Generating Plane Waves 8.02 Spring 1999

Notes On Plane Electromagnetic Waves

We are reaching one of the most important parts of this course, el ectromagnetic
radiation. After Thanksgiving we will do alot of math to show you that electromagnetic
waves propagate at the speed of light. But first we show you that with what we already
have plus afew plausible assumptions, we can get an intuitive understanding for how
electromagnetic waves are generated, and some sense of their nature. We will return to this
subject in more mathematical detail in abit, but first the intuitive approach.

Creation and Reflection of Electromagnetic Plane Waves
Creation: Electromagnetic plane waves propagate in empty space at the speed of

light, c= Uoto. Herewe want to demonstrate how one would create such wavesin a
particularly ssimple geometry--planar. Although physically thisis not particularly applicable
to thereal world, it is reasonably easy to treat, and we can see directly how electromagnetic
plane waves are generated, why it takes work to make them, and how much energy they
carry away with them.

To make an electromagnetic plane wave, we do much the same thing we do when
we make waves on astring. We grab the string somewhere and shake it, and thereby
generate awave on the string. We do work against the tension in the string when we shake
it, and that work is carried off as an energy flux in the wave. Electromagnetic waves are
much the same proposition. The electric field line serves asthe "string”. Aswe will see
below, there is atension associated with an electric field line, in that when we shake it (try
to displaceit fromitsinitial position), thereis arestoring force that resists the shake, and a
wave propagates along the field line as aresult of the shake. To understand in detail what
happensin this process will involve using most of the electromagnetism we have learned
thusfar, from Gauss's Law to Ampere's Law plus the reasonabl e assumption that
el ectromagnetic information propagates at ¢ in a vacuum (we will show thisisthe case
mathematically after Thanksgiving).

The first obvious question is...how in the world do we shake an electric field line?
What do we grab on to? Well, what we do is shake the electric charges that they are
attached to. After dl, it isthese charges that produce the electric field, and in avery red
sense the eectric field is "rooted” in the electric charges that produce them. Knowing this,
and assuming that in a vacuum, electromagnetic signals propagate at the speed of light, we
can pretty much puzzle out how to make a plane electromagnetic wave by shaking charges.
Let'sfirst figure out how to make akink in an electric field line, and then we'lll go onto
make sinusoidal waves.

Suppose we have an infinite sheet of charge located in the yz-plane, initially at rest,
with surface charge density o (see sketch next page). From Gauss's Law, we know that
this surface charge will give riseto astatic eectric fild Eq given by Eq =+ X o/2¢q for x >
0, and Eg=-X o/2eo for x< 0 (X is aunit vector in the x-direction).
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Now, at t = 0, we grab the sheet of charge and start pulling it downward with
constant velocity V=-Vy. Let'slook at how things will then appear at alater timet = T.

In particular, let'slook at the -

field line that goes throughy = 0 gf;;?”ffré’ harge t<0
fort< 0 (beforethe sheet starts surface charge 6
moving--see the top panel to the
immediateright ). The "foot" of
thiselectric field line, that is,
where it isanchored, isrooted in Y
the eectric charge that generates
it, and that "foot" must move W
downward with the sheet of Z®
charge, at the same speed asthe
charges move downward. Thus
the "foot" of our electric field
line, which wasinitidly at y=0
at= 0, will beadistance-VT
down they-axisattimet=T.
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However, we have assumed that
the information that thisfield line
is being dragged downward can
only propagate outward from x =
0 with the speed of light, c.

Thus the portion of our field line
outside of a distance along the
x-axis of cT from the origin
doesn't know the charges are moving, and thus has not yet begun to move downward.
Our field line therefore must appear at timet= T aswe show it in the lower sketch.
Nothing has happened outside of |X| > cT; thefoot of thefield lineat x = Oisadistance
-VT down they-axis, and we have guessed about what the field line must look like for

0 <|x] < cT by simply connecting the two positions on the field line that we know about at
timeT (x=0and|X =cT) by adraight line. Thisisexactly the guess we would make if
we were dealing with astring instead of an electric field. Thisis areasonable thing to do,
and it turns out to be the right guess.

