Graph Models for Global Routing: Grid Graph

- Each cell is represented by a vertex.
- Two vertices are joined by an edge if the corresponding cells are adjacent to each other.
- The occupied cells are represented as filled circles, whereas the others are as clear circles.

Graph Model: Channel Intersection Graph

- Channels are represented as edges.
- Channel intersections are represented as vertices.
- Edge weight represents channel capacity.
- Extended channel intersection graph: terminals are also represented as vertices.

Global-Routing Problem

- Given a netlist N={ N_1, N_2, \ldots, N_n }, a routing graph G = (V, E), find a Steiner tree T_i for each net N_i , $1 \le i \le n$, such that $U(e_j) \le c(e_j)$, $\forall e_j \in E$ and $\sum_{i=1}^n L(T_i)$ is minimized, where
 - $c(e_j)$: capacity of edge e_j ;
 - $-x_{ij} = 1$ if e_j is in T_i ; $x_{ij} = 0$ otherwise;
 - $U(e_j) = \sum_{i=1}^n x_{ij}$: # of wires that pass through the channel corresponding to edge e_j ;

- $L(T_i)$: total wirelength of Steiner tree T_i .

• For high-performance, the maximum wirelength $(\max_{i=1}^{n} L(T_i))$ is minimized (or the longest path between two points in T_i is minimized).

Global Routing in different Design Styles

Global Routing in Standard Cell

- Objective
 - Minimize total channel height.
 - Assignment of feedthrough: Placement? Global routing?
- For high performance,
 - Minimize the maximum wire length.
 - Minimize the maximum path length.

Global Routing in Gate Array

- Objective
 - Guarantee 100% routability.
- For high performance,
 - Minimize the maximum wire length.
 - Minimize the maximum path length.

failed connection Each channel has a capacity of 2 tracks.

Global Routing in FPGA

- Objective
 - Guarantee 100% routability.
 - Consider switch-module architectural constraints.
- For performance-driven routing,
 - Minimize # of switches used.
 - Minimize the maximum wire length.
 - Minimize the maximum path length.

failed connection Each channel has a capacity of 2 tracks.

Classification of Global-Routing Algorithm

- Sequential approach: Assigns priority to nets; routes one net at a time based on its priority (net ordering?).
- Concurrent approach: All nets are considered at the same time (complexity?)

Global-Routing: Maze Routing

- Routing channels may be modelled by a weighted undirected graph called **channel connectivity graph**.
- Node \leftrightarrow channel; edge \leftrightarrow two adjacent channels; capacity: (width, length)

route B–*B*′ *via* 5–6–7

maze routing for nets A and B

route B-B' *via* 5-2-3-6-9-10-7 *updated channel graph*

Global Routing by Integer Programming

- Suppose that for each net *i*, there are n_i possible trees $t_1^i, t_2^i, \ldots, t_{n_i}^i$ to route the net.
- Constraint I: For each net *i*, only one tree t_j^i will be selected.
- Constraint II: The capacity of each cell boundary c_i is not exceeded.
- Minimize the total tree cost.
- Question: Feasible for practical problem sizes?

An Integer-Programming Example

Boundary	t_{1}^{1}	t_{2}^{1}	t_{3}^{1}	t_1^2	t_{2}^{2}	t_{3}^{2}	t_1^3	t_2^3
B1	0	1	1	1	0	1	1	0
B2	1	0	1	0	1	1	1	0
B3	0	1	1	1	1	0	0	1
B4	1	1	0	0	1	1	0	1

• $g_{i,j}$: cost of tree $t_j^i \Rightarrow g_{1,1} = 2, g_{1,2} = 3, g_{1,3} = 3, g_{2,1} = 2, g_{2,2} = 3, g_{2,3} = 3, g_{3,1} = 2, g_{3,2} = 2$.

