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Notes On Plane Electromagnetic Waves

We are reaching one of the most important parts of this course, electromagnetic
radiation.  After Thanksgiving we will do a lot of math to show you that electromagnetic
waves propagate at the speed of light.  But first we show you that with what we already
have plus a few plausible assumptions, we can get an intuitive understanding for how
electromagnetic waves are generated, and some sense of their nature.  We will return to this
subject in more mathematical detail in a bit, but first the intuitive approach.

Creation and Reflection of Electromagnetic Plane Waves
Creation:  Electromagnetic plane waves propagate in empty space at the speed of

light, c = 1/ o o.    Here we want to demonstrate how one would create such waves in a
particularly simple geometry--planar.  Although physically this is not particularly applicable
to the real world, it is reasonably easy to treat, and we can see directly how electromagnetic
plane waves are generated, why it takes work to make them, and how much energy they
carry away with them.

To make an electromagnetic plane wave, we do much the same thing we do when
we make waves on a string.  We grab the string somewhere and shake it, and thereby
generate a wave on the string.  We do work against the tension in the string when we shake
it, and that work is carried off as an energy flux in the wave.  Electromagnetic waves are
much the same proposition.  The electric field line serves as the "string".  As we will see
below, there is a tension associated with an electric field line, in that when we shake it (try
to displace it from its initial position), there is a restoring force that resists the shake, and a
wave propagates along the field line as a result of the shake.  To understand in detail what
happens in this process will involve using most of the electromagnetism we have learned
thus far, from Gauss's Law to Ampere's Law plus the reasonable assumption that
electromagnetic information propagates at c in a vacuum (we will show this is the case
mathematically after Thanksgiving).

The first obvious question is...how in the world do we shake an electric field line?
What do we grab on to?  Well, what we do is shake the electric charges that they are
attached to.  After all, it is these charges that produce the electric field, and in a very real
sense the electric field is "rooted" in the electric charges that produce them.  Knowing this,
and assuming that in a vacuum, electromagnetic signals propagate at the speed of light, we
can pretty much puzzle out how to make a plane electromagnetic wave by shaking charges.
Let's first figure out how to make a kink in an electric field line, and then we'll go on to
make sinusoidal waves.

Suppose we have an infinite sheet of charge located in the yz-plane, initially at rest,
with surface charge density  (see sketch next page).  From Gauss's Law, we know that

this surface charge will give rise to a static electric field Eo  given by Eo =+ x̂  /2 o for x >

0,  and Eo =- x̂  /2 o for x < 0  (x̂  is a unit vector in the x-direction).
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Now, at t = 0, we grab the sheet of charge and start pulling it downward with
constant velocity V=-V ŷ .    Let's look at how things will then appear at a later time t = T.

In particular, let's look at the
field line that goes through y = 0
for t < 0  (before the sheet starts
moving--see the top panel to the
immediate right ).  The "foot" of
this electric field line, that is,
where it is anchored, is rooted in
the electric charge that generates
it, and that "foot" must move
downward with the sheet of
charge, at the same speed as the
charges move downward.  Thus
the "foot" of our electric field
line, which was initially at  y = 0
at t = 0 , will be a distance -VT
down the y-axis at time t = T.

However, we have assumed that
the information that this field line
is being dragged downward can
only propagate outward from x =
0 with the speed of light, c.
Thus the portion of our field line
outside of a distance along the
x-axis of cT from the origin
doesn't know the charges are moving, and thus has not yet begun to move downward.
Our field line therefore must appear at time t = T  as we show it in the lower sketch.
Nothing has happened outside of |x| > cT;  the foot of the field line at x = 0 is a distance
-VT  down the y-axis, and we have guessed about what the field line must look like for
0 <|x| < cT  by simply connecting the two positions on the field line that we know about at
time T   (x = 0 and |x| = cT ) by a straight line.  This is exactly the guess we would make if
we were dealing with a string instead of an electric field.  This is a reasonable thing to do,
and it turns out to be the right guess.

If you think about what the shape of this field line implies, it implies the following.
What we have done by pulling down on the charged sheet is to generate a perturbation in
the electric field, E, in addition to the static field Eo.  If we look at the total field
E  for |x| < cT, we have E = Eo + E, as shown in the lower right inset in our figure
above.  The vector E must be parallel to the line connecting the foot of the field line and the
position of the field line at |x| = cT, just by the geometry of the situation. Thus, the two
triangles to the right of the y-axis, as shown on the lower sketch, must be congruent.
Therefore, we must have that tan  = E/Eo = VT/cT = V/c, where the angle  is as
shown.  Thus we have that E = (V/c)Eo, or, using our result from Gauss's Law for Eo,

E =  + ŷ  Vσ/2εoc.        (1)

We have generated an electric field perturbation, and this expression tells us how large the
perturbation field E  is for a given speed of the sheet of charge, V.