If you think about what the shape of thisfield line implies, it implies the following.
What we have done by pulling down on the charged sheet is to generate a perturbation in
the dectric fidld, OE, in addition to the static field Eq. If welook at the total field
E for [x] < cT,wehave E = Eg + OE, asshown in the lower right inset in our figure
above. The vector E must be paralld to the line connecting the foot of the field line and the
position of thefield line at |x| = cT, just by the geometry of the situation. Thus, the two
trianglesto theright of the y-axis, as shown on the lower sketch, must be congruent.
Therefore, we must have that tan 6 = SE/Ep = VT/CT = Vic, wherethe angle6 isas
shown. Thus we have that 6E = (V/C)E, or, using our result from Gauss's Law for Eg,

SE = +y Vs/2eqC. (1)

We have generated an electric field perturbation, and this expression tells us how large the
perturbation field SE isfor agiven speed of the sheet of charge, V.

Now we understand why we say that the electric field line has a tension associated
with it, just as a string does. The direction of our perturbation 0E is such that the forcesit
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exerts on the chargesin the sheet resist the motion of the sheet--that is, there is an upward
electric force on the sheet when we try to move it downward. That means that because of
the presence of the eectric field, we have to exert an additional downward force on an area
dA of the sheet containing charge dg = o dA. This additional forceisthe downward force
we have to exert to overcome the upward "tension” associated with the electric field. This
tension is given by +dq oE = y (0dA)(Vol2¢eqc), where we have used equation (1) above
for 6E. Thisisjust like the restoring tension we must work against when we perturb a
string.  Thus we have to do work against the electric field to create the perturbation in the
electric field, applying aforce sufficient to overcome the electric force, that is, applying a
forcedF s = -dg OE. The amount of work per unit time that we must do (joules per
second) istherefore

dwWidt = dFys+V =[-¥ (SdA)(VS/2e0)][- ¥ V] = +(V2s2/2e,C) dA
or, dividing by dA to get the work we must do per unit time per unit area of the sheet,
dW/dtdA =+V2s2/2e,c (2)

What else has happened in this process of moving the charged sheet down? Well,
once the charged sheet isin motion, we have created a sheet of current with current per unit
lengthn =oV (the units of this quantity are Amps/meter, asthey must be). From
Ampere's Law, we know that we will therefore have created a magnetic field, in addition to
our 8E.  Such acurrent sheet will produce amagnetic field of magnitude 6B = ugn/2 =
uoVo/2 , and this magnetic field will reverse across the current sheet. We show the
configuration of the field appropriate to adownward current in the sketch below. Again,

the information that the charged sheet has v

started moving, producing a current sheet and Jy

associated magnetic field, can only propagate cr cr
outward from x = 0 with speed ¢, and

therefore outside of a distance along the x-axis
of +cT, the magnetic field is still zero, while
inside that distance it has the configuration
shown in the sketch, with the magnitude given
above. Note that
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where we have used c = ]J\/ Uoto. Not only
does our current sheet generate amagnetic field
that is perpendicular to our electric field

perturbation electric field OE, as we must have for an el ectromagnetic wave, but we also
have the relationship between the magnitudes that we expect to see for atransverse
electromagnetic wave, which we will derive in detail from Maxwell's equations after
Thanksgiving (see aso Chapter 14 of EMI).

