Partitioning
system design

o Decomposition of a complex system into smaller subsystems.

o Each subsystem can be designed independently speeding up
the design process.

e Decomposition scheme has to minimize the interconnections
among the subsystems.

o Decomposition is carried out hierarchically until each
subsystem is of managable size.

v |

®ceoe0 @ Interface

Circuit Partitioning

e Objective: Partition a circuit into parts such that every component is
within a prescribed range and the # of connections among the compo-
nents is minimized.

— More constraints are possible for some applications.

e Cutset? Cut size? Size of a component?

Cutsize=2

graph representation

Problem Definition: Partitioning

k-way partitioning: Given a graph G(V,E), where each vertex v €¢ V
has a size s(v) and each edge e € E has a weight w(e), the problem is
to divide the set V into k disjoint subsets Vi, V5, ..., Vi, such that an
objective function is optimized, subject to certain constraints.

Bounded size constraint: The size of the -th subset is bounded by B;
O ey s(v) < By).
— Is the partition balanced?

Min-cut cost between two subsets: Minimize > . _ .,)ap(u)=p) (€,
where p(u) is the partition # of node w.

The 2-way, balanced partitioning problem is NP-complete, even in its
simple form with identical vertex sizes and unit edge weights.

Kernighan-Lin Algorithim

e Kernighan and Lin, “An efficient heuristic procedure for partitioning
graphs,” The Bell System Technical Journal, vol. 49, no. 2, Feb. 1970.

e An iterative, 2-way, balanced partitioning (bi-sectioning) heuristic.

e Till the cut size keeps decreasing

— Vertex pairs which give the largest decrease or the smallest increase
in cut size are exchanged.

— These vertices are then locked (and thus are prohibited from partic-
ipating in any further exchanges).

— T his process continues until all the vertices are locked.

Kernighan-Lin Algorithm: A Simple Example

M
i @l |

Step # Vertex pair Cost reduction Cut cost

e Each edge has a unit weight.

(@)

0 - o) 5
1 {d, g} 3 2
2 {c, f} 1 1
3 {b, h} -2 3
4 {a, e} -2 5

e Questions: How to compute cost reduction? What pairs to be swapped?

— Consider the change of internal & external connections.

Properties

Two sets A and B such that |[A|=n =|B| and ANnB = 0.
External cost of a € A: E, =) _pcCav-

Internal cost of a € A: I, =) 4 Cav.

D-value of a vertex a: D, = E, — I, (cost reduction for moving a).
Cost reduction (gain) for swapping a and b: gu = Do + Dy — 2cap.

If a € A and b € B are interchanged, then the new D-values, D’, are given
by

D!,
/
D,

D, + 2¢cpq — 2¢4p,Vr € A — {CL}
Dy + 2¢,, — 2¢ya, Yy € B — {b}.

A
A B
~ @ G 9 before after e
~— Swap sSwap
@ % 4 S ~Cxa +Cxa +2C
Gaingpg: Da— Cap @ Ga 9 +Cyp —Cup —ZCXb

Gaing—a: Dp- Cap
Internal cost vs. External cost updating D—-values

Kernighan-Lin Algorithm: A Weighted Example

abcdef
b C
alo0 12324
bl101421
a d ¢cl210321
d|3 4304 3
el2 22402
f e fla11320

costs associated with a
Initial cut cost = (3+2+4)+(4+2+1)+(3+2+1) = 22

e Iteration 1:
I,=142=3. E,=34+24+4=09;: D,=FE,—1,=m9—-3=26
Ib: +1=2; Eb:4—|—2—|—1:7; Db:Eb—Ib:7—2:5
I.=2+4+1=3;, E.=342+4+1=6; D.=F.—1I.==6—-3=3
Ij=4+4+3=7, E4=34+4+4+3=10, Dj=FE;—143=10-7=3
le=442=6; E.=242+42=6; D.=E.—-[.=6-6=0
[, =3+4+2=5; Ef:4—|—1—|—1:6; Df:Ef—If:6—5:1

e Iteration 1:

