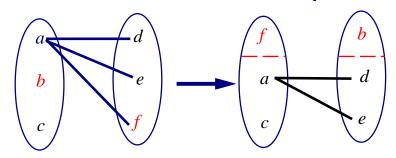
• Iteration 1:

Fraction 1.
$$I_a = 1 + 2 = 3$$
; $E_a = 3 + 2 + 4 = 9$; $D_a = E_a - I_a = 9 - 3 = 6$
 $I_b = 1 + 1 = 2$; $E_b = 4 + 2 + 1 = 7$; $D_b = E_b - I_b = 7 - 2 = 5$
 $I_c = 2 + 1 = 3$; $E_c = 3 + 2 + 1 = 6$; $D_c = E_c - I_c = 6 - 3 = 3$
 $I_d = 4 + 3 = 7$; $E_d = 3 + 4 + 3 = 10$; $D_d = E_d - I_d = 10 - 7 = 3$
 $I_e = 4 + 2 = 6$; $E_e = 2 + 2 + 2 = 6$; $D_e = E_e - I_e = 6 - 6 = 0$
 $I_f = 3 + 2 = 5$; $E_f = 4 + 1 + 1 = 6$; $D_f = E_f - I_f = 6 - 5 = 1$

• Iteration 1:

```
I_{a} = 1 + 2 = 3; \quad E_{a} = 3 + 2 + 4 = 9; \quad D_{a} = E_{a} - I_{a} = 9 - 3 = 6
I_{b} = 1 + 1 = 2; \quad E_{b} = 4 + 2 + 1 = 7; \quad D_{b} = E_{b} - I_{b} = 7 - 2 = 5
I_{c} = 2 + 1 = 3; \quad E_{c} = 3 + 2 + 1 = 6; \quad D_{c} = E_{c} - I_{c} = 6 - 3 = 3
I_{d} = 4 + 3 = 7; \quad E_{d} = 3 + 4 + 3 = 10; \quad D_{d} = E_{d} - I_{d} = 10 - 7 = 3
I_{e} = 4 + 2 = 6; \quad E_{e} = 2 + 2 + 2 = 6; \quad D_{e} = E_{e} - I_{e} = 6 - 6 = 0
I_{f} = 3 + 2 = 5; \quad E_{f} = 4 + 1 + 1 = 6; \quad D_{f} = E_{f} - I_{f} = 6 - 5 = 1
\bullet \quad g_{xy} = D_{x} + D_{y} - 2c_{xy}.
g_{ad} = D_{a} + D_{d} - 2c_{ad} = 6 + 3 - 2 \times 3 = 3
g_{ae} = 6 + 0 - 2 \times 2 = 2
g_{af} = 6 + 1 - 2 \times 4 = -1
g_{bd} = 5 + 3 - 2 \times 4 = 0
g_{be} = 5 + 0 - 2 \times 2 = 1
g_{bf} = 5 + 1 - 2 \times 1 = 4 \quad (maximum)
g_{cd} = 3 + 3 - 2 \times 3 = 0
g_{ce} = 3 + 0 - 2 \times 2 = -1
g_{ef} = 3 + 1 - 2 \times 1 = 2
```

• Swap b and f! $(\hat{g_1} = 4)$



• $D'_x = D_x + 2c_{xp} - 2c_{xq}, \forall x \in A - \{p\}$ (swap p and $q, p \in A, q \in B$)

$$D'_{a} = D_{a} + 2c_{ab} - 2c_{af} = 6 + 2 \times 1 - 2 \times 4 = 0$$

$$D'_{c} = D_{c} + 2c_{cb} - 2c_{cf} = 3 + 2 \times 1 - 2 \times 1 = 3$$

$$D'_{d} = D_{d} + 2c_{df} - 2c_{db} = 3 + 2 \times 3 - 2 \times 4 = 1$$

$$D'_{e} = D_{e} + 2c_{ef} - 2c_{eb} = 0 + 2 \times 2 - 2 \times 2 = 0$$

• $g_{xy} = D'_x + D'_y - 2c_{xy}$.