=<
-
O

Now, lets discuss the energy carried away by these perturbation fields. The energy
flux associated with an electromagnetic field is given by the Poynting vector S = ExB/u.
If we compute this quantlty for our fieldsfor x > 0, we get an energy flow to the right
(8ExdB isinthe +X direction for x > 0) whose magnitude 8S (in joules per sec per
square meter) is
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dS = dEdB/my = (Vs/2e,0)(MpVs/2 ) Imy = V2s2/4eyc (4

Thisisonly 1/2 of the work we do per unit time per unit areato pull the sheet down, as
given by equation (2). But, thefields on the left carry exactly the same amount of energy
flux to the left, (the magnetic field reverses across x = 0, whereas the electric field does
not, so the Poynting flux also reverses acrossx = 0). So the total energy flux carried off
by the perturbation electric and magnetic fields we have generated is exactly equal to the
rate at which we do work per unit areato pull the charged sheet down against thetension in
the electric field (see equation (2) above). Thus we have generated perturbation
electromagnetic fields which carry off energy, and they carry off energy at exactly the rate
that it takes usto create them.

Thisiswhere the energy comes from that is carried by an electromagnetic wave.
The agent who originally "shook" the charge to produce the wave had to do work to shake
it, against the perturbation electric field the shaking produces, and that agent isthe ultimate
source of the energy carried by the wave. An exactly analogous situation exists when one
asks where the energy carried by awave on a string comes from. The agent who originally
shook the string to produce the wave had to do work to shake it against the restoring
tension in the string, and that agent is the ultimate source of energy carried by awave on a
string.

That takes care of generating akink. How about generating a sinusoidal wave with
frequency w, like the waves considered in the text? To do this, instead of pulling the
charge sheet down at constant speed, we just shake it up and down with avelocity V(t) =
-yVcos wt.  Then this oscillating sheet of charge will generate fields which are given by:

x>0: SE(x,t) = + ¢ (cmysV/2) cosw(t - x/c); dB(x,t) = + Z (mysV/2) cosw(t - x/c) (5)
x<0: 8E(x,t) = + ¥ (cmpysV/2) cosw(t + x/c); dB(x,t) = - Z (mysV/2) cosw(t + x/c) (6)

It's clear in equations (5) and (6) why we have chosen the amplitudes of these
terms--these are just the 8B = nooV/2 = dE/c amplitudes of the kink generated above for
constant speed of the sheet, but now allowing for the fact that the speed isvarying
sinusoidally in time with frequency w. But why have we put the (t-x/c) and (t+x/c)
argumentsin egquations (5) and (6)?

Consider firstx > 0. If weare sitting at some x> 0 at timet, and are measuring an
electric field there, the field we are observing should not depend on what the current sheet
isdoing at that observation timet. Information about what the current sheet is doing takes
atimex/c to propagate out to the observer at x> 0. Thus what the observer atx > 0 sees
at timet depends on what the current sheet was doing at an earlier time, namely t-x/c. The
electric field as afunction of time should reflect that time delay due to the finite speed of
propagation from the origin to some x > 0, and thisis the reason the (t-x/c) appears in
equation (5), and nott itself. For x < 0, the argument is exactly the same, except if x < 0O,
t+x/cisthe expression for the earlier time, and not t-x/c. Thisis exactly the time-delay
effect one gets when one measures waves on a string. 1f we are measuring wave
amplitudes on a string some distance away from the agent who is shaking the string to
generate the waves, what we measure at time t depends on what the agent was doing at an
earlier time, allowing for the wave to propagate from the agent to the observer.

Let k= w/c (or w/k= c). Thenif we notethat cos w(t-x/c) = cos (wt -kx) =

cos (kx-mt) , we see that we have generated in equations (5) and (6) precisely the kinds of
plane electromagnetic waves we will describein lecture, other than the (unimportant) fact
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that we have cosines instead of sinesin our expressions. Note that we can also easily
arrange to get rid of our static field Eq by ssimply putting a stationary charged sheet with
charge per unit area-o at x = 0. That charged sheet will cancel out the static field dueto
the positive sheet of charge, but will not affect the perturbation field we have calculated,
sinceitisnot moving. Inredlity, that is how electromagnetic waves are generated--with an
overall neutral medium where charges of one sign (actually the electrons) are accel erated
while an equal number of charges of the opposite sign essentially remain at rest. Thusan
observer only seesthe wave fields, and not the static fields. In the following summary, we
will assume that we have set Eq to zero in thisway.

