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Maze Router: Lee Algorithm

• Lee, “An algorithm for path connection and its application,” IRE Trans. Elec-
tronic Computer, EC-10, 1961.

• Discussion mainly on single-layer routing
• Strengths

– Guarantee to find connection between 2 terminals if it exists.
– Guarantee minimum path.

• Weaknesses

– Requires large memory for dense layout
– Slow

• Applications: global routing, detailed routing
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Lee Algorithm

• Find a path from S to T by “wave propagation”.
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Filing Retrace

• Time & space complexity for an M ×N grid: O(MN) (huge!)
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Reducing Memory Requirement
• Akers’s Observations (1967)

– Adjacent labels for k are either k − 1 or k + 1.

– Want a labeling scheme such that each label has its preceding label different from
its succeeding label.

• Way 1: coding sequence 1,2,3,1,2,3, . . .; states: 1, 2, 3, empty, blocked
(3 bits required)

• Way 2: coding sequence 1,1,2,2,1,1,2,2, . . .; states: 1, 2, empty, blocked
(need only 2 bits)
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Sequence: 1, 2, 3, 1, 2, 3, ... Sequence: 1, 1, 2, 2, 1, 1, 2, 2, ... 
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Reducing Running Time

• Starting point selection: Choose the point farthest from the center of
the grid as the starting point.

• Double fan-out: Propagate waves from both the source and the target
cells.

• Framing: Search inside a rectangle area 10–20% larger than the bounding
box containing the source and target.

– Need to enlarge the rectangle and redo if the search fails.
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Connecting Multi-Terminal Nets

• Step 1: Propagate wave from the source s to the closet target.

• Step 2: Mark ALL cells on the path as s.

• Step 3: Propagate wave from ALL s cells to the other cells.

• Step 4: Continue until all cells are reached.

• Step 5: Apply heuristics to further reduce the tree cost.
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Routing on a Weighted Grid

• Motivation: finding more desirable paths

• weight(grid cell) = # of unblocked grid cell segments− 1
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A Routing Example on a Weighted Grid
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Hadlock’s Algorithm

• Hadlock, “A shortest path algorithm for grid graphs,” Networks, 1977.
• Uses detour number (instead of labeling wavefront in Lee’s router)

– Detour number, d(P ): # of grid cells directed away from its target
on path P .

– MD(S, T ): the Manhattan distance between S and T .
– Path length of P , l(P ): l(P ) = MD(S, T ) + 2d(P ).
– MD(S, T ) fixed! ⇒ Minimize d(P ) to find the shortest path.
– For any cell labeled i, label its adjacent unblocked cells away from
T i+ 1; label i otherwise.

• Time and space complexities: O(MN), but substantially reduces the #
of searched cells.

• Finds the shortest path between S and T .
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Hadlock’s Algorithm (cont’d)

• d(P ): # of grid cells directed away from its target on path P .
• MD(S, T ): the Manhattan distance between S and T .
• Path length of P , l(P ): l(P ) = MD(S, T ) + 2d(P ).
• MD(S, T ) fixed! ⇒ Minimize d(P ) to find the shortest path.
• For any cell labeled i, label its adjacent unblocked cells away from T
i+ 1; label i otherwise.
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Soukup’s Algorithm

• Soukup, “Fast maze router,” DAC-78.
• Combined breadth-first and depth-first search.

– Depth-first (line) search is first directed toward target T until an obstacle or T is
reached.

– Breadth-first (Lee-type) search is used to “bubble” around an obstacle if an obstacle
is reached.

• Time and space complexities: O(MN), but 10–50 times faster than Lee’s
algorithm.

• Find a path between S and T , but may not be the shortest!

S

T
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Features of Line-Search Algorithms

generate
  lines

every point is an 
escape point

one escape point
per line segment

Mikami−Tabuchi Hightower

lines generated by
"escape" points

works on line segment

source target 

generate
  lines

intersect

path is found

set A set B

some line
from A

some line 
from B

• Time and space complexities: O(L), where L is the # of line segments
generated.

11



www.jntuworld.com

Mikami-Tabuchi’s Algorithm

• Mikami & Tabuchi, “A computer program for optimal routing of printed
circuit connectors,” IFIP, H47, 1968.

• Every grid point is an escape point.
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Hightower’s Algorithm
• Hightower, “A solution to line-routing problem on the continuous plane,”

DAC-69.

• A single escape point on each line segment.

• If a line parallels to the blocked cells, the escape point is placed just past
the endpoint of the segment.
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Comparison of Algorithms

Maze routing Line search
Lee Soukup Hadlock Mikami Hightower

Time O(MN) O(MN) O(MN) O(L) O(L)
Space O(MN) O(MN) O(MN) O(L) O(L)

Finds path if one exists? yes yes yes yes no
Is the path shortest? yes no yes no no

Works on grids or lines? grid grid grid line line

• Soukup, Mikami, and Hightower all adopt some sort of line-search oper-
ations ⇒ cannot guarantee shortest paths.
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Multi-layer Routing

• 3-D grid:
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• Two planner arrays:

– Neglect the weight for inter-layer connection through via.
– Pins are accessible from both layers.
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Net Ordering
• Net ordering greatly affects routing solutions.
• In the example, we should route net b before net a.
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Net Ordering (cont’d)
• Order the nets in the ascending order of the # of pins within their bounding boxes.

• Order the nets in the ascending (or descending??) order of their lengths.

• Order the nets based on their timing criticality.
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Rip-Up and Re-routing

• Rip-up and re-routing is required if a global or detailed router fails in
routing all nets.

• Approaches: the manual approach? the automatic procedure?

• Two steps in rip-up and re-routing

1. Identify bottleneck regions, rip off some already routed nets.

2. Route the blocked connections, and re-route the ripped-up connec-
tions.

• Repeat the above steps until all connections are routed or a time limit is
exceeded.
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