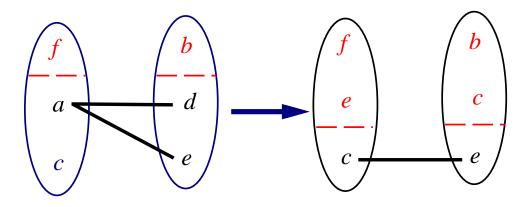
$$g_{ad} = D'_a + D'_d - 2c_{ad} = 0 + 1 - 2 \times 3 = -5$$

$$g_{ae} = D'_a + D'_e - 2c_{ae} = 0 + 0 - 2 \times 2 = -4$$

$$g_{cd} = D'_c + D'_d - 2c_{cd} = 3 + 1 - 2 \times 3 = -2$$

$$g_{ce} = D'_c + D'_e - 2c_{ce} = 3 + 0 - 2 \times 2 = -1 \text{ (maximum)}$$

• Swap c and e! $(\hat{g_2} = -1)$



•
$$D_x'' = D_x' + 2c_{xp} - 2c_{xq}, \forall x \in A - \{p\}$$

$$D_a'' = D_a' + 2c_{ac} - 2c_{ae} = 0 + 2 \times 2 - 2 \times 2 = 0$$

$$D_d'' = D_d' + 2c_{de} - 2c_{dc} = 1 + 2 \times 4 - 2 \times 3 = 3$$

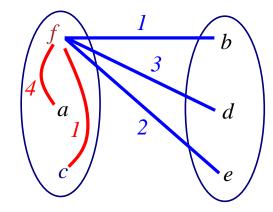
•
$$g_{xy} = D_x'' + D_y'' - 2c_{xy}$$
.

$$g_{ad} = D_a'' + D_d'' - 2c_{ad} = 0 + 3 - 2 \times 3 = -3(\hat{g}_3 = -3)$$

• Note that this step is redundant $(\sum_{i=1}^{n} \hat{g}_i = 0)$.

- Summary: $\hat{g_1} = g_{bf} = 4$, $\hat{g_2} = g_{ce} = -1$, $\hat{g_3} = g_{ad} = -3$.
- Largest partial sum $\max \sum_{i=1}^k \hat{g_i} = 4 \ (k=1) \Rightarrow \text{Swap } b \text{ and } f.$

				d			
\overline{a}	0 1 2 3 2 4	1	2	3	2	4	
b	1	0	1	4	2	1	
c	2	1	0	3	2	1	
d	3	4	3	0	4	3	
e	2	2	2	4	0	2	
f	4	1	1	3	2	0	



Initial cut cost = (1+3+2)+(1+3+2)+(1+3+2) = 18(22-4)

- Iteration 2: Repeat what we did at Iteration 1 (Initial cost= 22-4=18).
- Summary: $\hat{g_1} = g_{ce} = -1$, $\hat{g_2} = g_{ab} = -3$, $\hat{g_3} = g_{fd} = 4$.
- Largest partial sum = $\max \sum_{i=1}^{k} \hat{g}_i = 0 \ (k = 3) \Rightarrow \text{Stop!}$

Algorithm: Kernighan-Lin(*G*)

Input: G = (V, E), |V| = 2n.

Output: Balanced bi-partition A and B with "small" cut cost.

1 begin

- 2 Bipartition G into A and B such that $|V_A| = |V_B|$, $V_A \cap V_B = \emptyset$, and $V_A \cup V_B = V$.
- 3 repeat
- 4 Compute D_v , $\forall v \in V$.
- 5 for i = 1 to n do
- Find a pair of unlocked vertices $v_{ai} \in V_A$ and $v_{bi} \in V_B$ whose exchange makes the largest decrease or smallest increase in cut cost;
- Mark v_{ai} and v_{bi} as locked, store the gain \widehat{g}_i , and compute the new D_v , for all unlocked $v \in V$;
- 8 Find k, such that $G_k = \sum_{i=1}^k \widehat{g}_i$ is maximized;
- 9 if $G_k > 0$ then
- Move v_{a1},\ldots,v_{ak} from V_A to V_B and v_{b1},\ldots,v_{bk} from V_B to V_A ;
- 11 Unlock v, $\forall v \in V$.
- 12 until $G_k < 0$;
- **13 end**

Time Complexity

- Line 4: Initial computation of D: $O(n^2)$
- Line 5: The **for**-loop: O(n)
- The body of the loop: $O(n^2)$.
 - Lines 6-7: Step i takes $(n-i+1)^2$ time.
- Lines 4–11: Each pass of the repeat loop: $O(n^3)$.
- ullet Suppose the repeat loop terminates after r passes.
- The total running time: $O(rn^3)$.