Now we understand why we say that the electric field line has a tension associated
with it, just as a string does.  The direction of our perturbation E is such that the forces it
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exerts on the charges in the sheet resist  the motion of the sheet--that is, there is an upward
electric force on the sheet when we try to move it downward.  That means that because of
the presence of the electric field, we have to exert an additional downward force on an area
dA of the sheet containing charge dq = dA.  This additional force is the downward force
we have to exert to overcome the upward "tension" associated with the electric field.  This
tension is given by +dq E  =  ŷ  ( dA)(V /2 oc), where we have used equation (1) above
for E.  This is just like the restoring tension we must work against when we perturb a
string.   Thus we have to do work against the electric field to create the perturbation in the
electric field, applying a force sufficient to overcome the electric force, that is, applying a
force dFus = -dq E.  The amount of work per unit time that we must do (joules per
second) is therefore

dW/dt   =   dFus •V = [- ŷ  (σdA)(Vσ/2εoc)]•[- ŷ  V] = +(V2σ2/2εoc) dA

or, dividing by dA to get the work we must do per unit time per unit area of the sheet,

dW/dtdA    = +V2σ2/2εoc                           (2)

What else has happened in this process of moving the charged sheet down?  Well,
once the charged sheet is in motion, we have created a sheet of current with current per unit
length   = V (the units of this quantity are Amps/meter, as they must be).  From
Ampere's Law, we know that we will therefore have created a magnetic field, in addition to
our E.    Such a current sheet will produce a magnetic field of magnitude B = o /2 =

oV /2 , and this magnetic field will reverse across the current sheet.  We show the
configuration of the field appropriate to a downward current in the sketch below.  Again,
the information that the charged sheet has
started moving, producing a current sheet and
associated magnetic field, can only propagate
outward from x = 0 with speed c, and
therefore outside of a distance along the x-axis
of  ±cT, the magnetic field is still zero, while
inside that distance it has the configuration
shown in the sketch, with the magnitude given
above.  Note that

  δE/δB  = (Vσ/2εoc)/(µoVσ/2 )

= 1/(cεoµo) = c              (3)

where we have used c = 1/ o o.  Not only
does our current sheet generate a magnetic field
that is perpendicular to our electric field
perturbation electric field E, as we must have for an electromagnetic wave, but we also
have the relationship between the magnitudes that we expect to see for a transverse
electromagnetic wave, which we will derive in detail from Maxwell's equations after
Thanksgiving (see also Chapter 14 of EMI).

Now, lets discuss the energy carried away by these perturbation fields.  The energy
flux associated with an electromagnetic field is given by the Poynting vector S  = ExB/ 0.
If we compute this quantity for our fields for x > 0, we get an energy flow to the right
( Ex B   is in the + x̂  direction for x > 0) whose magnitude S   (in joules per sec per
square meter) is
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        δS = δEδB/µo = (Vσ/2εoc)(µoVσ/2 ) /µo = V2σ2/4εoc                      (4)

This is only 1/2 of the work we do per unit time per unit area to pull the sheet down, as
given by equation (2).  But, the fields on the left carry exactly the same amount of energy
flux to the left, (the magnetic field reverses across x = 0, whereas the electric field does
not, so the Poynting flux also reverses across x = 0).  So the total energy flux carried off
by the perturbation electric and magnetic fields we have generated is exactly equal to the
rate at which we do work per unit area to pull the charged sheet down against the tension in
the electric field (see equation (2) above).  Thus we have generated perturbation
electromagnetic fields which carry off energy, and they carry off energy at exactly the rate
that it takes us to create them.

This is where the energy comes from that is carried by an electromagnetic wave.
The agent who originally "shook" the charge to produce the wave had to do work to shake
it, against the perturbation electric field the shaking produces, and that agent is the ultimate
source of the energy carried by the wave.  An exactly analogous situation exists when one
asks where the energy carried by a wave on a string comes from.  The agent who originally
shook the string to produce the wave had to do work to shake it against the restoring
tension in the string, and that agent is the ultimate source of energy carried by a wave on a
string.