SESE e

[J
3
|
&
|

WP DPANHRE

Weighted Example (cont’d)

++++++
NNWHFERFN
T 1
g@xj@l\?w

S
<
|
N
o
8
<

Gad
Gae
Gaf
9bd
Gbe
gvf
Ged
Gee
gcf

e Swap b and f! (g1 =4)

o o 3 o £

S

o

~

=34+24+4=09, D,=FE,—1,=9—-3=6
=44241=7, DbZEb—Ib=7—2=5
=34+2+41=06, D.=E.—1.,.=6-3=3
=34+443=10;, Dy4=FE;—I[;,=10—-7=3
=24242 =06, D. = E, e=6—-6=0
:4-|—1—|—1:6; Df—Ef—[f—6—5:1

Do+ Dj—2c,q=6+3—-—2x3=3
64+0—-—2x2=2
6+1—-2x4=-1
543-2x4=0
540—-2x2=1
541—-2x1=4 (maximum)
343—-2x3=0
3+0—-2x2=-1
3+1-2x1=2

Weighted Example (cont’d)

N ==

o D) = D, + 2¢yp — 2¢yq,Vx € A—{p} (sSwap p and q, p€ A, q € B)

Dé = Do+ 2cu—2¢c,;=6+2x1-2x4=0
Dé = Dc+2cp—2c;=3+2x1-2x1=3
Dél = Dd+20df—26db:3+2x3—2x4:1
Dé = De+2¢cs—2cp, =04+2x2-2%x2=0
® gscy:D;/p'l‘D; QCscy

9od = D, 4+ Dj—2ciq=0+1-2x3=-5

gae - Dé+Dé_26ae:O+O_2X2:—4

Jed = D2+D&—260d:3—|—1—2x3=—2

gee = D.4+ D, —2ce =34+0-2x2= -1 (mazximum)

e Swap cand e! (go=—-1)

Weighted Example (cont’d)

() Dg — D‘%+26xp_20xQ7\v/x e A_ {p}

D! = D\42ce—2cee=0+2%x2-2x2=0
D = Dy42cs—2cie=14+2x4-2x3=3

o gy = D!+ DZ/J/ — 2cyy.

9aa = Dy+Dj—2c,q=04+3-2x3=-3(33=—3)

e Note that this step is redundant (} ", gi = 0).

e Summary: gi = gof =4, 92 = gee = —1, g3 = gua = —3.
e Largest partial sum maxz,’f:l gi=4 (k=1) = Swap b and f.

Weighted Example (cont’d)

a b cdef
al0 1 2 3 2 4
b1 01 4 2 1
cl2 1 03 21
d{ 3 4 3 0 4 3
el 2 2 2 4 0 2
fl4 1 13 20

Initial cut cost = (1+3+2)+(1+3+2)+(1+3+2) = 18 (22-4)

e Iteration 2: Repeat what we did at Iteration 1 (Initial cost=22—-4 = 18).
e Summary: g1 = gee = —1, g2 = gap = —3, g3 = gra = 4.

e Largest partial sum = mafo:1 gi =0 (k= 3) = Stop!

11

Algorithm: Kernighan-Lin(G)
Input: G = (V,E),|V|=2n.
Output: Balanced bi-partition A and B with ‘‘small’’ cut cost.

1 begin
2 Bipartition G into A and B such that |V4| = |Vg|, Van Vs =0,
and V,UVg =1V.

3 repeat

4 Compute D,, Yve V.

5 for =1 to n do

6 Find a pair of unlocked vertices vy € V4 and v, € Vp whose
exchange makes the largest decrease or smallest increase in
cut cost;

7 Mark v, and vy as locked, store the gain g;, and compute
the new D,, for all unlocked v € V;

8 Find k, such that G, = Y.F . § is maximized;

9 if G >0 then

10 Move v41,...,VUqr from V4 to VB and wvp1,...,vpr from Vp to Viy;

11 Unlock v, Yv € V.

12 until G, <0;

13 end

12

Time Complexity

Line 4: Initial computation of D: O(n?)
Line 5: The for-loop: O(n)

The body of the loop: O(n?).
— Lines 6—7: Step i takes (n —i+ 1)? time.