Extensions of K-L Algorithm

- Unequal sized subsets (assume $n_1 < n_2$)
 - 1. Partition: $|A| = n_1$ and $|B| = n_2$.
 - 2. Add $n_2 n_1$ dummy vertices to set A. Dummy vertices have no connections to the original graph.
 - 3. Apply the Kernighan-Lin algorithm.
 - 4. Remove all dummy vertices.

Unequal sized "vertices"

- 1. Assume that the smallest "vertex" has unit size.
- 2. Replace each vertex of size s with s vertices which are fully connected with edges of infinite weight.
- 3. Apply the Kernighan-Lin algorithm.

• k-way partition

- 1. Partition the graph into k equal-sized sets.
- 2. Apply the Kernighan-Lin algorithm for each pair of subsets.
- 3. Time complexity? Can be reduced by recursive bi-partition.

A "Better" Implementation of K-L Algorithm

• Sort the *D*-values in a non-increasing order:

$$D_{a_1} \ge D_{a_2} \ge \dots \ge D_{a_n}$$

$$D_{b_1} \ge D_{b_2} \ge \dots \ge D_{b_n}$$

• Start with a_1 , compute $g_{a_1,b_i}, \forall b_i$ Start with a_2 , compute $g_{a_2,b_i}, \forall b_i$

÷

whenever $D_{a_i} + D_{b_i} \leq \text{Maximum gain found so far (Quit!)}$.

• Partition $A=\{a,b,c\}$: $D_a=6$; $D_b=5$; $D_c=3$; Partition $B=\{d,e,f\}$: $D_d=3$; $D_f=1$; $D_e=0$; Compute g's

$$g_{ad}=3 \rightarrow g_{af}=-1 \rightarrow g_{ae}=2$$

 $g_{bd}=0 \rightarrow g_{bf}=4 \rightarrow g_{be}=1$
 $g_{cd}=0 \rightarrow \text{No need to compute } g_{cf} \text{ (Quit!)}$
since $D_c+D_f\leq g_{bf}=4$.

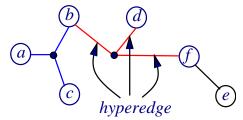
• Note that the overall time complexity remains $O(rn^3)$.

Drawbacks of the Kernighan-Lin Heuristic

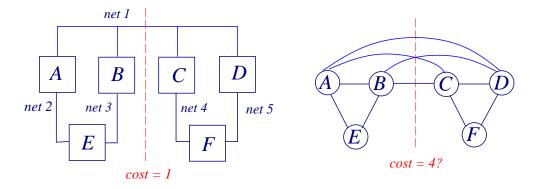
- The K-L heuristic handles only unit vertex weights.
 - Vertex weights might represent block sizes, different from blocks to blocks.
 - Reducing a vertex with weight w(v) into a clique with w(v) vertices and edges with a high cost increases the size of the graph substantially.
- The K-L heuristic handles only exact bisections.
 - Need dummy vertices to handle the unbalanced problem.
- The K-L heuristic cannot handle hypergraphs.
 - Need to handle multi-terminal nets directly.
- The time complexity of a pass is high, $O(n^3)$.

Coping with Hypergraph

• A hypergraph H = (N, L) consists of a set N of vertices and a set L of hyperedges, where each hyperedge corresponds to a **subset** N_i of distinct vertices with $|N_i| \ge 2$.

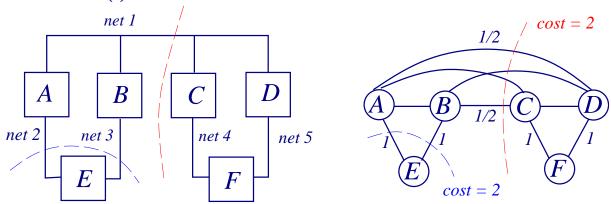


- Schweikert and Kernighan, "A proper model for the partitioning of electrical circuits," 9th Design Automation Workshop, 1972.
- For multi-terminal nets, **net cut** is a more accurate measurement for cut cost (i.e., deal with hyperedges).
 - $\{A, B, E\}, \{C, D, F\}$ is a good partition.
 - Should not assign the same weight for all edges.