Thus we obtain a picture of the electric field generated by the oscillation of our
current sheet as shown below. We show this configuration at atime when the sheet is
moving down--at that time the perturbation electric field is up, which is what we expect
from our initial discussion of how to generate akink. For simplicity, in the figure below
we do not show the magnetic field, which is out of (or into) the page, in the usual manner.

Let's summarize '||I||' i

what we have

done. Using SE oo cos(mt + kx)
Maxwell's

equationsin free

space, with no T

3E o cos{wt-kx)

charges or

currents present,

we will show in l- ¢
abit (and our

text shows) that
waves propagate SE x 5B vi SE x 5B
S =

in vacuum a the — S=
speed of light, Ho
carrying energy

flux S =

ExB/uo, that the electric and magnetic fields are perpendicular to each other, and to the
direction of propagation, and that the ratio of the electric field magnitude to the magnetic
field magnitude is the speed of light.

What we have accomplished in the construction here, which really only assumes
that the feet of the el ectric field lines move with the charges, and that information
propagates at c, isto show we can generate such awave by shaking a plane of charge
sinsoidally. The wave we generate has eectric and magnetic fields perpendicular to one
another, and transverse to the direction of propagation, with the ratio of the electric field
magnitude to the magnetic field magnitude equal to the speed of light. Moreover, we see
directly where the energy flux S = ExB/ug carried off by the wave comes from. It isput
in by the agent who shakes the charges, and thereby generates the el ectromagnetic wave. |If
we go to more complicated geometries, these statements become much more complicated in
detail, but the overall picture remains as we have presented it.

Finally, before going on to the reflection of electromagnetic waves, let us rewrite
dightly the expressions given in equations (5) and (6) for the fields generated by our
oscillating charged sheet, in terms of the current per unit length in the sheet, n(t) . The
quantity n(t) isgiven by oV (t) and since here we have V (t) = -yVcos wt, then it follows
that n(t) = -yoVcos wt . Thus we can rewrite equations (5) and (6) for the electric and
magnetic fields generated by an oscillating current sheet with charge per unit length in the
sheet n(t) asfollows:
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Electromagnetic fields 8En and 8B Il
generated by atime-varying current sheet n(t) located intheyz planeat x = O: H
x>0 SER(X,t) = - cmm(t-x/0) /12, 8Bh(x,t) =+ X x SE(x,t)/c ]
x<0 SER(X,t) = - cmn(t+x/0) 12; dBh(X,t) = - X X SE(x,t)/c (8) H

Note that 8B, (x,t) reverses acrossthe current sheet, with ajump of uon(t) atthe
sheet, asit must from Ampere's Law. Any oscillating sheet of current must generate the
plane el ectromagnetic waves described by these equations, just as any stationary electric
chargemust generate a Coulomb electric field. That's just the way things work.

Note: To avoid possible future confusion, we point out that If you go on to amore
advanced course in electromagnetism, you will study the radiation fields generated by a
single oscillating charge, and find that they are proportiona to the accderation of the
charge. Thisisvery different from the case here, where the radiation fields of our
oscillating sheet of charge are proportional to the velocity of the charges. However, there
is no contradiction, because when you add up the radiation fields due to al the single
charges making up our sheet, you recover the same result we give in equations (7) and (8)
(see Chapter 30, Section 7, of Feynman, Leighton, and Sands, The Feynman Lectures on
Physics, Vol 1, Addison-Wesley, 1963).

