MIT OpenCourseWare http://ocw.mit.edu

6.013 Electromagnetics and Applications Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MAGNETIC FORCES ON FLAT SURFACES

Lorentz Force Law: $\overline{f}_m = q\overline{v} \times \mu_0 \overline{H}$ [N]

$$\overline{F}$$
 [N/m] = Nq $\overline{V}_1 \times \mu_0 \overline{H}_{12} = \overline{I}_1 \times \mu_0 \overline{H}_{12}$

$$\oint_C \overline{H} \bullet d\overline{s} = \oiint_A \overline{J} \bullet d\overline{a} = I_2 \cong 2H_{12}W$$

$$\overline{F} = \hat{z}\mu_0I_1I_2 / 2W [N/m]$$

Currents exert no net force on themselves

Total H method:

$$\oint_{C} \overline{H} \bullet d\overline{s} = \oiint_{A} \overline{J} \bullet d\overline{a} = \begin{cases} 0 \text{ for } C_{1} \\ I \text{ for } C_{2} \end{cases}$$
Let $I_{1} = I_{2} = I = H_{0}W$

Let
$$I_1 = I_2 = I = H_0W$$

$$\overline{F}_1$$
 [N/m] = $\overline{I}_1 \times \mu_0 < \overline{H} >$

=
$$\hat{z} I_1 \mu_0 \frac{H_0}{2} = \hat{z} \mu_0 I_1 I_2 / 2W [N/m]$$

$$\bar{P} = \bar{F}/W = \frac{\hat{z}_{0}^{1} \mu_{o} H_{o}^{2}}{2 \mu_{o} H_{o}^{2}} [N/m^{2}]$$

"Magnetic pressure"

ROTARY WIRE MOTOR

N

Single wire loop spinning in uniform H:

$$\overline{F}$$
 [Nm⁻¹] = $\overline{I} \times \mu_0 \overline{H}$

$$\overline{T} = \oint_{c} \overline{r} \times \overline{F} ds = r2WI\mu_{o}H\hat{z}$$
 [Nm]

$$\overline{T} = IA\mu_oH\hat{z}$$
 (A is loop area, N = 1 turn)

$$\overline{T} = NIA\mu_0H\hat{z}$$
 for N-turn coil

Axial forces from wires at ends cancel

Torque = $f(\theta)$:

Commutators:

Switch currents to maximize torque Can have N coils and 2N brushes

Ŧ, ĉ

MOTOR BACK VOLTAGE

Force \bar{f}_e on electron inside moving wire:

Open-circuit wire: $\overline{f}_e = -e(\overline{E}_e + \overline{v} \times \mu_O \overline{H}) = 0$

$$\Rightarrow \overline{E}_e = -\overline{v} \times \mu_0 \overline{H}$$
 inside

Open-circuit voltage: $\Phi = E_eW = v\mu_0HW$ [V] $-ev \times \mu_0$

Force balance

Mechanical power output, N turns:

$$P_m = \omega T = \omega NIA\mu_o H$$
 [W]

$$I = (V - \Phi)/R$$

$$\Phi = 2Nv\mu_0HW = 2N\omega r\mu_0HW = NA\mu_0H\omega$$

$$P_{m} = \omega N(V - NA\mu_{o}H\omega)A\mu_{o}H/R = \omega K_{1} - \omega^{2}K_{2}$$

$$ω_{\text{max}} = V/NAμ_oH$$

$$= 2ω_p$$

$$P_m(ω)$$

$$P_p$$

$$\Phi_{\rm p} = V/2$$

RELUCTANCE MOTOR FIELDS

2-Pole Reluctance Motor:

$$\nabla \bullet \overline{B} = 0 \ \Rightarrow \ \overline{B}_{\mu} \cong \overline{B}_{gap} \ \Rightarrow \ \overline{H}_{\mu} \cong \frac{\mu_{o}}{\mu} \overline{H}_{gap} << \overline{H}_{gap} \ [\frac{\mu}{\mu_{o}} > \sim 10^{4}]$$

$$\int_{A} \overline{J} \bullet d\overline{a} = NI = \oint_{C} \overline{H} \bullet d\overline{s} = \oint_{C} \left(\overline{H}_{gap} + \overline{H}_{\mu} \right) \bullet d\overline{s} \cong 2bH_{gap}$$

(if
$$H_{\mu} \oint_{C} ds \ll 2bH_{gap}$$
)

Therefore
$$H_{gap} \cong \frac{NI}{2b}$$
 [A/m]

RELUCTANCE MOTOR TORQUE

Fields:

$$H_{gap} = \frac{NI}{2b}$$

Magnetic Flux Linkage Λ:

$$\Lambda = N \iint_A \overline{B} \cdot da = N \mu_o H_{gap} A_{gap}$$
$$= N^2 \mu_o I A_{gap} / 2b \quad (A_{gap} = RD\theta)$$

$$\Lambda = LI \implies L = N^2 \mu_0 RD\theta/2b$$

$$w_{\rm m} = \frac{1}{2}LI^2 = \frac{1}{2}\frac{\Lambda^2}{L}$$

Set $V = d\Lambda/dt = 0$:

$$T = -\frac{dw_{m}}{d\theta} = -\frac{\Lambda^{2}}{2} \frac{dL^{-1}}{d\theta} = \frac{\Lambda^{2}}{2} \frac{2b}{N^{2}\mu_{o}RD\theta^{2}} \quad [\propto I^{2}], \Lambda = N\mu_{o}H_{gap}R\theta D$$

$$= \frac{1}{2} \mu_o H_{gap}^2 2bD R = W_{gap} \frac{dV_{olume}}{d\theta}$$
 [Nm] Torque

We power coil until overlap is maximum, then coast until it is zero

Magnetic pressure = Energy density [J/m³ = N/m²]

3/4-POLE RELUCTANCE MOTOR

Winding Excitation Plan:

First excite windings A and B, pulling pole 1 into pole B.

Pole area A = constant, temporarily.

When $\Delta\theta = \pi/3$, excite B and C.

When $\Delta\theta = 2\pi/3$, excite C and A.

Repeating this cycle results in nearly constant clockwise torque.

To go counter-clockwise, excite BC, then AB, then CA.

Torque:

Only one pole is being pulled in here; the other excited winding has either one rotor pole fully in, or one entering and one leaving that cancel. Many pole combinations are used (more poles, more torque).

ELECTRIC AND MAGNETIC PRESSURE

Electric and magnetic pressures equal the field energy densities, J/m³ Both field types only pull along their length, and only push laterally The net pressure is the difference between two sides of any boundary

Electric pressure
$$P_e = \frac{1}{2} \epsilon_o |\overline{E}|^2$$
 [N/m²] or [J/m²]

Area

Force $f_e = BP_e$
 $\sigma = \infty$

Area B

Force $f_e = AP_e$

FORCES ON NEUTRAL MATTER

Kelvin polarization force density:

If $\nabla \times \overline{\mathsf{E}} = 0 = \nabla \bullet \overline{\mathsf{E}}$, then:

Field gradiants $\bot \overline{\mathsf{E}} \Rightarrow \overline{\mathsf{E}}$ is curved

Curved \overline{E} pulls electric dipoles into stronger field regions for $\varepsilon > \varepsilon_o$

Kelvin magnetization force density:

If $\nabla \times \overline{H} = 0 = \nabla \bullet \overline{B}$, then:

Field gradiants $\perp \overline{H} \Rightarrow \overline{H}$ is curved

Curved \overline{H} pulls current loops into stronger field regions for $\mu > \mu_o$