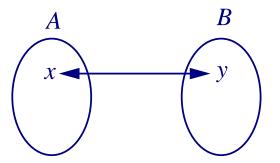


Net-Cut Model

- Let n(i) = # of cells associated with Net i.
- Edge weight $w_{xy} = \frac{2}{n(i)}$ for an edge connecting cells x and y.



• Easy modification of the K-L heuristic.



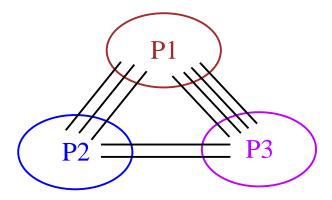
 D_{χ} : gain in moving x to B

 D_y : gain in moving y to A

$$g_{xy} = D_x + D_y - Correction(x, y)$$

Network Flow Based Partitioning

- Min-cut balanced partitioning: Yang and Wong, ICCAD-94.
 - Based on max-flow min-cut theorem.

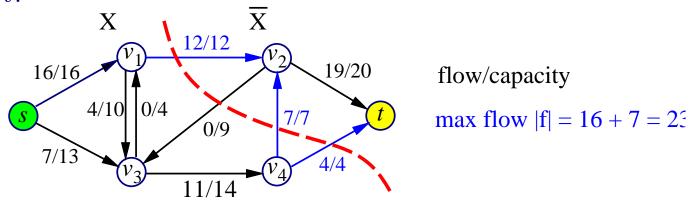


- Gate replication for partitioning: Yang and Wong, ICCAD-95.
- Performance-driven multiple-chip partitioning: Yang and Wong, FPGA'94, ED&TC-95.
- Multi-way partitioning with area and pin constraints: Liu and Wong, ISPD-97.
- Multi-resource partitioning: Liu, Zhu, and Wong, FPGA-98.
- Partitioning for time-multiplexed FPGAs: Liu and Wong, ICCAD-98.

Flow Networks

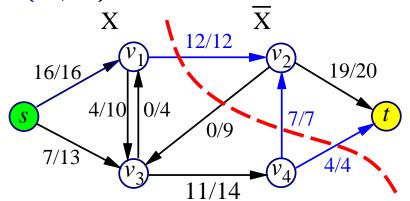
- A flow network G = (V, E) is a directed graph in which each edge $(u, v) \in E$ has a capacity c(u, v) > 0.
- There is exactly one node with no incoming (outgoing) edges,
 called the source s (sink t).
- A flow $f: V \times V \to R$ satisfies
 - Capacity constraint: $f(u,v) \leq c(u,v), \forall u,v \in V$.
 - Skew symmetry: $f(u,v) = -f(v,u), \forall u,v \in V$.
 - Flow conservation: $\sum_{v \in V} f(u, v) = 0, \forall u \in V \{s, t\}.$
- The value of a flow f: $|f| = \sum_{v \in V} f(s, v) = \sum_{v \in V} f(v, t)$

• Maximum-flow problem: Given a flow network G with source s and sink t, find a flow of maximum value from s to t.



Max-Flow Min-Cut

- A **cut** (X, \bar{X}) of flow network G = (V, E) is a partition of V into X and $\bar{X} = V X$ such that $s \in X$ and $t \in \bar{X}$.
 - Capacity of a cut: $cap(X, \bar{X}) = \sum_{u \in X, v \in \bar{X}} c(u, v)$. (Count only forward edges!)
- Max-flow min-cut theorem Ford & Fulkerson, 1956.
 - f is a max-flow $\iff |f| = cap(X, \bar{X})$ for some min-cut (X, \bar{X}) .



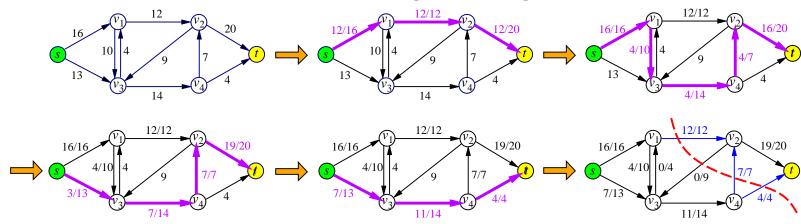
flow/capacity

$$\max_{x \in X} flow |f| = 16 + 7 = 23$$

 $cap(X, \overline{X}) = 12 + 7 + 4 = 23$

Network Flow Algorithms

- An augmenting path p is a simple path from s to t with the following properties:
 - For every edge $(u, v) \in E$ on p in the **forward** direction (a **forward edge**), we have f(u, v) < c(u, v).
 - For every edge $(u, v) \in E$ on p in the **reverse** direction (a **backward edge**), we have f(u, v) > 0.
- f is a max-flow \iff no more augmenting path.



