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L6-1

MAGNETIC FORCES ON FLAT SURFACES
Lorentz Force Law:
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ROTARY WIRE MOTOR
Single wire loop spinning in uniform H:

Axial forces from wires at ends cancel

F [Nm-1] = ×I μoH
T = ×∫ r F ds = r2WIμoH ẑ  [Nm]

c

T = IAμoH ẑ   (A is loop area, N = 1 turn)
T = NIAμoH ẑ   for N-turn coil 
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Torque = f(θ):
T[Nm] With commutator

NIμoH(θ)A

0 π 2π θ

Commutators:
Switch currents to maximize torque
Can have N coils and 2N brushes
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MOTOR BACK VOLTAGE
Force     on electron inside moving wire:

Open-circuit wire:

Open-circuit voltage:
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⇒ =E ve − × μoH inside

Φ = E W =e ovμ HW  [V]
Force balance
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Mechanical power output, N turns:
Pm = ωT = ωNIAμoH  [W]   
I   = (V - Φ)/R

Φ = 2NvμoHW = 2NωrμoHW = NAμoHω
Pm = ωN(V - NAμoHω)AμoH/R = ωK1 – ω2K2 
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RELUCTANCE MOTOR FIELDS
2-Pole Reluctance Motor:
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RELUCTANCE MOTOR TORQUE

μ
μ rotor

stator

gap 
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N turns
I + V -

T

Set V = dΛ/dt = 0:

We power coil until overlap is maximum, then coast until it is zero

Λ =  N∫∫ B•da   =   NμoH Agap gapA

      = N2μoIAgap/2b   (Agap= RDθ)

Λ ⇒   = LI         L =   N2μoRDθ/2b
1 12 Λ2

wm  = LI    =   
2 2 L

Fields:
NIHgap = 2b

Magnetic Flux Linkage Λ:

dwm Λ Λ2 -dL 1 2 2bT    = -    =  -   =   I22 2    [ ∝ ], Λ μ=N H
d 2θ θd 2 N μ RDθ o gapRθD

o
1      = μoH

2 dV
gap 2bD R  =  W olume

gap    [Nm]  Torque
2 dθ

Magnetic pressure = Energy density [J/m3 = N/m2]
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¾-POLE RELUCTANCE MOTOR
Winding Excitation Plan:

First excite windings A and B,   
pulling pole 1 into pole B. 

Pole area A = constant, temporarily.

When Δθ = π/3, excite B and C.
When Δθ = 2π/3, excite C and A. 
Repeating this cycle results in 

nearly constant clockwise torque.

To go counter-clockwise, excite BC, then AB, then CA.

Torque:
Only one pole is being pulled in here; the other excited winding has 
either one rotor pole fully in, or one entering and one leaving that 
cancel.  Many pole  combinations are used (more poles, more torque).
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ELECTRIC AND MAGNETIC PRESSURE
Electric and magnetic pressures equal the field energy densities, J/m3

Both field types only pull along their length, and only push laterally
The net pressure is the difference between two sides of any boundary

σ = ∞
σ = ∞

Area 
A

Area B

Electric pressure Pe =                [N/m2] or [J/m2]
1 | |2ε
2 o E

Force fe = BPe

Force fe = APe

μ = ∞
μ = ∞

Area 
A

Area B

Magnetic pressure Pm =                [N/m2] or [J/m2]
1 | |2μ
2 o H Force fm = APm

σ = ∞Force fm = BPm Area 
A

Force fm = APm
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FORCES ON NEUTRAL MATTER
Kelvin polarization force density:

Kelvin magnetization force density:
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If  ∇ ×E = 0 = ∇ • E, then:
Field gradiants ⊥ ⇒E  E is curved

Curved E pulls electric dipoles 
into stronger field regions for ε>εo

If  H∇ × = 0 = ∇ • B, then:
Field gradiants ⊥ ⇒H  H is curved μ > μo
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Induced current loop
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Curved H pulls current loops into 
stronger field regions for μ > μo

B1 > B2