That takes care of generating a kink.  How about generating a sinusoidal wave with
frequency , like the waves considered in the text?  To do this, instead of pulling the
charge sheet down at constant speed, we just shake it up and down with a velocity V(t) =
-ŷ Vcos t.    Then this oscillating sheet of charge will generate fields which are given by:

x>0: E(x,t) = + ŷ  (cµoσV/2) cos ω(t  - x/c);  B(x,t) = + ẑ (µoσV/2) cos ω(t - x/c)        (5)

x<0: E(x,t) = + ŷ  (cµoσV/2) cos ω(t + x/c);  B(x,t) = - ẑ (µoσV/2) cos ω(t + x/c)        (6)

It's clear in equations (5) and (6) why we have chosen the amplitudes of these
terms--these are just the B = o V/2 = E/c  amplitudes of the kink generated above for
constant speed of the sheet, but now allowing for the fact that the speed is varying
sinusoidally in time with frequency .   But why have we put the (t-x/c) and (t+x/c)
arguments in equations (5) and (6)?

Consider first x > 0.  If we are sitting at some x > 0  at time t, and are measuring an
electric field there, the field we are observing should not depend on what the current sheet
is doing at that observation time t.   Information about what the current sheet is doing takes
a time x/c  to propagate out to the observer at x > 0.  Thus what the observer at x > 0  sees
at time t  depends on what the current sheet was doing at an earlier time, namely t-x/c.  The
electric field as a function of time should reflect that time delay due to the finite speed of
propagation from the origin to some x > 0, and this is the reason the (t-x/c) appears in
equation (5), and not t  itself.  For x < 0, the argument is exactly the same, except if x < 0,
t+x/c is the expression for the earlier time, and not t-x/c.   This is exactly the time-delay
effect one gets when one measures waves on a string.  If we are measuring wave
amplitudes on a string some distance away from the agent who is shaking the string to
generate the waves, what we measure at time t depends on what the agent was doing at an
earlier time, allowing for the wave to propagate from the agent to the observer.

Let  k = /c  (or /k = c).  Then if we note that  cos (t-x/c) = cos ( t -kx) =
cos (kx- t) , we see that we have generated in equations (5) and (6) precisely the kinds of
plane electromagnetic waves we will describe in lecture, other than the (unimportant) fact
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that we have cosines instead of sines in our expressions.  Note that we can also easily
arrange to get rid of our static field Eo  by simply putting a stationary charged sheet with
charge per unit area -  at x = 0.  That charged sheet will cancel out the static field due to
the positive sheet of charge, but will not affect the perturbation field we have calculated,
since it is not moving.  In reality, that is how electromagnetic waves are generated--with an
overall neutral medium where charges of one sign (actually the electrons) are accelerated
while an equal number of charges of the opposite sign essentially remain at rest.  Thus an
observer only sees the wave fields, and not the static fields.  In the following summary, we
will assume that we have set Eo  to zero in this way.

Thus we obtain a picture of the electric field generated by the oscillation of our
current sheet as shown below.  We show this configuration at a time when the sheet is
moving down--at that time the perturbation electric field is up, which is what we expect
from our initial discussion of how to generate a kink.  For simplicity, in the figure below
we do not show the magnetic field, which is out of (or into) the page, in the usual manner.

Let's summarize
what we have
done.  Using
Maxwell's
equations in free
space, with no
charges or
currents present,
we will show in
a bit (and our
text shows) that
waves propagate
in vacuum at the
speed of light,
carrying energy
flux S  =
ExB/ 0, that the electric and magnetic fields are perpendicular to each other, and to the
direction of propagation, and that the ratio of the electric field magnitude to the magnetic
field magnitude is the speed of light.

What we have accomplished in the construction here, which really only assumes
that the feet of the electric field lines move with the charges, and that information
propagates at c, is to show we can generate such a wave by shaking a plane of charge
sinsoidally.  The wave we generate has electric and magnetic fields perpendicular to one
another, and transverse to the direction of propagation, with the ratio of the electric field
magnitude to the magnetic field magnitude equal to the speed of light.  Moreover, we see
directly where the energy flux S  = ExB/ 0  carried off by the wave comes from.  It is put
in by the agent who shakes the charges, and thereby generates the electromagnetic wave.  If
we go to more complicated geometries, these statements become much more complicated in
detail, but the overall picture remains as we have presented it.

