MIT OpenCourseWare <http://ocw.mit.edu>

6.013 Electromagnetics and Applications Spring 2009

For information about citing these materials or our Terms of Use, visit: <http://ocw.mit.edu/terms>.

MOTOR BACK VOLTAGE

Force f_e on electron inside moving wire:

0

 $\Phi_{\sf p}$ = V/2

 $\mathsf{Open\text{-}circuit}$ wire: $\qquad \bar{\mathsf{f}}_{\mathsf{e}} = - \mathsf{e} \big(\overline{\mathsf{E}}_{\mathsf{e}} + \overline{\mathsf{v}} \times \mu_{\mathsf{O}} \overline{\mathsf{H}} \big)$ Open-circuit voltage: Φ = E_eW = νμ_οΗW [V] −eν×μ_ο $= 0$ \Rightarrow E_e = –v × μ_oH inside Force balanceHH-ev−eE e+-ΦHv,f, $\mathbf{\hat{x}}$ **Mechanical power output, N turns:** $P_m = \omega T = \omega N I A \mu_{o} H$ [W] l = (V - Φ)/R Φ = 2Ννμ $_{\rm o}$ HW = 2Ν $_{\rm o}$ rμ $_{\rm o}$ HW = ΝΑμ $_{\rm o}$ H $_{\rm oo}$ $P_m = \omega N(V - NA\mu_0H\omega)A\mu_0H/R = \omega K_1 - \omega^2$ K_{2}^- R $\mathsf R$. In +VPp $\mathsf{P}_\mathsf{m}(\omega)$ motor $\omega_{\sf max}$ = V/NA $\mu_{\sf o}$ H = 2 ω_p

 $\omega_{\textsf{max}}$

ω

generator

ωp W

+

-

-

Φ

Set V = d Λ**/dt = 0:** We power coil until overlap is maximum, then coast until it is zero $T = -\frac{dw_m}{w} = -\frac{\Lambda^2}{w} \frac{dL^{-1}}{w} = \frac{\Lambda^2}{w} \frac{2b}{w}$ [∞] $\frac{w_m}{d\theta} = -\frac{\Lambda}{2} \frac{dL}{d\theta} = \frac{\Lambda}{2} \frac{2D}{N^2 \mu_0 R D \theta^2} \quad [\propto \mid^2], \Lambda = N \mu_0 H_{gap}$ R θ D o $=\frac{1}{2}\mu_0H$ 2 2_{2b} d_v dv $\frac{1}{2}\mu_0 H_{\sf{gap}}^2$ 2bD R $=$ $\frac{\mathsf{W}_{\sf{gap}}}{\sf{W}_{\sf{gap}}}$ [Nm] Torque Magnetic pressure = Energy density [J/m 3 = N/m 2]

¾-POLE RELUCTANCE MOTOR

Winding Excitation Plan:

First excite windings A and B, pulling pole 1 into pole B. Pole area $A = constant$, temporarily.

When $\Delta\theta$ = $\pi/3$, excite B and C. When $\Delta\theta$ = 2 $\pi/3$, excite C and A. Repeating this cycle results in nearly constant clockwise torque.

To go counter-clockwise, excite BC, then AB, then CA.

Torque:

Only one pole is being pulled in here; the other excited winding has either one rotor pole fully in, or one entering and one leaving that cancel. Many pole combinations are used (more poles, more torque).

ELECTRIC AND MAGNETIC PRESSURE

Electric and magnetic pressures equal the field energy densities, J/m 3 Both field types only pull along their length, and only push laterally The net pressure is the difference between two sides of any boundary

 $\alpha = \infty$ σ $\alpha =$ ∞Area AArea BElectric pressure $\mathsf{P}_{\mathrm{e}} = \frac{1}{2} \varepsilon_{\mathrm{o}} \, |\, \overline{\mathsf{E}} \, |^2 \ \,$ [N/m²] or [J/m²] Force $\rm f_e$ = $\rm BP_e$ Force f_{e} = AP $_{\mathrm{e}}$

FORCES ON NEUTRAL MATTER

 \pm

E

 ϵ εo

 \pm + \pm \pm $\bm{\ast}$

-

 \pm V-

d

Kelvin polarization force density:

If $\,\nabla\!\times\!\mathsf{E}=0=\nabla\bullet\mathsf{E},$ then: Field gradiants $\perp \overline{E} \Rightarrow \overline{E}$ is curved

Curved E pulls electric dipoles into stronger field regions for $\varepsilon \text{>}\varepsilon_{\rm o}$

Kelvin magnetization force density:

If $\nabla\!\times\!{\sf H}\! =\! 0 = \nabla\bullet{\sf B}\!,\,$ then: Field gradiants $\perp H \Rightarrow H$ is curved

Curved H pulls current loops into stronger field regions for μ > $\mu_{\rm o}$

+

 $\rm f_x/2$

 $\rm f_x/2$