MIT OpenCourseWare <http://ocw.mit.edu>

6.013 Electromagnetics and Applications Spring 2009

For information about citing these materials or our Terms of Use, visit: [http://ocw.mit.edu/terms.](http://ocw.mit.edu/terms)

RLC RESONATORS

^{*} Let j₀ = s_i; recall: as² + bs + c = 0 s_i =
$$
\frac{(-b \pm \sqrt{b^2 - 4ac})}{2a}
$$

RLC RESONATOR WAVEFORMS

COUPLING TO RLC RESONATORS

Thevenin and Norton Equivalent Sources:

Thevenin equivalent source

Norton equivalent

Power dissipated P ^d**(f) in R = R** ^L**+R**Th**:**

$$
P_d(\omega) = \frac{1}{2} \frac{|\underline{V}_{Th}|^2}{|\underline{Z}|^2} R = \frac{1}{2} \frac{|\underline{V}_{Th}|^2}{|R + j\omega L + \frac{1}{j\omega C}|^2} R
$$
 Dominant factor near ω_o
=
$$
\frac{|\underline{V}_{Th}|^2 R\omega^2}{2L^2} \left| \frac{(\omega - \frac{1}{\sqrt{LC}} - j\frac{R}{2L})(\omega + \frac{1}{\sqrt{LC}} - j\frac{R}{2L})}{\sqrt{LC}} \right|^{-2}
$$

Half-power frequencies: $\omega \cong \omega_{\rm o} \pm {\sf R}/{\sf 2L}$ = $\omega_{\rm o} \pm \alpha$, where $\omega_{\rm o}$ = 1/ $\!\!\sqrt{\sf L}{\sf C}$ so: $\Delta \omega$ = 2 α = $\omega_{\rm o}$ /Q $^{\circ}$ and $^{\circ}$ Q = $\omega_{\rm o}/\Delta \omega$

RESONATOR Q

General derivation of Q (all resonators):

 $\mathsf{w}_{\mathsf{T}}\cong\mathsf{w}_{\mathsf{To}}$ (total stored energy [J]) P_{d} = -dw_T/dt \cong (ω' / Q)w_T (power dissipated [W]) $\mathsf{Q} \cong \omega'\mathsf{w}_\mathsf{T}/\mathsf{P}_\mathsf{d}$ * (resonator Q ["radians" is dimensionless])

 $\mathsf{P}_{\sf d}(\omega)$ ω_{o} ω $\Delta \omega$ 11/2 I **Internal, external, and loaded Q (Q_I, Q_E, Q_L):** Q_{I} = ω 'w_T/P_{dI} (P_{dI} is power dissipated internally, in R) Q_E = ω 'w_T/P_{dE} (P_{dE} is power dissipated externally, in R_{Th}) Q_L = ω 'w_T/P_{dT} (P_{dT} is the total power dissipated, in R and R_{Th}) RLC $\underline{\mathsf{V}}_{\mathsf{Th}}$ R_{Th} GCL+ $\underline{\mathsf{V}}_{\mathsf{Th}}$ - R_{Th} $\mathsf{P}_{\sf dT}$ = $\mathsf{P}_{\sf dI}$ + $\mathsf{P}_{\sf dE}\;\;\Rightarrow\;\; \mathsf{Q}_{\sf L}$ $^{-1} = Q^{-1}_1 + Q^{-1}_{E}$ -1 $\, {\mathsf Q}_{\mathsf L}^{} \approx \omega_{\mathsf o}^{}$ /Δω Perfect Match: Q_I = Q_E *IEEE definition: Q = $\omega_{\sf o}$ w $_{\sf T}$ /P $_{\sf d}$

MATCHING TO RESONATORS

Transmission line feed:

Behavior away from resonance:

Series resonance: Open circuit

Parallel resonance:

Short circuit

EXAMPLE #1 – CELL PHONE FILTER

Bandpass filter specifications:

Looks like a short circuit far from ω_o At $\omega_{\sf o}$: reflect 1/9 of the incident power and let $\underline{\Gamma}$ < 0 $\omega_{\rm o}$ = 5 \times 10 $^{\rm 9}$ and $\Delta \omega$ = 5 \times 10 $^{\rm 7}$ Z_o = 100-ohm line

Filter solution:

Parallel resonators look like short circuits far from ω_{e} $|\underline{\Gamma}|^2$ = 1/9 and $\underline{\Gamma}$ < 0 $\;\Rightarrow$ $\underline{\Gamma}$ = -1/3 at $\omega_{\rm o}.$ $\;\;\;\;\;$ $\;\;\subseteq$ = $\sf {\sim}$ \sim $\overline{1-\Gamma}$ \Rightarrow $\sf R$ = 50Ω = 1/ $\omega_{\sf o}$ = (5x10 $^{\sf o}$ $LC = 1/\omega_{\rm o} = (5 \times 10^9)^{-1}$ Q_L = R'/ $\mathsf{\mathsf{L}}$ /C (parallel) \Rightarrow $\mathsf{\mathsf{\mathsf{\mathsf{L}IC}}}$ = R'/ Q_L = 33/100 = 0.33 (R' = R // Z_o) L = $\sqrt{\mathsf{LC}}\sqrt{\mathsf{L}/\mathsf{C}}\;$ = (5x10 9 $\mathsf{LC}\,\sqrt{\mathsf{L}/\mathsf{C}}\ = (\mathsf{5x10^9})^{\text{-}1}\,\mathsf{x}\,$ $\mathsf{0.33}$ = $\mathsf{6.67}\;\mathsf{x}\,\,\mathsf{10^{\text{-}12}}$ $\mathsf{[Hy]}$ C = $\sqrt{\mathsf{LC}}$ / $\sqrt{\mathsf{L}/\mathsf{C}}$ = (5x10 9 LC / $\sqrt{\textsf{L/C}} = (5 \textsf{x} 10^9)^{\text{-}1} / 0.33 = 6 \textsf{x} 10^{\text{-}10}$ [F] Small, hard to build, use TEM? 1 Z = Z_o $\frac{1}{1}$ $=Z_{o}\frac{1+\underline{\Gamma}}{1-\underline{\Gamma}}$

EXAMPLE #2 – BAND-STOP FILTER

Filter specifications:

- Far from ω_o the load is matched (signal goes to amplifier R) At ω_o reflect all incident power; let $\underline{\Gamma}$ = -1 (short circuit) $\omega_{\sf o}$ = 5 \times 10 6
- $\Delta \omega$ = 5 \times 10 4 (rejected band, notch filter) \Rightarrow Q = 100
- Z_o = 100-ohm line

 $= 5000$

Filter solution:

Lossless series resonators look like short circuits at ω_o

$$
R = Z_0 = 100 \Omega \implies |\underline{\Gamma}|^2 = 0 \text{ at } \omega \text{ far from } \omega_0
$$

$$
\sqrt{LC} = 1/\omega_o = (5 \times 10^6)^{-1}
$$

Q_L = $\sqrt{L/C}$ /R_L (series) $\Rightarrow \sqrt{L/C} = R_L Q_L = 50 \times 100$

 L = $\sqrt{\mathsf{LC}}\,\sqrt{\mathsf{L}/\mathsf{C}}\;$ = (5x10 6 LC√L/C = (5x10⁶)⁻¹ x 5000 = 10⁻³ [Hy]

 C = $\sqrt{\mathsf{LC}}$ / $\sqrt{\mathsf{L}/\mathsf{C}}$ = $(5 \mathsf{x} 10^6$)-1/5000 = 4 x 10-11 [F] LC / L/C