Minimize $2x_{1,1} + 3x_{1,2} + 3x_{1,3} + 2x_{2,1} + 3x_{2,2} + 3x_{2,3} + 2x_{3,1} + 2x_{3,2}$ subject to

 $\begin{array}{rcl} x_{1,1} + x_{1,2} + x_{1,3} &=& 1 & (Constraint \ I : t^{1}) \\ x_{2,1} + x_{2,2} + x_{2,3} &=& 1 & (Constraint \ I : t^{2}) \\ x_{3,1} + x_{3,2} &=& 1 & (Constraint \ I : t^{3}) \\ x_{1,2} + x_{1,3} + x_{2,1} + x_{2,3} + x_{3,1} &\leq& 2 & (Constraint \ II : B1) \\ x_{1,1} + x_{1,3} + x_{2,2} + x_{2,3} + x_{3,1} &\leq& 2 & (Constraint \ II : B2) \\ x_{1,2} + x_{1,3} + x_{2,1} + x_{2,2} + x_{3,2} &\leq& 2 & (Constraint \ II : B3) \\ x_{1,1} + x_{1,2} + x_{2,2} + x_{2,3} + x_{3,2} &\leq& 2 & (Constraint \ II : B4) \\ x_{i,j} &=& 0, 1, 1 \leq i, j \leq 3 \end{array}$

Hierarchical Global Routing

- Marek-Sadowska, "Router planner for custom chip design," ICCAD, 1986.
- At each level of the hierarchy, an attempt is made to minimize the cost of nets crossing cut lines.
- At the lowest level of the hierarchy, the layout surface is divided into $R \times R$ grid regions with boundary capacity equal to C tracks.
- Let R_l be the # of grid regions of a given cut line l; a cut line can be divided into $M = \frac{R_l}{C}$ sections.
- Global routing can be formulated as a linear assignment problem:

- $x_{i,j} = 1$ if net *i* is assigned to section *j*; $x_{i,j} = 0$ otherwise.

- Each net crosses the cut line exactly once: $\sum_{j=1}^{M} x_{ij} = 1, 1 \le i \le N$.
- Capacity constraint of each section: $\sum_{i=1}^{N} x_{ij} \leq C, 1 \leq j \leq M$.
- w_{ij} : cost of assigning net *i* to section *j*. Minimize $\sum_{i=1}^{N} \sum_{j=1}^{M} w_{ij} x_{ij}$.

The Routing-Tree Problem

• **Problem:** Given a set of pins of a net, interconnect the pins by a "routing tree."

building block

- Minimum Rectilinear Steiner Tree (MRST) Problem: Given *n* points in the plane, find a minimum-length tree of rectilinear edges which connects the points.
- $MRST(P) = MST(P \cup S)$, where P and S are the sets of original points and Steiner points, respectively.

Theoretic Results for the MRST Problem

- Hanan's Thm: There exists an MRST with all Steiner points (set *S*) chosen from the intersection points of horizontal and vertical lines drawn points of *P*.
 - Hanan, "On Steiner's problem with rectilinear distance," SIAM J. Applied Math., 1966.
- Hwang's Theorem: For any point set P, $\frac{Cost(MST(P))}{Cost(MRST(P))} \leq \frac{3}{2}$.
 - Hwang, "On Steiner minimal tree with rectilinear distance," SIAM J. Applied Math., 1976.
- Best existing approximation algorithm: Performance bound $\frac{61}{48}$ by Foessmeier et al.
 - Foessmeier et al, "Fast approximation algorithm for the rectilinear Steiner problem," Wilhelm Schickard-Institut f
 ür Informatik, TR WSI-93-14, 93.
 - Zelikovsky, "An $\frac{11}{6}$ approximation algorithm for the network Steiner problem," Algorithmica., 1993.

A Simple Performance Bound

- Easy to show that $\frac{Cost(MST(P))}{Cost(MRST(P))} \leq 2$.
- Given any MRST T on point set P with Steiner point set S, construct a spanning tree T' on P as follows:
 - 1. Select any point in T as a root.
 - 2. Perform a depth-first traversal on the rooted tree T.
 - 3. Construct T' based on the traversal.

