MIT OpenCourseWare <http://ocw.mit.edu>

6.013 Electromagnetics and Applications Spring 2009

For information about citing these materials or our Terms of Use, visit: <http://ocw.mit.edu/terms>.

LIMITS TO COMPUTATION SPEED

Devices: Emitter Gate Drain **Drain** Carrier transit and diffusion times $($ f = ma, v < c)

RC \cong ε/σ ; RL, LC time constants transistors Carriers Beyond scope of 6.013 (read Section 8.2) **Interconnect, short lines <<** λ**:** DD Wire resistance R \propto D/r 2 2r. $\text{Capacitance } C = \varepsilon A/d \propto D^2/d$ τ = RC \propto D 3 /r 2 d \cong const. if D:r:d = const. R is high for polysilicon, C is high for t hin gaps DL/R and τ = $\sqrt{\textsf{LC}}~$ scale well with size and do not limit speed

Interconnect, long lines >~λ/8**:**

Propagation delay: c = 1/ \sqrt με <3 \times 10 $^{\rm 8}$ [m s⁻¹] (ε might be ~2 $\varepsilon_{\rm o}$) Reflections at wire and device junctions, unless carefully designed Resistive lossRadiation and cross-talk (3-GHz clocks imply 30-GHz harmonic s)

d

WIRED INTERCONNECTIONS

Transverse EM Transmission Lines:

PARALLEL-PLATE TRANSMISSION LINE

Boundary Conditions:

 $\mathsf{E}_{\textit{II}} = \mathsf{H}_{\perp} = 0$ at perfect conductors

Uniform Plane Wave Solution:

x-polarized wave propagating in +z direction in free space

$$
\overline{E} = \hat{x} E_{+} \left(t - \frac{z}{c} \right) \qquad y
$$

$$
\overline{H} = \hat{y} \left(\frac{1}{\eta_{0}} \right) E_{+} \left(t - \frac{z}{c} \right)
$$

Currents in Plates: $\oint_\mathbf{C}$ \bullet $\overline{\mathsf{H}}\bullet\mathsf{d}\overline{\mathsf{s}}=\iint_{\mathsf{A}}\overline{\mathsf{J}}\bullet\mathsf{d}\overline{\mathsf{a}}=\mathsf{I}(\mathsf{z})$ $I(z) = H(z)W$, independent of path C **Surface Currents J s(A m-1):** $\overline{J}_S(z)$ = $\hat{n} \times \overline{H}(z)$ [A m⁻¹

TRANSMISSION LINE VOLTAGES

Voltages between plates:

 $^{2}_{1}$ $\overline{\mathsf{E}} \cdot \mathsf{d}\overline{\mathsf{s}} = \Phi_1$ $-\,\Phi_{\mathbf{2}}$ $\int_1^2 \overline{E} \cdot d\overline{s} = \Phi_1 - \Phi_2 = V(z)$ \Rightarrow \oint Since ${\sf H}_{\sf Z}$ = 0 $\;\Rightarrow\; \oint_{\sf C} {\sf E}\bullet{\sf ds}$ = 0 $\;$ at fixed z, $\;\;\Phi_{\sf 1}$ V(z) is uniquely defined $\Phi_2^$ d1 $\sigma=\infty$ $V(z)$ $\angle E$ $\mathsf{d}\overline{\mathsf{s}}$ $\widetilde{\mathsf{s}}$ c x $y \leftarrow z$

Surface charge density $\rho_{\text{s}}(\textsf{z})$ **[C m⁻²]:** ῆ ● $\epsilon \mathsf{E}(\mathsf{z}) = \rho_\mathsf{S}(\mathsf{z})$ (Boundary condition; from ∇ ● $\overline{\mathsf{D}} = \rho$

 $v(t,z) = \int_1^2 \overline{E} \cdot d\overline{s} = d \times E_+ (t - z/c)$ here, where $\overline{E} = \hat{x} E_+ (t - z/c)$ **lntegrate E,H to find v(t,z),i(t,z)** i(t,z) = $\oint_{\mathsf C} \overline{\mathsf H}\bullet\mathsf{d}\overline{\mathsf{s}}$ = (W/ $\mathsf n_{\mathsf O}$)E $_+$ (t - z/c), where $\overline{\mathsf H}$ = $\hat{\mathsf{y}}$ E $_+$ (t-z/c) Z_o = ₁₀d/W [ohms] "Characteristic impedance" $v(t,z)$ = Z_0 i(t,z) [if there is no backward propagating wave] Note: v(z) violates KVL, and i(z) violates KCL

TELEGRAPHER'S EQUATIONS

Equivalent Circuit:

+ $v(t,z)$ d y X' z $\mathsf{i}(\mathsf{t},\mathsf{z})$ 1 W

 $\mathsf{E}\bullet \hat{\mathsf{z}} = \mathsf{H}\bullet \hat{\mathsf{z}} = 0 \quad (\mathsf{TEM})\, .$

Difference Equations:

SOLUTION: TELEGRAPHER'S EQUATIONS

Wave Equation:

$$
\frac{d^2v}{dz^2} = LC \frac{d^2v}{dt^2}
$$

Solution:

$$
v(z,t) = f_{+}(t - z/c) + f_{-}(t + z/c)
$$

 $\mathsf{f}_\textsf{\textup{+}}$ and $\mathsf{f}_\textsf{\textup{-}}$ are arbitrary functions

Substituting into Wave Equation:

 $(1/c^2)$ $[f_+''(t - z/c) + f_-''(t + z/c)] = LC [f_+''(t - z/c) + f_-''(t + z/c)]$

Therefore:

$$
c = \sqrt[4]{\sqrt{LC}} = \sqrt[4]{\sqrt{\mu \epsilon}}
$$

Current I(z,t):

Recall:
$$
\frac{di(z)}{dz} = -C \frac{dv(z)}{dt} = -C[f_{+}(t - z/c) + f'(t + z/c)]
$$

Therefore:
$$
i(z,t) = cC [f_{+}(t - z/c) - f_{-}(t + z/c)]
$$
Where:
$$
cC = C/\sqrt{LC} = \sqrt{C/L} = Y_{0}
$$
 "Characteristic admittance"
$$
\frac{Z_{0} = 1/Y_{0} = \sqrt{L/C} \text{ ohms "Characteristic impedance"}
$$
Therefore:
$$
i(z,t) = Y_{0}[f_{+}(t - z/c) - f_{-}(t + z/c)]
$$

TRANSMISSION LINE VOLTAGES

Matching boundary conditions:

 $v(t)$ and I(t) are continuous at $z = 0$

$$
\sum_{i(z,t)} v(z,t) = v_s(t - z/c)
$$