Lines 4—11: Each pass of the repeat loop: O(n3).

Suppose the repeat loop terminates after r» passes.

The total running time: O(rn3).

13

Extensions of K-L Algorithm

e Unequal sized subsets (assume ni < ny)
1. Partition: |A| =n1 and |B| = no.
2. Add no — n1 dummy vertices to set A. Dummy vertices have no
connections to the original graph.
3. Apply the Kernighan-Lin algorithm.
4. Remove all dummy vertices.

e Unequal sized ‘“vertices”

1. Assume that the smallest “vertex” has unit size.

2. Replace each vertex of size s with s vertices which are fully connected
with edges of infinite weight.

3. Apply the Kernighan-Lin algorithm.

e k-way partition

1. Partition the graph into k equal-sized sets.
2. Apply the Kernighan-Lin algorithm for each pair of subsets.
3. Time complexity? Can be reduced by recursive bi-partition.

14

A ‘“‘Better’ Implementation of K-L Algorithm

e Sort the D-values in a non-increasing order:
Dy, > Dy, > ... > D,
Dy, 2 Dy, > ... > Dy,

e Start with a1, compute g,, 1, Vb;
Start with az, compute gg, 4, Vb;

whenever D,, + D, < Maximum gain found so far (Quit!).

e Partition A ={a,b,c}: D,=6; Dy,=5, D.=3;
Partition B ={d,e, f}: D4=3; Dy=1;, D.=0;
Compute g's
9dad =3 — Gay=-1 — gae=2
gbd:O — gbf:4 — gbe:]-
ged =0 — NoO need to compute g.r (Quit!)
since Do+ Dy < gyy = 4.

e Note that the overall time complexity remains O(rn3).

15

Drawbacks of the Kernighan-Lin Heuristic

The K-L heuristic handles only unit vertex weights.

— Vertex weights might represent block sizes, different from blocks to
blocks.

— Reducing a vertex with weight w(v) into a clique with w(v) vertices
and edges with a high cost increases the size of the graph substan-
tially.

The K-L heuristic handles only exact bisections.
— Need dummy vertices to handle the unbalanced problem.

The K-L heuristic cannot handle hypergraphs.

— Need to handle multi-terminal nets directly.

The time complexity of a pass is high, O(n3).

16

Coping with Hypergraph

e A hypergraph H = (N, L) consists of a set N of vertices and a set L of
hyperedges, where each hyperedge corresponds to a subset N; of distinct
vertices with |N;| > 2.

hyperedge

e Schweikert and Kernighan, “A proper model for the partitioning of elec-
trical circuits,” 9th Design Automation Workshop, 1972.

e For multi-terminal nets, net cut is a more accurate measurement for cut
cost (i.e., deal with hyperedges).

— {A,B,E},{C,D, F} is a good partition.
— Should not assign the same weight for all edges.

17

net 1

Lo
o)
c

42

cost

cost

Net-Cut Model

o Let n(t) = # of cells associated with Net s.

2
n (i)
netl ' Yo |/ COt= 2

e Edge weight w,, = for an edge connecting cells x and y.

net 2 net 3 | net 4 net5
// _
E | F -

e Easy modification of the K-L heuristic.

18

X =

>V Dy : gain in moving X to |

Dy: gain in moving y to /

q,,= D, + Dy~ Correction(x, y)

Network Flow Based Partitioning
e Min-cut balanced partitioning: Yang and Wong, ICCAD-94.
— Based on max-flow min-cut theorem.

PN

AN

P2]

e Gate replication for partitioning: Yang and Wong, ICCAD-95.

e Performance-driven multiple-chip partitioning: Yang and Wong, FPGA’'94,
ED&TC-95.

e Multi-way partitioning with area and pin constraints: Liu and Wong,
ISPD-97.

e Multi-resource partitioning: Liu, Zhu, and Wong, FPGA-98.

e Partitioning for time-multiplexed FPGAs: Liu and Wong, ICCAD-98.
19

Flow Networks

A flow network G = (V,FE) is a directed graph in which
each edge (u,v) € E has a capacity c(u,v) > 0.