Reflection:

How does a very good conductor reflect an electromagnetic wave falling on it? In
words, what happensisthe following. The time-varying electric field of the incoming
wave drives an oscillating current on the surface of the conductor, following Ohm's Law.
That oscillating current sheet, of necessity, must generate waves propagating in both
directions from the sheet. One of these wavesisthe reflected wave. The other wave
cancels out the incoming wave inside the conductor. Let us make this qualitative
description quantitative.

Suppose we have an infinite plane wave propagating to the right, generated by
currents far to the left and not shown. Suppose that the electric field of thiswaveis

SEq(X,t) =+ ¥ OEq cos (mt -kx)
and that the magnetic field is
8B o(x,t) =+ 2 8B cos (wt -kx)
as shown in the top wave form in the sketch on the next page. We put at the origin (x = 0)

aconducting sheet with width D, which we assume is small compared to a wavelength of
our incoming wave. This conducting sheet will reflect our incoming wave. How? The
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dectric fidd of the

incoming wave will
causeacurrentj = INCOMING WAVE

SE/p toflow inthe 3E,cos(mwt-kx) 1M
sheet, where p isthe —_—

resistivity (if oisthe T
conductivity, then p = ,L Jr
1/c). Moreover, the

direction of j will be N

inthe same direction
asthedectricfiadof ~ BEFLECTED WAVE

the incoming wave, as

Conducting Sheet

3E,cos (wt—kx)
—>

shown in the sketch. T T T T
Thus our incoming J{ J{

wave setsup an

oscillating sheet of e —
current with current 8E y C0S (wt +kx) SEqcos (et -kx)
per unit lengthm =

jD. Asinour discussion of the generation of plane electromagnetic waves above, this
current sheet will also generate el ectromagnetic waves, moving both to the right and to the
left (see sketch, lower wave form) away from the oscillating sheet of charge. Using

equation (7) above, forx > 0 the wave generated by the current will be 8E,, =-§
Cuo(jD)/2c cos (wt-kx). For x<0, we will have asimilar expression, except that the
argument will be (wt+kx) (see sketch). Note thesign of thiselectric field 6E,, atx = 0; it
is down when the sheet of current (and dE ) is up, and vice-versa, just as we saw before.

Thus, for x > 0, the generated electric field OEy will always be oppositethe direction of
the electric field of the incoming wave, and it will tend to cancel out the incoming wave for
x> 0. For avery good conductor, in fact, we can show (see Appendix) that =D will be
equal to 20Ey/cug, so that for x> 0 wewill have 8E,, =-§ dE, cos (wt-kx). That is, for

avery good conductor, the electric field of the wave generated by the current will exactly
cancdl the eectric field of theincoming wavefor x> 0! And that's what a very good

conductor does. It supports exactly the amount of current per unit length ) needed to

cancel out theincoming wave for x > 0 (20Eg/cuq, or equivalently 28Bo/uo ) and for x <
0, thissame current generates a "reflected" wave propagating back in the direction from
which the original incoming wave came, with the same amplitude asthe original incoming
wave. Thisishow avery good conductor totally reflects electromagnetic waves. Inthe

Appendix, we show that ) will in fact approach value needed to accomplish thisin the limit
that the resistivity p approaches 0.

In the process of thisreflection, there is aforce per unit area exerted on the
conductor. Thisisjust the VxB force dueto the currentj flowing in the presence of the
magnetic field of the incoming wave, or aforce per unit volume of x8B . If we calculate
thetotal forcedF acting on an cylindrical volume with area dA and length D of the
conductor, we find that it isin the +x direction, with magnitude

dF=dA D [jxdBg| = dA jD dBg = dA (2dEy/omy) dB, = dA (2 dE, dBy/omy)
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so that the force per unit area, dF/dA, or radiation pressure, is just twice the Poynting flux
divided by the speed of light c.

