MIT OpenCourseWare http://ocw.mit.edu

6.013 Electromagnetics and Applications Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

RLC RESONATORS

Resonators trap energy:

Also:

terminated TEM lines, waveguides

Series RLC resonator Parallel RLC resonator

Circuit equations, series resonator:

$$L\frac{di}{dt} + Ri + \frac{1}{C}\int i \, dt = 0 \implies j\omega L\underline{I} + R\underline{I} + \frac{\underline{I}}{j\omega C} = 0$$

$$\left[(j\omega)^2 + (j\omega)\frac{R}{L} + \frac{1}{LC} \right] \underline{I} = 0 \Rightarrow (j\omega - s_1)(j\omega - s_2) = 0^*$$

$$s_{1,2} = -\frac{R}{2L} \pm j\sqrt{\frac{1}{LC} - (\frac{R}{2L})^2}$$
 Note: $s_2 = s_1^*$ $\omega' = \frac{1}{\sqrt{LC}}$ for $R \to 0$

$$i(t) = R_e \{ \underline{l}_o e^{j\omega't} \} e^{-\frac{R}{2L}t}$$

*Let
$$j_{\omega} = s_{i}$$
; recall: $as^{2} + bs + c = 0$ $s_{i} = \frac{(-b \pm \sqrt{b^{2} - 4ac})}{2a}$

RLC RESONATOR WAVEFORMS

Series resonator_current i(t):

$$i(t) = R_e \{ \underline{I}_o e^{j\omega't} \} e^{-\frac{R}{2L}t} = I_o \cos(\omega't + \phi)e^{-\frac{R}{2L}t}$$

Energy w(t):

$$w_{m}(t) = \frac{1}{2}Li^{2} \propto \cos^{2}(\omega't) e^{-\frac{R}{L}t}$$

$$w_{e}(t) = \frac{1}{2}Cv^{2} \propto \sin^{2}(\omega't) e^{-\frac{R}{L}t}$$

$$w_{emax} = w_{mmax}$$

 $\Rightarrow v_{max} = i_{max} \sqrt{\frac{L}{C}}$

$$e^{-2\alpha t} \cong e^{-\omega' t/Q}$$
 $= e^{-(R/L)t}$
 $Q \cong \omega'/2\alpha = L\omega'/R$
 $\cong \sqrt{L/C}/R$
(series resonance)
 $Q \cong \omega'/2\alpha = C\omega'/G$
 $\cong \sqrt{C/L}/G$
(parallel)

COUPLING TO RLC RESONATORS

Thevenin and Norton Equivalent Sources:

Thevenin equivalent source

Norton equivalent

Resonance

Power dissipated $P_d(f)$ in $R = R_1 + R_{Th}$:

$$P_{d}(\omega) = \frac{1}{2} \frac{|\underline{V}_{Th}|^{2}}{|\underline{Z}|^{2}} R = \frac{1}{2} \frac{|\underline{V}_{Th}|^{2}}{|R + j\omega L + \frac{1}{j\omega C}|^{2}} R$$
Dominant factor near ω_{o}

$$|\underline{V}_{Th}|^{2} R\omega^{2}|_{c} = \frac{1}{2} \frac{|\underline{V}_{Th}|^{2}}{|R + j\omega L + \frac{1}{j\omega C}|^{2}} R$$

$$|\underline{V}_{Th}|^{2} R\omega^{2}|_{c} = \frac{1}{2} \frac{|\underline{V}_{Th}|^{2}}{|R + j\omega L + \frac{1}{j\omega C}|^{2}} R$$

$$|\underline{V}_{Th}|^{2} R\omega^{2}|_{c} = \frac{1}{2} \frac{|\underline{V}_{Th}|^{2}}{|R + j\omega L + \frac{1}{j\omega C}|^{2}} R$$

$$|\underline{V}_{Th}|^{2} R\omega^{2}|_{c} = \frac{1}{2} \frac{|\underline{V}_{Th}|^{2}}{|R + j\omega L + \frac{1}{j\omega C}|^{2}} R$$

$$|\underline{V}_{Th}|^{2} R\omega^{2}|_{c} = \frac{1}{2} \frac{|\underline{V}_{Th}|^{2}}{|R + j\omega L + \frac{1}{j\omega C}|^{2}} R$$

$$= \frac{|\underline{V}_{Th}|^2 R\omega^2}{2L^2} \left| (\omega - \frac{1}{\sqrt{LC}} - j\frac{R}{2L})(\omega + \frac{1}{\sqrt{LC}} - j\frac{R}{2L}) \right|^{-2}$$

