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Routing Models

e Grid-based model:
— A grid is super-imposed on the routing region.

— Wires follow paths along the grid lines.

e Gridless model:
— Any model that does not follow this “gridded” approach.

grid—based gridless



Models for Multi-Layer Routing

e Unreserved layer model: Any net segment is allowed to be placed in
any layer.

e Reserved layer model: Certain type of segments are restricted to
particular layer(s).

— Two-layer: HV (horizontal-Vertical), VH
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— Three-layer: HVH, VHV

unreserved layer model



Terminology for Channel Routing Problems
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e L ocal density at column i: total # of nets that crosses column s.

e Channel density: maximum local density; # of horizontal tracks required > channel
density.



Channel Routing Problem

Assignments of horizontal segments of nets to tracks.

Assignments of vertical segments to connect.
— horizontal segments of the same net in different tracks, and

— the terminals of the net to horizontal segments of the net.

Horizontal and vertical constraints must not be violated.

— Horizontal constraints between two nets: The horizontal span of
two nets overlaps each other.

— Vertical constraints between two nets: There exists a column such
that the terminal on top of the column belongs to one net and the
terminal on bottom of the column belongs to the other net.

Objective: Channel height is minimized (i.e., channel area is
minimized).



Horizontal Constraint Graph (HCGQG)
e HCG G = (V, F) is undirected graph where

— V = {wv;|v; represents a net n;}

— E = {(vi,v;)| a horizontal constraint exists between n; and n;}.

e For graph G: vertices < nets; edge (i,5) < net ¢ overlaps net j.
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Vertical Constraint Graph (VCQG)

e VCG G = (V,FE) is directed graph where
— V = {wvj|v; represents a net n;}

— E = {(vi,v;)| a vertical constraint exists between n; and n;}.

e For graph G: vertices < nets; edge 1 — j < net + must be above net ;.
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2-L Channel Routing: Basic Left-Edge
Algorithm

Hashimoto & Stevens, “Wire routing by optimizing channel assignment
within large apertures,” DAC-71.

No vertical constraint.

HV-layer model is used.

Doglegs are not allowed.

Treat each net as an interval.

Intervals are sorted according to their left-end xz-coordinates.
Intervals (nets) are routed one-by-one according to the order.

For a net, tracks are scanned from top to bottom, and the first track
that can accommodate the net is assigned to the net.

Optimality: produces a routing solution with the minimum # of tracks
(if no vertical constraint).



Basic Left-Edge Algorithm

Algorithm: Basic _Left-Edge(U, track[j])

U: set of unassigned intervals (nets) I[i,...,[,;

I; = [sj,ej]: interval j with left-end x-coordinate s; and right-end e;;

track[j]: track to which net j is assigned.

1 begin

2 U —{l,1s,...,1};

3t 0;

4 while (U # () do

5 t«—t+1;

6 watermark «— 0;

7 Wwhile (there is an [; €U s.t. s; > watermark) do

8 Pick the interval [; € U with s; > watermark,
nearest watermark;

9 track[j] < t;

10 watermark < e;;

11 U < U i {Ij};

12 end




Basic Left-Edge Example

U={lL,1I...,I}; 1 =[1,3], I =1[2,6], Is =[4,8], I+ =[5,10], Is = [7,11], Is = [9, 12].
t=1:

— Route I;: watermark = 3;

— Route I3. watermark = 8§;

— Route Is: watermark = 12;
t = 2:

— Route Ir: watermark = 6;

— Route I5: watermark = 11;

t = 3: Route 14
column: 1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 04 2 0 3 0 4 0 o
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Constrained Left-Edge Algorithm

Algorithm: Constrained _Left-Edge(U, track[j])

U: set of unassigned intervals (nets) I[i,...,[,;
I; = [sj,ej]: interval j with left-end x-coordinate s; and right-end e;;
track[j]: track to which net j is assigned.
1 begin
2 U —{l,1s,...,1};
3t 0;
4 while (U # () do
5 t«—t+1;
6 watermark «— 0;
7 while (there is an unconstrained [; ¢ U s.t. s; > watermark) do
8 Pick the interval [; € U that is unconstrained,
with s; > watermark, nearest watermark;
9 track[j] < t;
10 watermark < e;;
11 U—U-—{L};
12 end
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Constrained Left-Edge Example
I =[1,3], L =11,5], I3 =1[6,8], I, = [10,11], I5s = [2,6], Is = [7,9].
Track 1: Route I; (cannot route I3); Route Is; Route I4.
Track 2: Route Iz; cannot route I3.
Track 3: Route Is.

Track 4: Route Is.
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track 1 track 2 track 3 track 4
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Dogleg Channel Router
e Deutch, “A dogleg channel router,” 13rd DAC, 1976.

e Drawback of Left-Edge: cannot handle the cases with constraint cycles.

— Doglegs are used to resolve constraint cycle.
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e Drawback of Left-Edge: the entire net is on a single track.

— Doglegs are used to place parts of a net on different tracks to minimize channel

height.
— Might incur penalty for additional vias.
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Dogleg Channel Router

e Each multi-terminal net is broken into a set of 2-terminal nets.

e [T woO parameters are used to control routing:

— Range: Determine the # of consecutive 2-terminal subnets of the same net that
can be placed on the same track.

— Routing sequence: Specifies the starting position and the direction of routing
along the channel.

e Modified Left-Edge Algorithm is applied to each subnet.
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Over-the-Cell Routing

Routing over the cell rows is possible due to the limited use of the 2nd (M2) metal
layers within the cells.

Divide the over-the-cell routing problem into 3 steps: (1) routing over the cell, (2)
choosing the net segments, and (3) routing within the channel.

Reference: Cong & Liu, “Over-the-cell channel routing,” IEEE TCAD, Apr. 1990.
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Over-the-Cell Channel Routing

e Cong & Liu, "Over-the-cell channel routing,” IEEE TCAD, Apr. 1990.

M Select over-the—cell nets

use Supowit’s Max. Independe
Set algorithm for circle graph

(solvable in O(& ) time,
3 W, — c: # of columns)

Select terminals among
M "equivalent" ones for regular

channel routing

(Goal: minimize channel densit

W NP-complete!)

l . &, 51 & Plannar routing for
T 71 Nl over—the—cell nets
+
Regular channel routing
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Supowit’s Algorithm
e Supowit, “Finding a maximum plannar subset of a set of nets in a channel,” IEEE
TCAD, 1987.
e Problem: Given a set of chords, find a maximum plannar subset of chords.

— Label the vertices on the circle O to 2n — 1.

— Compute MI1S5(i,j): size of maximum independent set between vertices ¢ and j,
1< 7.

— Answer = M15(0,2n —1).

Maximum independent
. set: nodes b, c, f
Maximum plannar

subset of chords.

MIS(i, j): size of max.
independent set here
- j
vetrices on the circle MIS(i, ), i <]

17



Dynamic Programming in Supowit’s Algorithm

e Apply dynamic programming to compute M1S(i, 7).
case?2 case3

DN

MIS(i, j) = MIS(i, j-1) MIS(, J) = MJIrS|\(/i|’|§(_kl+)1Tj£1) MIS(, j) = MIS(i+1, j-1) + 1

I+1

[ S—7 MIS(i+1, j-1)

MIS(k+1, j-1)
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