There is exactly one node with no incoming (outgoing) edges,
called the source s (sink t).

A flow f:V xV — R satisfies
— Capacity constraint: f(u,v) < ¢(u,v),Vu,v € V.
— Skew symmetry: f(u,v) = —f(v,u),Vu,v € V.

— Flow conservation: Y oy f(u,v) =0,Vu € V — {s,t}.

The value of a flow f: |f| = Yyey f(5,0) = Yyev f(v,1)

20

e Maximum-flow problem: Given a flow network G with
source s and sink t, find a flow of maximum value from s
to t.

flow/capacity

max flow [f| =16+ 7 = 2

Max-Flow Min-Cut

e A cut (X, X) of flow network G = (V, E) is a partition of V
into X and X =V — X such that s€ X and t € X.

— Capacity of a cut: cap(X,X) =3, cx e c(u,v). (Count
only forward edges!)

e Max-flow min-cut theorem Ford & Fulkerson, 1956.

— f is a max-flow <= |f| = cap(X,X) for some min-cut

flow/capacity

max flow |f| =16+ 7 =23
cap(X, X)=12+7+4=23

21

Network Flow Algorithms

e An augmenting path p is a simple path from s to t with the
following properties:

— For every edge (u,v) € E on p in the forward direction (a
forward edge), we have f(u,v) < c(u,v).

— For every edge (u,v) € E on p in the reverse direction (a
backward edge), we have f(u,v) > 0.

e f is a max-flow <= no more augmenting path.

16 @ = (D20 1216 — 12/20 16/16) == 16/20
LA e Tl TS

i) g 2 @& Oy
16/16 @ == @ 19/20 16/16, @ == @ 19/20 16/16 @ = @ 19/20
G I G B %@o
33wy &y IS Gy 3y @S

7114 11/14 11/14

22

e First algorithm by Ford & Fulkerson in 1959: O(|E||f]|); First
polynomial-time algorithm by Edmonds & Karp in 1969:
O(|E|2|V|); Goldberg & Tarjan in 1985: O(|E||V|1g(|V|?/|E|)),

etc.

Network Flow Based Partitioning

e \Why was the technique not wisely used in partitioning?

— Works on graphs, not hypergraphs.

— Results in unbalanced partitions; repeated min-cut for bal-
ance: |V| max-flows, time-consuming!

e Yang & Wong, ICCAD-94.
— Exact net modeling by flow network.
— Optimal algorithm for min-net-cut bipartition (unbalanced).

— Efficient implementation for repeated min-net-cut: same
asymptotic time as one max-flow computation.

23

Min-Net-Cut Bipartition

Net modeling by flow network:

A min-net-cut (X, X) in N «= A min-capacity-cut (X’, X’)
in N'.

Size of flow network: |V/| < 3|V|, |E'| < 2|E| 4+ 3|V].

Time complexity: O(min-net-cut-size) x|E| = O(|V||E|).

24

Repeated Min-Cut for Balanced Bipartition
(FBB)

e Allow component weights to deviate from (1—¢)W/2 to (1+
e)W/2.

(X3,%3) (X3, X3)

O An un-saturated net @ A saturated net © A node to be collapsed to s or

25

Incremental Flow

Repeatedly compute max-flow: very time-consuming.

No need to compute max-flow from scratch in each iteration.
Retain the flow function computed in the previous iteration.
Find additional flow in each iteration. Still correct.

FBB time complexity: O(|V||E|), same as one max-flow.

— At most 2|V| augmenting path computations.

* At each augmenting path computation, either an aug-
menting path is found, or a new cut is found, and at
least 1 node is collapsed to s or t.

x At most |f| < |V| augmenting paths found, since bridg-
ing edges have unit capacity.

26

— An augmenting path computation: O(|E|) time.

e o

X2) j

(X3,X3)