Half-power frequencies: $\omega \cong \omega_0 \pm R/2L = \omega_0 \pm \alpha$, where $\omega_0 = 1/\sqrt{LC}$

so:
$$\Delta \omega = 2\alpha = \omega_o/Q$$
 and $Q = \omega_o/\Delta \omega$

RESONATOR Q

General derivation of Q (all resonators):

 $w_T \cong w_{To}e^{-\omega't/Q}$ (total stored energy [J])

 $P_d = -dw_T/dt \cong (\omega'/Q)w_T$ (power dissipated [W])

 $Q \cong \omega' w_T/P_d^*$ (resonator Q ["radians" is dimensionless])

Internal, external, and loaded Q (Q_I, Q_E, Q_L):

 $Q_I = \omega' w_T / P_{dI}$ (P_{dI} is power dissipated internally, in R)

 $Q_E = \omega' w_T / P_{dE}$ (P_{dE} is power dissipated externally, in R_{Th})

 $Q_L = \omega' w_T / P_{dT}$ (P_{dT} is the total power dissipated, in R and R_{Th})

*IEEE definition: $Q = \omega_o w_T/P_d$

MATCHING TO RESONATORS

Transmission line feed:

At
$$\omega_o$$
: $|\underline{\Gamma}|^2 = \left|\frac{R - Z_o}{R + Z_o}\right|^2$

= 0 if matched, $R = Z_0$

= 1/9 if R = $Z_0/2$ or $2Z_0$

Behavior away from resonance:

Series resonance: Open circuit

Parallel resonance: Short circuit

EXAMPLE #1 – CELL PHONE FILTER

Bandpass filter specifications:

Looks like a short circuit far from ω_0

At ω_0 : reflect 1/9 of the incident power and let Γ < 0

$$\omega_0 = 5 \times 10^9$$
 and $\Delta \omega = 5 \times 10^7$

 $Z_0 = 100$ -ohm line

Filter solution:

Parallel resonators look like short circuits far from ω_o $|\Gamma|^2 = 1/9$ and $\Gamma < 0 \Rightarrow \underline{\Gamma} = -1/3$ at ω_o . $\underline{Z} = Z_o \frac{1 + \underline{\Gamma}}{1 - \Gamma} \Rightarrow R = 50\Omega$

$$|\underline{\Gamma}|^2$$
 = 1/9 and $\underline{\Gamma}$ < 0 \Rightarrow $\underline{\Gamma}$ = -1/3 at $\omega_{\rm o}$.

$$\underline{Z} = Z_0 \frac{1 + \underline{\Gamma}}{1 - \Gamma} \Rightarrow R = 50\Omega$$

$$\sqrt{LC} = 1/\omega_0 = (5x10^9)^{-1}$$

$$Q_L = R' / \sqrt{L/C}$$
 (parallel) $\Rightarrow \sqrt{L/C} = R' / Q_L = 33/100 = 0.33$ (R' = R // Z_o)

$$L = \sqrt{LC}\sqrt{L/C} = (5x10^9)^{-1} \times 0.33 = 6.67 \times 10^{-12} [Hy]$$

$$C = \sqrt{LC} / \sqrt{L/C} = (5x10^9)^{-1}/0.33 = 6 \times 10^{-10} [F]$$

build, use TEM?

EXAMPLE #2 – BAND-STOP FILTER

Filter specifications:

Far from ω_0 the load is matched (signal goes to amplifier R)

At ω_0 reflect all incident power; let $\underline{\Gamma}$ = -1 (short circuit)

$$\omega_0 = 5 \times 10^6$$

 $\Delta\omega = 5 \times 10^4$ (rejected band, notch filter) \Rightarrow Q = 100

 $Z_0 = 100$ -ohm line

Filter solution:

Lossless series resonators look like short circuits at ω_0

$$R = Z_o = 100\Omega$$
 \Rightarrow $|\underline{\Gamma}|^2 = 0$ at ω far from ω_o

$$\sqrt{LC} = 1/\omega_0 = (5x10^6)^{-1}$$

$$Q_1 = \sqrt{L/C}/R_1$$
 (series) $\Rightarrow \sqrt{L/C} = R_1Q_1 = 50x100 = 5000$

$$L = \sqrt{LC} \sqrt{L/C} = (5x10^6)^{-1} \times 5000 = 10^{-3} [Hy]$$

$$C = \sqrt{LC} / \sqrt{L/C} = (5x10^6)^{-1}/5000 = 4 \times 10^{-11} [F]$$