Finally, before going on to the reflection of electromagnetic waves, let us rewrite
slightly the expressions given in equations (5) and (6) for the fields generated by our
oscillating charged sheet, in terms of the current per unit length in the sheet, t  .  The
quantity t   is given by V(t)  and since here we have V(t) = -ŷ Vcos t,  then it follows
that t  = -ŷ Vcos t .  Thus we can rewrite equations (5) and (6)  for the electric and
magnetic fields generated by an oscillating current sheet with charge per unit length in the
sheet t  as follows:
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                                      Electromagnetic fields  Eη  and  Bη
         generated by a time-varying current sheet (t)  located in the yz plane at x = 0:

          x > 0         Eη(x,t) = -  cµo (t-x/c) /2;    Bη(x,t)  = + x̂  x E(x,t)/c                     (7)

          x < 0         Eη(x,t) = -  cµo (t+x/c) /2;    Bη(x,t) =  - x̂  x E(x,t)/c                     (8)

Note  that B (x,t)  reverses across the current sheet, with a jump of o t at the
sheet, as it must from Ampere's Law.  Any  oscillating sheet of current must  generate the
plane electromagnetic waves described by these equations, just as any stationary electric
charge must generate a Coulomb electric field.  That's just the way things work.

Note:  To avoid possible future confusion, we point out that if you go on to a more
advanced course in electromagnetism, you will study the radiation fields generated by a
single oscillating charge, and find that they are proportional to the acceleration of the
charge.  This is very different from the case here, where the radiation fields of our
oscillating sheet of charge are proportional to the velocity of the charges.  However, there
is no contradiction, because when you add up the radiation fields due to all the single
charges making up our sheet, you recover the same result we give in equations (7) and (8)
(see Chapter 30, Section 7, of Feynman, Leighton, and Sands, The Feynman Lectures on
Physics, Vol 1, Addison-Wesley, 1963).

Reflection:
How does a very good conductor reflect an electromagnetic wave falling on it?  In

words, what happens is the following.  The time-varying electric field of the incoming
wave drives an oscillating current on the surface of the conductor, following Ohm's Law.
That oscillating current sheet, of necessity, must generate waves propagating in both
directions from the sheet.  One of these waves is the reflected wave.  The other wave
cancels out the incoming wave inside the conductor.  Let us make this qualitative
description quantitative.

Suppose we have an infinite plane wave propagating to the right, generated by
currents far to the left and not shown.  Suppose that the electric field of this wave is

Eo(x,t) =+ ŷ  Eo cos ( t -kx)

and that the magnetic field is

Bo(x,t) =+ ẑ Bo cos ( t -kx)

as shown in the top wave form in the sketch on the next page.  We put at the origin (x = 0)
a conducting sheet with width D, which we assume is small compared to a wavelength of
our incoming wave.  This conducting sheet will reflect our incoming wave.  How?  The
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electric field of the
incoming wave will
cause a current j  =
E/ to flow in the

sheet, where  is the

resistivity (if  is the

conductivity, then  =

1/ ).  Moreover, the
direction of j will be
in the same direction
as the electric field of
the incoming wave, as
shown in the sketch.
Thus our incoming
wave sets up an
oscillating sheet of
current with current
per unit length   =
jD.   As in our discussion of the generation of plane electromagnetic waves above, this
current sheet will also generate electromagnetic waves, moving both to the right and to the
left (see sketch, lower wave form) away from the oscillating sheet of charge.  Using
equation (7) above, for x > 0  the wave generated by the current will be E   = - ŷ

c o(jD)/2c cos ( t-kx).  For x<0, we will have a similar expression, except that the

argument will be ( t+kx)  (see sketch).  Note the sign of this electric field E   at x = 0; it

is down  when the sheet of current (and Eo ) is up, and vice-versa, just as we saw before.

Thus, for x > 0, the generated electric field E   will always be opposite the direction of
the electric field of the incoming wave, and it will tend to cancel out the incoming wave for
x > 0.  For a very good conductor, in fact, we can show (see Appendix) that   =jD will be

equal to 2 Eo/c o, so that for x > 0  we will have E    =- ŷ  Eo cos ( t-kx).  That is, for
a very good conductor, the electric field of the wave generated by the current will exactly
cancel the electric field of the incoming wave for x > 0!  And that's what a very good
conductor does.  It supports exactly the amount of current per unit length   needed to

cancel out the incoming wave for x > 0  (2 Eo/c o, or equivalently 2 Bo/ o ) and for x <
0, this same current generates a "reflected" wave propagating back in the direction from
which the original incoming wave came, with the same amplitude as the original incoming
wave.  This is how a very good conductor totally  reflects electromagnetic waves.  In the
Appendix, we show that  will in fact approach value needed to accomplish this in the limit

that the resistivity   approaches 0.