APPENDI X

We show here that a perfect conductor will perfectly reflect anincident wave. To
approach the limit of a perfect conductor, we first consider the finite resistivity case, and
then let the resistivity go to zero. Asabove, the electric field of the incoming wave will, by

Ohm's Law, causeacurrentj = E/p to flow in the sheet, where p istheresistivity. Since
the sheet is assumed thin compared to a wavelength, we can assume that the entire sheet

sees essentially the same electric field, sothat j will be uniform across the thickness of the
sheet, and outside of the sheet we will see fields appropriate to a equivalent surface current

Mn(t) = Dj(t). Thiscurrent sheet will generate additional electromagnetic waves, moving
both to the right and to the left, away from the oscillating sheet of charge. Thetotal electric

field, dEtotal(X,t), will be the sum of theincident electric field and the electric field
generated by the current sheet. Using equations (7) and (8) above, we thus have for the
total eectric field the following expressions:

x>0 SEtotal (X,0) = SEo(X,t) + SER(X,1) = SEq(X,t) - cmyn(t-x/c) /2 9)
x<0 SEtotal (%,1) = SEo(X,t) + SER(X,1) = SE(X,t) - cmyn(t+x/c) /2 (10)

We also have arelation between the current density j and 8Eiqtg from the
microscopic form of Ohm's Law, to wit j(t) = 8Eiotal (O,t)/p, Where p isthe resistivity,

and 0Eqqta (0,1) isthetota electric field at the position of the conducting sheet. Notethat is
is appropriate to use the total electric field in Ohm's Law--the currents arise from the total
electric field, irrespective of the origin of that field. So we have

M) =Dj(t) =D dEtota (OH/r (11)
If welook at either (9) or (10) at x = 0, we have
OEtotal (0,t) = OE(0,t) + SER(O,t) = SEo(O,t) -crmyn(t) /2 (12)
or using (11)

dEtotal (0,t) = SE(0,t) - cnyD dEiota (O,1)/2r (13)

We can now solve equation (13) for 6Eotal(0,t), with the result that
OEtotal (O,t) = OE(O,t)/(1+cmpD/2r) (14
and therefore, using equation (11)

N =Dj(t) =D dEtota (O0)/r = DSEON)/(r +cmyD/2) (15)
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If wetakethelimitthat p ® O (no resistance, a perfect conductor), then we can easily see
using equation (14) that 6Eota(0,t) — 0, and using equation (15) that 1)(t) —

28Eo(0,t)/cug =+ ¥ 20Eq cos (wt)/aug =+ y 28Bg cos (ot)/ug. In thissame limit equations
(9) and (10) become

X >0 OEtota(X,t) = SEo(X,t) - cmyn(t-x/0) /2 = + § [dE, - dEg]cos(wt-kx) © O (16)

X <0 8Eiota (X,t) = SEo(X,t) - cmm(t+x/0) /2 =+ ¥ dE, [cos(wt-kx)-cos(wt+kx)]
=+ ¢ dEg 2 sinkx sin wt a7

Again in the same limit of zero resistivity, our total magnetic fields become
x>0 OBioa(xt) © 0 (18)

X<0 OBiota(X,t) = + 2 dV[ cos(wt-kx)+cos(wt+kx)]/c
=+ 7 2dB, cos kx cos wt (19)

Thus, from equation (16) and (17) we see that we get no el ectromagnetic wave for
x> 0, and standing electromagnetic wavesfor x < 0. Note that right at x = O, the total

electric field vanishes. The current per unit length )(t) = + ¢ (28Bg /ug ) cos (ot) atx= 0

isjust the current per length we need to bring the magnetic field down from itsvalue at x <
0 tozeroforx> 0.

Y ou may be perturbed by the fact that in the limit of a perfect conductor, the electric
field vanishesat x = O, sinceit isthe electric field at x = O that is driving the current there!
In the limit of very small resistance, the electric field required to drive any finite current is
very small. Inthelimit that the resistivity is zero, the electric field is zero, but aswe

approach that limit, we can still have a perfectly finite and well determined value of j = E/p,
aswe found by taking thislimit in equation (14) and (15) above.
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