MIT OpenCourseWare http://ocw.mit.edu

6.013 Electromagnetics and Applications Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

LIMITS TO COMPUTATION SPEED

Devices:

Carrier transit and diffusion times (f = ma, v < c)

 $RC \cong \epsilon/\sigma$; RL, LC time constants

Beyond scope of 6.013 (read Section 8.2)

Interconnect, short lines $<<\lambda$:

Wire resistance R \propto D/r²

Capacitance C = $\varepsilon A/d \propto D^2/d$

 $\tau = RC \propto D^3/r^2d \cong const.$ if D:r:d = const.

R is high for polysilicon, C is high for thin gaps

L/R and $\tau = \sqrt{LC}$ scale well with size and do not limit speed

Interconnect, long lines $>\sim \lambda/8$:

Propagation delay: $c = 1/\sqrt{\mu\epsilon} < 3 \times 10^8 \text{ [m s}^{-1]}$ (ϵ might be $\sim 2\epsilon_0$)

Reflections at wire and device junctions, unless carefully designed

Resistive loss

Radiation and cross-talk (3-GHz clocks imply 30-GHz harmonics)

WIRED INTERCONNECTIONS

Transverse EM Transmission Lines:

TEM: $\overline{E}_Z = \overline{H}_Z = 0$

Parallel wires

PARALLEL-PLATE TRANSMISSION LINE

Boundary Conditions:

 $\overline{E}_{//} = \overline{H}_{\perp} = 0$ at perfect conductors

Uniform Plane Wave Solution:

x-polarized wave propagating in +z direction in free space

$$\overline{E} = \hat{x} E_{+} \left(t - \frac{z}{c} \right)$$

$$\overline{H} = \hat{y} \left(\frac{1}{\eta_{o}} \right) E_{+} \left(t - \frac{z}{c} \right)$$

 $\overline{S} = \overline{E} \times \overline{H}$

Currents in Plates:

$$\oint_C \overline{H} \bullet d\overline{s} = \iint_A \overline{J} \bullet d\overline{a} = I(z)$$

I(z) = H(z)W, independent of path C

Surface Currents J_s(A m⁻¹):

$$\overline{J}_{S}(z) = \hat{n} \times \overline{H}(z)$$
 [A m⁻¹]

TRANSMISSION LINE VOLTAGES

Voltages between plates:

Since
$$H_z = 0 \Rightarrow \oint_c \overline{E} \cdot d\overline{s} = 0$$
 at fixed z , $\Phi_z = \infty$ at fixed z ,

Surface charge density $\rho_s(z)$ [C m⁻²]:

$$\hat{\mathbf{n}} \bullet \varepsilon \overline{\mathbf{E}}(\mathbf{z}) = \rho_{\mathbf{S}}(\mathbf{z})$$
 (Boundary condition; from $\nabla \bullet \overline{\mathbf{D}} = \rho$

Integrate \overline{E} , \overline{H} to find v(t,z), i(t,z)

$$\begin{split} v(t,z) &= \int_1^2 \overline{E} \bullet d\overline{s} = d \times E_+ \left(t - z/c \right) \text{ here, where}^{0} \overline{E} = \hat{x} E_+ \left(t - z/c \right) \\ i(t,z) &= \oint_C \overline{H} \bullet d\overline{s} = (W/\eta_0) E_+ \left(t - z/c \right), \text{ where } \overline{H} = \hat{y} E_+ \left(t - z/c \right) \end{split}$$

 $v(t,z) = Z_0 i(t,z)$ [if there is no backward propagating wave]

 $Z_0 = \eta_0 d/W$ [ohms] "Characteristic impedance"

Note: v(z) violates KVL, and i(z) violates KCL

TELEGRAPHER'S EQUATIONS

Equivalent Circuit:

L [Henries m⁻¹], C [Farads m⁻¹]

 $\overline{E} \bullet \hat{z} = \overline{H} \bullet \hat{z} = 0$ (TEM)

Difference Equations:

$$v(z+\Delta z) - v(z) = -L\Delta z \frac{di(z)}{dt}$$

$$i(z+\Delta z) - i(z) = -C\Delta z \frac{dv(z)}{dt}$$

$$\frac{dV(Z)}{dZ} = -L\frac{dV(Z)}{dZ}$$

$$\frac{di(z)}{dz} = -C \frac{dv(z)}{dt}$$

Wave Equation:

$$\frac{d^2v}{dz^2} = LC \frac{d^2v}{dt^2}$$

SOLUTION: TELEGRAPHER'S EQUATIONS

Wave Equation: $\frac{d^2v}{dz^2} = LC\frac{d^2v}{dt^2}$

Solution:

 $v(z,t) = f_{+}(t - z/c) + f_{-}(t + z/c)$

f, and f are arbitrary functions

Substituting into Wave Equation:

 $(1/c^2) [f_{+}''(t-z/c) + f_{-}''(t+z/c)] = LC [f_{+}''(t-z/c) + f_{-}''(t+z/c)]$

 $c = 1/\sqrt{LC} = 1/\sqrt{\mu\epsilon}$ Therefore:

Current I(z,t):

 $\frac{di(z)}{dz} = -C\frac{dv(z)}{dt} = -C[f_{+}'(t - z/c) + f_{-}'(t + z/c)]$ Recall:

 $i(z,t) = cC [f_{+}(t-z/c) - f_{-}(t+z/c)]$ Therefore:

 $cC = C/\sqrt{LC} = \sqrt{C/L} = Y_0$ "Characteristic admittance" Where:

 $Z_o = 1/Y_o = \sqrt{L/C}$ ohms "Characteristic impedance"

 $i(z,t) = Y_0[f_+(t-z/c) - f_-(t+z/c)]$ Therefore:

ARBITRARY TEM LINES

$$Z_o = \sqrt{\frac{L}{C}} = \frac{\sqrt{LC}}{C}$$
 where $LC = \mu\epsilon$
 $C_{\Box} = \text{capacitance/m} = \frac{\epsilon A}{d} = \epsilon$

 $C = nC_{\square}$ for n parallel square incremental capacitors ($C_{\square} = \varepsilon$ [Fm⁻¹])

 $C = C_{\square}/m$ for m capacitors C_{\square} in series

Therefore:

$$C = nC_{\square}/m = n\epsilon/m$$
 [Farads/m]

$$Z_{o} = \frac{\sqrt{LC}}{C} = \frac{\sqrt{\mu\epsilon}}{n\epsilon/m} = \eta_{o} \frac{m}{n} \text{ ohms } [\eta_{o} = \sqrt{\mu/\epsilon}]; Z_{\text{osingle cell}} = 377\Omega$$

TRANSMISSION LINE VOLTAGES

Matching boundary conditions:

v(t) and I(t) are continuous at z = 0

$$v(z,t) = v_s(t - z/c)$$

$$i(z,t) = \frac{1}{Z_o} v_s(t - z/c)$$