In the process of this reflection, there is a force per unit area exerted on the
conductor.  This is just the VxB  force due to the current j  flowing in the presence of the
magnetic field of the incoming wave, or a force per unit volume of jx Bo.  If we calculate
the total force dF   acting on an cylindrical volume with area dA and length D of the
conductor, we find that it is in the +x direction, with magnitude 

           dF = dA D |jxδBo| = dA  jD δBo = dA (2δEo/cµo) δBo  = dA (2 δEo δBo/cµo)
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so that the force per unit area, dF/dA, or radiation pressure, is just twice the Poynting flux
divided by the speed of light c.

APPENDIX

We show here that a perfect conductor will perfectly reflect an incident wave.  To
approach the limit of a perfect conductor, we first consider the finite resistivity case, and
then let the resistivity go to zero.  As above, the electric field of the incoming wave will, by
Ohm's Law, cause a current j  E to flow in the sheet, where  is the resistivity.  Since
the sheet is assumed thin compared to a wavelength, we can assume that the entire sheet
sees essentially the same electric field, so that j  will be uniform across the thickness of the
sheet, and outside of the sheet we will see fields appropriate to a equivalent surface current

(t)  = Dj(t).  This current sheet will generate additional electromagnetic waves, moving
both to the right and to the left, away from the oscillating sheet of charge.  The total electric
field, Etotal(x,t), will be the sum of the incident electric field and the electric field
generated by the current sheet.  Using equations (7) and (8) above, we thus have for the
total electric field the following expressions:

  x > 0   Etotal(x,t) =  Eo(x,t) + Eη(x,t) = Eo(x,t) -  cµo (t-x/c) /2                 (9)

  x < 0              Etotal(x,t) =  Eo(x,t) + Eη(x,t) = Eo(x,t) -  cµo (t+x/c) /2             (10)

We also have a relation between the current density j  and Etotal  from the

microscopic form of Ohm's Law, to wit j(t) = Etotal (0,t)/ , where  is the resistivity,

and Etotal (0,t) is the total electric field at the position of the conducting sheet.  Note that is
is appropriate to use the total electric field in Ohm's Law--the currents arise from the total
electric field, irrespective of the origin of that field.  So we have

(t)  = Dj(t)  = D Etotal (0,t)/ρ                                       (11)

If we look at either (9) or (10) at x = 0, we have

Etotal(0,t) = Eo(0,t) + Eη(0,t) = Eo(0,t) -cµo (t) /2             (12)

or using (11)

Etotal(0,t) = Eo(0,t) -  cµoD Etotal (0,t)/2ρ                            (13)

We can now solve equation (13) for Etotal(0,t), with the result that

Etotal(0,t) = Eo(0,t)/(1+cµoD/2ρ)                                     (14)

and therefore, using equation (11)

                          (t)  = Dj(t)  = D Etotal (0,t)/ρ  = D Eo(0,t)/(ρ+cµoD/2)                    (15)
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If we take the limit that   → 0 (no resistance, a perfect conductor), then we can easily see

using equation (14) that Etotal(0,t) , and using equation (15) that (t) 

2 Eo(0,t)/c o =+ ŷ  2 Eo cos ( t)/c o =+ ŷ  2 Bo cos ( t)/ o.   In this same limit equations
(9) and (10) become

  x > 0   Etotal(x,t) = Eo(x,t) -  cµo (t-x/c) /2 = + ŷ  [δEo - δEo]cos(ωt-kx) ≡ 0          (16)

  x < 0  Etotal(x,t) = Eo(x,t) -  cµo (t+x/c) /2 =+ ŷ  δEo [cos(ωt-kx)-cos(ωt+kx)]

= + ŷ  δEo 2 sin kx sin ωt                         (17)

Again in the same limit of zero resistivity, our total magnetic fields become

      x > 0     B total(x,t)  ≡ 0                                                                                            (18)

      x < 0     B total(x,t) = + ẑ δVo[cos(ωt-kx)+cos(ωt+kx)]/c

= + ẑ 2δBo cos kx cos ωt                         (19)

Thus, from equation (16) and (17) we see that we get no electromagnetic wave for
x > 0, and standing electromagnetic waves for x < 0.  Note that right at x = 0, the total
electric field vanishes.  The current per unit length (t) + ŷ  (2 Bo / o ) cos ( t)  at x = 0
is just the current per length we need to bring the magnetic field down from its value at x <
0  to zero for x > 0 .

You may be perturbed by the fact that in the limit of a perfect conductor, the electric
field vanishes at x = 0, since it is the electric field at x = 0  that is driving the current there!
In the limit of very small resistance, the electric field required to drive any finite current is
very small.  In the limit that the resistivity is zero, the electric field is zero, but as we
approach that limit, we can still have a perfectly finite and well determined value of j = E/ ,
as we found by taking this limit in equation (14) and (15) above.
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