Floorplanning

e Inputs to the floorplanning problem:
— A set of blocks, fixed or flexible.
— Pin locations of fixed blocks.
— A netlist.

e Objectives: Minimize area, reduce wirelength for (critical) nets, max-
imize routability, determine shapes of flexible blocks

| 1
|
I [
! S 1| 7 5 3
4 | |
|
6 6 4 |
5 |
1 3 1 2

An optimal floorplan,

in terms of area A non-optimal floorplal

Floorplan Design

X
e Modules: y
o Area: A=xy
® Aspectratio: r <=y/X<=s
d
e Rotation:
b e Module connectivity
C a 2 b
C 5 d

Floorplanning: Terminology

Rectangular dissection: Subdivision of a given rectangle by a finite #
of horizontal and vertical line segments into a finite # of non-overlapping
rectangles.

Slicing structure: a rectangular dissection that can be obtained by
repetitively subdividing rectangles horizontally or vertically.

Slicing tree: A binary tree, where each internal node represents a vertical
cut line or horizontal cut line, and each leaf a basic rectangle.

Skewed slicing tree: One in which no node and its right child are the
same.

—

~ ~~ V
/ P S~
H H H i

1 4 o I\l 3 2/ \]/H/ \3 2/ \1 v/ \H
" AVAN

2 6 I 6 \\7_~/////\ \ /\
6745 4 5

)Another slicing tree

Non-slicing floorplan Slicing floorplan A slicing tree (skewed (non—skewed)

3

Floorplan Design by Simulated Annealing

e Related work

— Wong & Liu, “A new algorithm for floorplan design,” DAC'86.

x Consider slicing floorplans.

— Wong & Liu, “Floorplan design for rectangular and L-shaped mod-
ules,” ICCAD'87.

* Also consider L-shaped modules.

— Wong, Leong, Liu, Simulated Annealing for VLSI Design, pp. 31-71,
Kluwer academic Publishers, 1988.

e Ingredients: solution space, neighborhood structure, cost function, an-
nealing schedule?

Solution Representation

e An expression E = ejes...epp—1, Where e; € {1,2,...,n,H,V} 1 < i <
2n — 1, is a Polish expression of length 2n — 1 iff

1. every operand 3, 1 <j5 <n, appears exactly once in E,

2. (the balloting property) for every subexpression E; = e
1 < 2n — 1, #operands > Foperators.

...62',1 S
16H35V2HV 74H

#of operands=4 =7

of operators=2 =5

e Polish expression «—— Postorder traversal.
e 1JH: rectangle ¢ on bottom of j; 15V rectangle ¢ on the left of j

\Y

7 5 R
A A
oo N 3 4

VANA

6 A 275

2 1 6
1 3 E = 16H2V75VH34HV

E = 16+2*75*+34+*
Postorder traversal of a treel

Solution Representation (cont’d)

/V\ T~
3 . / AN / N 4

1 4 / \) / \
2 E = 123H4VV E = 123HV4V
non—-skewed! skewed!

H v

Non—-skewed
A Q A Q

e Question: How to eliminate ambiguous representation?

Normalized Polish EXxpression

e A Polish expression FF = ejes...eon—1 IS called normalized iff EZ has no
consecutive operators of the same type (H or V).

e Given a normalized Polish expression, we can construct a unique rect-
angular slicing structure.

Y,
/| 5 Th
4 PN /\
Y, v 3
o H/ \2 7/ \5
2 /\
3 1 6
1 E = 16H2V75VH34HV

A normalized Polish expression

Neighborhood Structure

e Chain: HVHVH ... or VHVHV .

16/H 3 5\/\2 4 H V
chan

e Adjacent: 1 and 6 are adjacent operands; 2 and 7 are adjacent operands;
5 and V are adjacent operand and operator.

e 3 types of moves:
— M1 (Operand Swap): Swap two adjacent operands.
— M2 (Chain Invert): Complement some chain (V = H,H =V).

— M3 (Operator/Operand Swap): Swap two adjacent operand and
operator.

Effects of Perturbation

|
| | 3
e === | 2
| 3 [3] | 4
4 | 4
— — —
1 2 J M1 1 2 M2 1 1 M3 1 3
12V4AH3V 12VV3H4V 12H3H4V 12H34HV

e Question: The balloting property holds during the moves?

— M1 and M2 moves are OK.
— Check the M3 moves! Reject “illegal’ M3 moves.

e Check M3 moves: Assume that the M3 move swaps the operand e;
with the operator e;11, 1 <1< k—1. Then, the swap will not violate the
balloting property iff 2N,41 < 1.

— Ni: # of operators in the Polish expression E = ejex...ep, 1 < k<2n— 1.

