MIT OpenCourseWare http://ocw.mit.edu

6.013 Electromagnetics and Applications Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ELECTRIC FORCES ON CHARGES

Lorentz Force Law:

$$\bar{f} = q(\bar{E} + \bar{v} \times \mu_0 \bar{H})$$
 Newtons \Rightarrow $\bar{f} = q\bar{E} = m\bar{a}$

 $a = f/m = qE/m \approx eV/mL [m s^{-2}]$

Kinematics*:

$$\overline{v} = \int_{0}^{\infty} \overline{a}(t)dt$$

$$= \overline{v}_{0} + \hat{z}at$$

 $z = z_0 + \hat{z} \cdot v_0 t + at^2/2$

Electron kinetic energy w_k:

 $w_k = fs = (eV/L)L = eV$ [Joules]

Electron volt = energy of 1 electron moving 1 volt = e Joules

* For E in -z direction

ELECTRIC FORCES ON CHARGED CONDUCTORS

[N]

Force on free charges:

Force: $\bar{f} = q\bar{E} = -e\bar{E}$

Electric pressure: $\overline{P}_e = \rho_s < \overline{E} > [N m^{-2}]$

Surface charge: $\rho_s = -\epsilon_o E_o$ [C m⁻²]

Average E: $\langle E \rangle = \frac{E_0}{2}$ [V m⁻¹]

Electric pressure: $_{\rm e} = -\frac{1}{2} \varepsilon_{\rm o} E_{\rm o}^2$ [N m⁻²]

Repulsive forces:

Like charges repel, unlike charges attract

ENERGY METHOD FOR FINDING FORCES

Force, work, and energy:

$$dw = f ds \implies f = \frac{dw}{ds} [N]$$

$$C = \varepsilon_0 A/s$$

$$w = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}\frac{Q^2s}{\epsilon_0 A}$$
 [J]

Q ≠ f(s) if C is open circuit

$$f = \frac{dw}{ds} = \frac{1}{2} \frac{Q^2}{\epsilon_0 A}$$
$$= \frac{(\epsilon_0 EA)^2}{2\epsilon_0 A} = (\frac{1}{2} \epsilon_0 E^2) A$$
$$= -P_e A [N]$$

$$\Rightarrow P_e = \frac{1}{2} \varepsilon_o E^2 [N m^{-2}] = [J m^{-3}]$$

f is the force externally applied to the upper plate

The static pressure P_e of the electric field on the upper plate is the same with a battery attached:

$$\overline{P}_e = \rho_s < \overline{E} > = \frac{1}{2} \rho_s \overline{E}_o$$

Electric fields always pull on conductors → attractive force

ENERGY METHOD WITH A BATTERY

Incremental work dw:

$$w = \frac{CV^2}{2}$$

$$dw = f ds = -V dQ + (V^2/2) dC$$
To battery To capacitor

$$dQ = VdC \implies dw = -(V^2/2)dC$$

Force and pressure:

$$f = \frac{dw}{ds} = -\frac{V^2}{2} \frac{dC^*}{ds} = \frac{V^2}{2} \frac{\varepsilon_0 A}{s^2} = \frac{\varepsilon_0 E^2}{2} A = -P_e A$$

$$P_e = -\varepsilon_0 E^2/2 \text{ (as before)} \quad Q.E.D.$$

LATERAL FORCES – ENERGY MET

Energy derivative:

$$f = -\frac{dw}{dD}$$
 (externally applied)

$$w = \frac{Q^2}{2C} = \frac{Q^2s}{2\epsilon_0 WD}$$

$$f = \frac{Q^2s}{2\epsilon_0 WD^2} = \frac{(\epsilon_0 EWD)^2s}{2\epsilon_0 WD^2} = \frac{(\frac{1}{2}\epsilon_0 E^2)Ws = P_eA' [N]}{2\epsilon_0 WD^2}$$

Energy derivative:

$$f = -\frac{dw}{dD} = -\frac{d(\frac{Q^2}{2C})}{dD}$$

$$C = C_D + C_o = \frac{\varepsilon DW}{s} + \frac{\varepsilon_o (L-D)W}{s}$$
$$= [D(\varepsilon - \varepsilon_o) + \varepsilon_o L] \frac{W}{s}$$

$$f = -\frac{dw}{dD} = -\frac{d(\frac{Q^2}{2C})}{dD}$$

$$C = C_D + C_o = \frac{\varepsilon DW}{s} + \frac{\varepsilon_o(L-D)W}{s}$$

$$= [D(\varepsilon - \varepsilon_o) + \varepsilon_o L] \frac{W}{s}$$

$$f = \frac{(\epsilon - \epsilon_0)E^2}{2}A'[N] = \Delta P_e A'; A' = Ws (E_{\parallel} pushes, E_{\perp} pulls)$$

ROTARY ELECTROSTATIC MOTORS

Energy derivative:

Torque:
$$T[Nm] = -\frac{dw}{d\theta} = -\frac{d(\frac{Q^2}{2C})}{d\theta}$$

$$=\frac{\varepsilon_0 A}{s}$$
, $A = 2\frac{R^2 \theta}{2}$

Therefore:
$$T = \frac{C}{2\epsilon_0 R^2 \theta^2} = \frac{\epsilon_0 E^2}{2} A' \frac{R}{2} [Nm]$$

$$A' = 2Rs$$

$$\cong$$
 pressure \times gap-area A' \times $\frac{R}{2}$

Peak power: $P = T\omega$ [W]

Average power: $P_{avg} = P/2$ (duty cycle = $\frac{1}{2}$)

Segmentation advantage:

T [Nm] = -dw/d $\theta \propto A' \propto nRs$ (n = # segments)

n = 4

rotor

state

ELECTROSTATIC SENSORS

Cantilevered microphone:

$$s \rightarrow s + \delta \implies CV^2/2 \rightarrow C'V'^2/2$$
 initially, then:

Voltage decays to
$$V_o = V_sR/(R + R_s) \Rightarrow$$

Voltage pulse to amplifier,
$$\Delta w \approx w\delta/s > E_b > \sim 10^{-20}$$
 [J]

Minimum detectable $\delta \approx sE_b/w$ [m] (hears brownian motion)