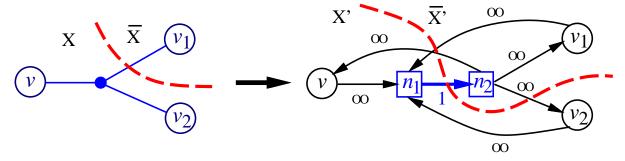
• First algorithm by Ford & Fulkerson in 1959: O(|E||f|); First **polynomial-time** algorithm by Edmonds & Karp in 1969: $O(|E|^2|V|)$; Goldberg & Tarjan in 1985: $O(|E||V||g(|V|^2/|E|))$, etc.

Network Flow Based Partitioning

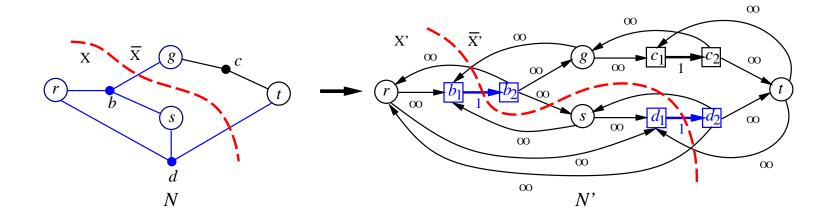
- Why was the technique not wisely used in partitioning?
 - Works on graphs, not hypergraphs.
 - Results in unbalanced partitions; repeated min-cut for balance: |V| max-flows, time-consuming!
- Yang & Wong, ICCAD-94.
 - Exact **net** modeling by flow network.
 - Optimal algorithm for min-net-cut bipartition (unbalanced).
 - Efficient implementation for repeated min-net-cut: same asymptotic time as one max-flow computation.

Min-Net-Cut Bipartition

Net modeling by flow network:

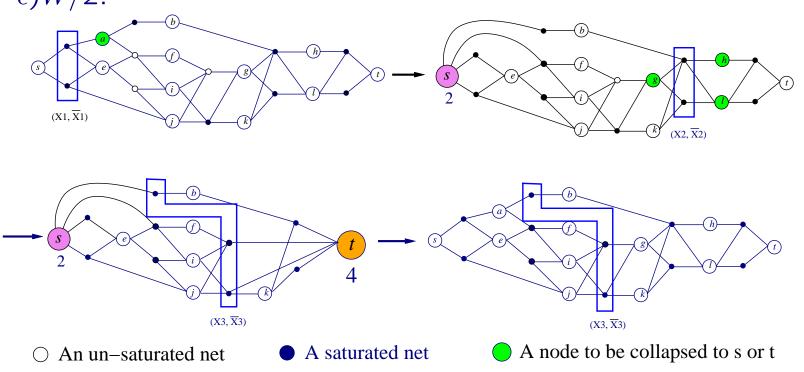


- A min-net-cut (X, \bar{X}) in $N \iff$ A min-capacity-cut (X', \bar{X}') in N'.
- Size of flow network: $|V'| \le 3|V|$, $|E'| \le 2|E| + 3|V|$.
- Time complexity: O(min-net-cut-size) $\times |E| = O(|V||E|)$.



Repeated Min-Cut for Balanced Bipartition (FBB)

• Allow component weights to deviate from $(1-\epsilon)W/2$ to $(1+\epsilon)W/2$.



Incremental Flow

- Repeatedly compute max-flow: very time-consuming.
- No need to compute max-flow from scratch in each iteration.
- Retain the flow function computed in the previous iteration.
- Find additional flow in each iteration. Still correct.
- FBB time complexity: O(|V||E|), same as **one** max-flow.
 - At most 2|V| augmenting path computations.
 - * At each augmenting path computation, either an augmenting path is found, or a new cut is found, and at least 1 node is collapsed to s or t.
 - * At most $|f| \leq |V|$ augmenting paths found, since bridging edges have unit capacity.

- An augmenting path computation: O(|E|) time.