Cost Function
o & =A4\W.
— A: area of the smallest rectangle
— W: overall wiring length

— \. user-specified parameter

|
| | 3
N == | 5 2
\ 3 3 \ 4
4 \ 4
e
1| 2 J—>M1 1| 2 Vool 1 V3 1
A: 12H34HV

o W = Zij Cijdij.
— ¢ # of connections between blocks ¢ and j.

— d;j: center-to-center distance between basic rectangles ¢ and j.

\ 7/

~

1
|
~e

Cost Evaluation: Shape Curves

e Shape curves correspond to different kinds of constraints where the
shaded areas are feasible regions.

w w
h
h
W
3“/ y=8X v y=sx
// /
/ /
//B;Légding // \
h, / h -
/ W=
W X wWoho S g vi>= b xivi>= A
Xi>=avVyi>=Db XI>=g}y|>:b Xi>=a,yi>=b X=>=ay >o_r XY >=
xi >=b,yi >= a X yi>= A xi>=b,yi>=a,xiyi>= A
(@) rigid, fixed (b) rigid, free (c) flexible, fixed (d) flexible, free
orientation orientation

orientation orientation

11

Area Computation

{ (94) }

1 2

2
2l 2 |5| 6
{‘(37\{(62)‘}/H{@(6:é}

ul U2 |—| max{ul, u2} vis

e Wiring cost?

Incremental Computation of Cost Function

e Each move leads to only a minor modification of the Polish expression.

e At most two paths of the slicing tree need to be updated for each move.
\ -
V. V
|¥H/ \H |¥ |¥H/ \L
AN S L A U
1 2

3 U 5 \
Coe kb g oo sk

E = 12H34V56VHV E = 12H35V46VHV

13

Incremental Computation of Cost Function

(cont’d)
o e
LH/ \H& &H/\ -

\ |;/>|\; M2 77N b S
&&s/\iﬁ &ﬁ/\@/\&
(. (T
E =12H34V56VHV E =12H34V56HVH
/VL\ VL_{

_ [1/ -
/H\ u /\Vlg M3 - Lv/ &V&

NN — VAN
i AN G WA
(S /H\ -
E = 12H34V56VHV C e

E =123H4V56VHV

14

Annealing Schedule

Initial solution: 12V3V ... nV.

1] 2| 3

T, =rTy,i =1,2,3,...; r = 0.85.

At each temperature, try kn moves (k = 5-10).
Terminate the annealing process if

— # of accepted moves < 5%,

— temperature is low enough, or

— run out of time.

15

Algorithm: Simulated_Annealing_Floorplanning(P, ¢, 7, k)
1 begin

2 E—12V3V4V ...nV; /* initial solution */
3 Best«— E; Ty +— lf&”j’); M — MT < uphill — 0; N = kn;
4 repeat

5 MT «— uphill «— reject < 0;
6

7

8

repeat
SelectMove (M) ;
Case M of

9 Mi: Select two adjacent operands e; and e¢;j; NE «— Swap(FE,ei, e;);
10 M>: Select a nonzero length chain C'; NFE «— Complement(E,C);

11 Msz: done «— FALSE;

12 while not (done) do

13 Select two adjacent operand e; and operator €;41;

14 if (ei—1#e4+1) and (2N;41 <i) then done «— TRUE;
15 NE « Swap(E, e, eit1);

16 MT «— MT + 1; Acost «+ cost(NE) — cost(FE);
—Acost

17 if (Acost <0) or (Random <e 1)

18 then

19 if (Acost >0) then wuphill — uphill + 1;
20 EF— NE;

21 if cost(E) < cost(best) then best «— E;

22 else reject «— reject 4+ 1;

23 until (uphill > N) or (MT >2N);

24 T'=7rT; /* reduce temperature */

25 until (%£% > 0.95) or (T <€) or OutOfTime;
26 end

16

Floorplanning by Mathematical Programming

e Sutanthavibul, Shragowitz, and Rosen, “An analytical approach to floor-
plan design and optimization,” 27th DAC, 1990.

e Notation:

— w;, hi: width and height of module M;.
— (wx;,yi): coordinate of the lower left corner of module M;.

— a; < w;/h; < b;: aspect ratio w;/h; of module M;. (Note: We defined
aspect ratio as h;/w; before.)

e Goal: Find a mixed integer linear programming (ILP) formulation for
the floorplan design.

— Linear constraints? Objective function?

17

Wi

: : Area= hi * wi
h Mi Aspect ratio = wi / hi

(Xi, yi)

Nonoverlap Constraints

Two modules M; and M; are nonoverlap, if at least one of the following linear constraints
is satisfied (cases encoded by p;; and gi;):

Pij Qi
M; to the left of MjZ x; + w; < Z; Oj O]
M; below Mj: vi + hi < Yj 0 1
M; to the right of Mji T — Wj > Z; 1 0
M; above Mj: Yi — hj > Yj 1 1

Let W, H be upper bounds on the floorplan width and height, respectively.

