Channel & Switchbox Routing

Routing Models

• Grid-based model:

- A grid is super-imposed on the routing region.
- Wires follow paths along the grid lines.

• Gridless model:

- Any model that does not follow this "gridded" approach.

Models for Multi-Layer Routing

- Unreserved layer model: Any net segment is allowed to be placed in any layer.
- Reserved layer model: Certain type of segments are restricted to particular layer(s).
 - Two-layer: HV (horizontal-Vertical), VH
 - Three-layer: HVH, VHV

3 types of 3-layer models

Terminology for Channel Routing Problems

- Local density at column i: total # of nets that crosses column i.
- Channel density: maximum local density; # of horizontal tracks required > channel density.

Channel Routing Problem

- Assignments of horizontal segments of nets to tracks.
- Assignments of vertical segments to connect.
 - horizontal segments of the same net in different tracks, and
 - the terminals of the net to horizontal segments of the net.
- Horizontal and vertical constraints must not be violated.
 - Horizontal constraints between two nets: The horizontal span of two nets overlaps each other.
 - Vertical constraints between two nets: There exists a column such that the terminal on top of the column belongs to one net and the terminal on bottom of the column belongs to the other net.
- Objective: Channel height is minimized (i.e., channel area is minimized).

Horizontal Constraint Graph (HCG)

- HCG G = (V, E) is **undirected** graph where
 - $V = \{v_i | v_i \text{ represents a net } n_i\}$
 - $E = \{(v_i, v_j) | \text{ a horizontal constraint exists between } n_i \text{ and } n_j\}.$
- For graph G: vertices \Leftrightarrow nets; edge $(i, j) \Leftrightarrow$ net i overlaps net j.

Vertical Constraint Graph (VCG)

- VCG G = (V, E) is **directed** graph where
 - $V = \{v_i | v_i \text{ represents a net } n_i\}$
 - $E = \{(v_i, v_j) | \text{ a vertical constraint exists between } n_i \text{ and } n_j\}.$
- For graph G: vertices \Leftrightarrow nets; edge $i \rightarrow j \Leftrightarrow$ net i must be above net j.

A routing problem and its VCG.

2-L Channel Routing: Basic Left-Edge Algorithm

- Hashimoto & Stevens, "Wire routing by optimizing channel assignment within large apertures," DAC-71.
- No vertical constraint.
- HV-layer model is used.
- Doglegs are not allowed.
- Treat each net as an interval.
- Intervals are sorted according to their left-end x-coordinates.
- Intervals (nets) are routed one-by-one according to the order.
- For a net, tracks are scanned from top to bottom, and the first track that can accommodate the net is assigned to the net.
- Optimality: produces a routing solution with the minimum # of tracks (if no vertical constraint).

Basic Left-Edge Algorithm

```
Algorithm: Basic_Left-Edge(U, track[j])
U: set of unassigned intervals (nets) I_1, \ldots, I_n;
I_j = [s_j, e_j]: interval j with left-end x-coordinate s_j and right-end e_j;
track[j]: track to which net j is assigned.
1 begin
2 U \leftarrow \{I_1, I_2, \dots, I_n\};
3 t \leftarrow 0;
4 while (U \neq \emptyset) do
5 t \leftarrow t + 1;
6 watermark \leftarrow 0;
7 while (there is an I_j \in U s.t. s_j > watermark) do
       Pick the interval I_j \in U with s_j > watermark,
       nearest watermark;
9 track[j] \leftarrow t;
10 watermark \leftarrow e_j;
11 U \leftarrow U - \{I_j\};
12 end
```

Basic Left-Edge Example

```
• U = \{I_1, I_2, \dots, I_6\}; I_1 = [1, 3], I_2 = [2, 6], I_3 = [4, 8], I_4 = [5, 10], I_5 = [7, 11], I_6 = [9, 12].
```

- t = 1:
 - Route I_1 : watermark = 3;
 - Route I_3 : watermark = 8;
 - Route I_6 : watermark = 12;
- t = 2:
 - Route I_2 : watermark = 6;
 - Route I_5 : watermark = 11;
- t=3: Route I_4

Constrained Left-Edge Algorithm

```
Algorithm: Constrained_Left-Edge(U, track[j])
U: set of unassigned intervals (nets) I_1, \ldots, I_n;
I_j = [s_j, e_j]: interval j with left-end x-coordinate s_j and right-end e_j;
track[j]: track to which net j is assigned.
1 begin
2 U \leftarrow \{I_1, I_2, \dots, I_n\};
3 t \leftarrow 0;
4 while (U \neq \emptyset) do
5 t \leftarrow t + 1;
6 watermark \leftarrow 0;
7 while (there is an unconstrained I_j \in U s.t. s_j > watermark) do
       Pick the interval I_j \in U that is unconstrained,
       with s_j > watermark, nearest watermark;
9 track[j] \leftarrow t;
10 watermark \leftarrow e_j;
11 U \leftarrow U - \{I_j\};
12 end
```

Constrained Left-Edge Example

- $I_1 = [1, 3]$, $I_2 = [1, 5]$, $I_3 = [6, 8]$, $I_4 = [10, 11]$, $I_5 = [2, 6]$, $I_6 = [7, 9]$.
- Track 1: Route I_1 (cannot route I_3); Route I_6 ; Route I_4 .
- Track 2: Route I_2 ; cannot route I_3 .
- Track 3: Route I_5 .
- Track 4: Route I_3 .

Dogleg Channel Router

- Deutch, "A dogleg channel router," 13rd DAC, 1976.
- Drawback of Left-Edge: cannot handle the cases with constraint cycles.
 - **Doglegs** are used to resolve constraint cycle.

- Drawback of Left-Edge: the entire net is on a single track.
 - Doglegs are used to place parts of a net on different tracks to minimize channel height.
 - Might incur penalty for additional vias.

Dogleg Channel Router

- Each multi-terminal net is broken into a set of 2-terminal nets.
- Two parameters are used to control routing:
 - Range: Determine the # of consecutive 2-terminal subnets of the same net that can be placed on the same track.
 - Routing sequence: Specifies the starting position and the direction of routing along the channel.
- Modified Left-Edge Algorithm is applied to each subnet.

Over-the-Cell Routing

- Routing over the cell rows is possible due to the limited use of the 2nd (M2) metal layers within the cells.
- Divide the over-the-cell routing problem into 3 steps: (1) routing over the cell, (2) choosing the net segments, and (3) routing within the channel.
- Reference: Cong & Liu, "Over-the-cell channel routing," IEEE TCAD, Apr. 1990.

Over-the-Cell Channel Routing

• Cong & Liu, "Over-the-cell channel routing," IEEE TCAD, Apr. 1990.

Select over—the—cell nets use Supowit's Max. Independent Set algorithm for circle graph (solvable in O(c³) time, c: # of columns)

Select terminals among
"equivalent" ones for regular
channel routing
(Goal: minimize channel density
NP-complete!)

Plannar routing for over—the—cell nets

+
Regular channel routing

Supowit's Algorithm

- Supowit, "Finding a maximum plannar subset of a set of nets in a channel," IEEE TCAD, 1987.
- Problem: Given a set of chords, find a maximum plannar subset of chords.
 - Label the vertices on the circle 0 to 2n-1.
 - Compute MIS(i, j): size of maximum independent set between vertices i and j, i < j.
 - Answer = MIS(0, 2n 1).

Dynamic Programming in Supowit's Algorithm

• Apply dynamic programming to compute MIS(i, j).