Introduce two 0,1 variables p;; and g;; to denote that one of the above inequalities is
enforced; e.g., pi; = 0,¢;; = 1 = y; + h; < y; is satisfied.

zi+w;, < x;+ W(pi + qij)
vi+hi < y;i+HQ+pij — qij)
i —w; > xj — W(1 —pij + qij)
yi—hj >y — H(2 - pij — qij)
Wi W Wi
hj
hi
(i, yi) (i, Vi) (xi, yi) (X, Vi)
Xi+ wi <= Xi + Wi > X

18

Cost Function & Constraints

Minimize Area = zy, nonlinear! (z,y: width and height of the resulting
floorplan)

How to fix?
— Fix the width W and minimize the height y!

Four types of constraints:
1. no two modules overlap (Vi,j:1<i< j<n);

2. each module is enclosed within a rectangle of width W and height H

3. 2, 20,y 20,1 <¢ <,
4. pij,qi; € {0,1}.

w;, h; are known.

19

Mixed ILP for Floorplanning

Mixed ILP for the floorplanning problem with rigid, fixed modules.
min y
subject to

zi +w; < W, 1<i<n (1)
yi + hi <y, 1<i<n (2)
z; +w; < x5+ W(pi; + qi5), 1<i<j<n (3)
yi + hi <y; + H(+ pij — qij), 1<i<j<n (4)
x; —wj > x; — W(L — pij + qj), 1<i<j<n (5)
yi —hj >y — H(2 — pij — 4i5), 1<i<j<n (6)
xi, ¥i = 0, 1<i<n (7)
pij, qij € {0, 1}, 1<i<jyj<n (8)

e Size of the mixed ILP: for n modules,

— # continuous variables: O(n); # integer variables: O(n?); # linear constraints:
O(n?).

— Unacceptably huge program for a large n! (How to cope with it?)

e Popular LP software: LINDO, Ip_solve, etc.
20

Mixed ILP for Floorplanning (cont’d)

min y

subject to
x; + rih; + (1 —ri)w; < W,
yi + riw; + (1 —7)h; <y,
x; + rihi + (1 — rp)w; < xj + M(pij + qi5),
yi +riw; — (1 —ri)hy < y; + M1+ pij — qi5),
x; — rjh; + (1 —rj)w; > x; — M(1 — pij + qij),
yi —rjwj — (1 —7r;)h; > yj — M(2 — pij — qi5),
xi, Y > 0,
pij, ¢ij € {0, 1},

1<i<n
1<i<n
1<i<i<n
1<i<ji<n
1<i<3<n
1<i1<3<n
1<i<n
1<i<gi<n

Mixed ILP for the floorplanning problem: rigid, freely oriented modules.

(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

e For each module 7 with free orientation, associate a 0-1 variable r;:

— r; = 0: 0° rotation for module z.

— r;, = 1: 90° rotation for module 1.

o M = max{W,H}.

21

Flexible Modules

Assumptions: w;, h; are unknown: area lower bound: A;.

Module size constraints: w;h; > A;; a; < 3% < b;.

/ / A; — A;
Hence, wpin = Aia'iy Wmazxr = Azbz, hmfm == \/:i’ hmcw: — \/a:i-

w;h; > A; nonlinear! How to fix?

— Can apply a first-order approximation of the equation: a line passing through
(wmina hmaz) and (wmaam hmzn)

h; = DNw; + ¢ /* y=mx+c *x/

hmaz — hm@'n
A= / * slope * /

Wmin — Wmaxzx
¢i = hmaz — DiWmin /* C = Yo — mxo */

— Substitute Ajw; +¢; for h; to form linear constraints (x;, yi, w; are unknown; A;, Aj,
ci, ¢j can be computed as above).

22

min

Al = wi * hi

Reducing the Size of the Mixed ILP

Time complexity of a mixed ILP: exponentiall!

Recall the large size of the mixed ILP: # variables, # constraints: O(n?).
— How to fix it?

Key: Solve a partial problem at each step (successive augmentation)

Questions:

— How to select next subgroup of modules? = linear ordering based on connectivity.
— How to minimize the # of required variables?

23

Next group

f modul

R i ? modules
\
| \
‘
| 1 IO
. |

2R Partial

' floorplar

Reducing the Size of the Mixed ILP (cont’d)

e Size of each successive mixed ILP depends on (1) # of modules in the next group; (2)
“size”’ of the partially constructed floorplan.

e Keys to deal with (2)
— Minimize the problem size of the partial floorplan.
— Replace the already placed modules by a set of covering rectangles.

— # rectangles is usually much smaller than # placed modules.

S I R I
Dead space

b e R
Horizontal c1 R2

cut edges]

R1

(© (d)

24

