MIT OpenCourseWare http://ocw.mit.edu

6.013 Electromagnetics and Applications Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

WIRELESS COMMUNICATIONS

RANGE	ACTIVE	PASSIVE
Arm's Length	Pills, hearing aids, computer peripherals	Faucets, CD's, thermometers,
<100 m	Wireless phones, remote controllers, computer links	Cameras, doors
<100 km	Radio, television, cell phones, UWB, 802.11	Multispectral remote sensing
Global	Ham radio, communications satellites, radar, lidar	Weather satellites
Cosmic	Radio & optical interplanetary communications, radar, lidar	Radio & optical astronomy

COMMUNICATION REQUIRES ENERGY AND POWER

Typical receivers need: $E_b > \sim 10^{-20}$ Joules/bit

Received power required: $P_{rec} = M_{bps}E_b$ [Watts]

(M_{bos} is data rate, bits/sec)

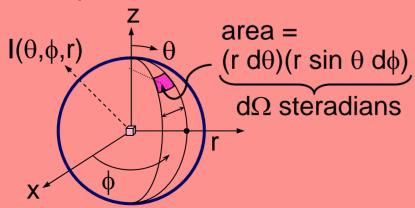
RADIATED POWER

Transmitted Intensity: $I(\theta,\phi,r)$ [W/m²]

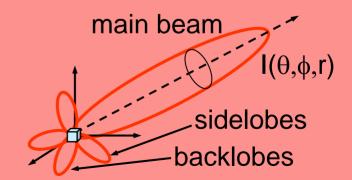
For isotropic radiation: $I(\theta, \phi, r) = \frac{P_R}{4\pi r^2} [Wm^{-2}]$

Total power radiated [W]

$$P_{R} = \int_{0}^{2\pi} \int_{0}^{\pi} I(\theta, \phi, r) r^{2} \sin\theta \, d\theta \, d\phi$$


$$d\Omega \text{ (steradians)}$$

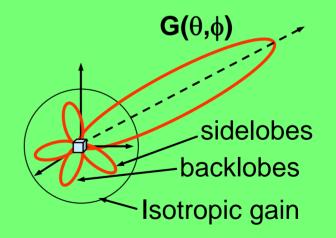
Steradian: unit of solid angle


 $d\theta$, $d\phi$: units of radians.

Spheres: span 4π steradians

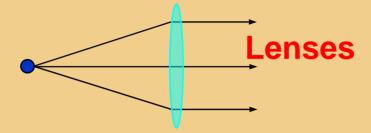
Isotropic:

Antenna pattern:

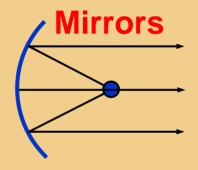

ANTENNA GAIN $G(\theta,\phi)$

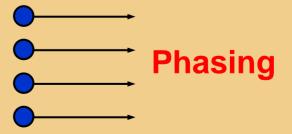
Gain over Isotropic, $G(\theta,\phi)$:

$$G(\theta,\phi) = I(\theta,\phi,r)$$
 Intensity actually radiated [Wm⁻²] $(P_R/4\pi r^2)$ Intensity if P_R were radiated isotropically


Intensity at receiver:

$$I(\theta, \phi, r) = G(\theta, \phi) (P_R/4\pi r^2)$$
 [Wm⁻²]




HOW TO INCREASE ANTENNA GAIN $G(\theta,\phi)$?

Focus the energy

Photographs illustrating lenses, mirrors, and phasing removed due to copyright restrictions.

ANTENNA EFFECTIVE AREA A_e(θ,φ)[m²]

Intensity radiated in a particular direction

$$I(\theta,\phi,r) = G_t(\theta,\phi) (P_R/4\pi r^2) \quad [W/m^2]$$

Power Received from a particular direction

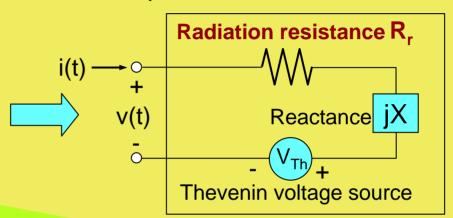
$$P_{rec} = I(\theta, \phi) A(\theta, \phi)$$
 [W]

Antenna Effective Area and Gain

$$A(\theta,\phi) = G(\theta,\phi) (\lambda^2/4\pi)$$
 [m²]

Power Received from a particular direction

$$P_{rec} = P_t G_t G_r (\lambda/4\pi r)^2$$
 [W] \Rightarrow "reciprocity"

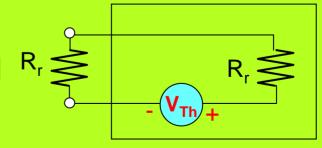

CIRCUIT PROPERTIES OF ANTENNAS

When transmitting:

Power radiated = P_R

$$P_R = \langle i^2(t) \rangle R_r [W]$$

Equivalent circuit of antenna



When receiving:

Thevenin voltage V_{Th} is induced by incoming waves

Maximum power extractable from the antenna:

$$P_{rec} = <(V_{Th}(t)/2)^2 > /R_r$$

Reactive elements are tuned out

SUMMARY

Wireless communications are ubiquitous

 $G(\theta,\phi) = I(\theta,\phi,r) / (P_t/4\pi r^2) = Antenna gain over isotropic$

Boost antenna gain using lenses, mirrors, or phasing

 $A_r = G_r (\lambda^2/4\pi) = Antenna effective area [m²]$

M [bps] =
$$P_{rec}/E_b = IA_e/E_b = P_tG_tG_r(\lambda/4\pi r)^2/E_b = data rate$$

 $E_b > \sim 10^{-20}$ [J] at the receiver (see footnote 39 on p360)

Antennas have Thevenin equivalent circuits, radiation resistance

EXAMPLE – INTERSTELLAR COMM.

$$\begin{split} P_{\text{Rad}} = \int_{0}^{2\pi} \int_{0}^{\pi} G(\theta,\phi) \frac{P_{\text{Rad}}}{4\pi r^{2}} \ r^{2} \underbrace{\sin\theta \ d\theta \ d\phi}_{\text{d}\Omega \ \text{steradians}} \Rightarrow \int_{4\pi} G(\theta,\phi) d\Omega = 4\pi \\ \theta_{\text{B}} \ \text{is "antenna beamwidth"} \qquad \Omega_{\text{B}} \bullet G_{\text{o}} \qquad G_{\text{o}} \Omega_{\text{B}} = 4\pi \ \Rightarrow \ G_{\text{o}} = 4\pi/\Omega_{\text{B}} \end{split}$$

Best microwave antennas: $\theta_B \cong 1$ arc min = $(1/60)^{\circ}(1/57)$ radians $\cong 2^{-12}$ rad

$$G_o = 4\pi/\Omega_B \cong 2^3/2^{-24} \cong 2^{27} \cong 10^8 \text{ (or 80 dB)}$$

Strongest transmitters ~ 10⁶ Watts

Nearest stars ~1 light year = 3×10^7 sec \times 3×10^8 m/s \cong 10^{16} m

$$P_{rec} = \frac{P_{rad}}{4\pi r^2} G_t G_r \frac{\lambda^2}{4\pi} \cong \frac{10^6 \ 10^8 \ 10^8 \ 0.03^2}{10 \ 10^{32} \ 10} \cong 10^{-15} \ [W] \ [J/s]$$

Data rate R \cong P_{rec}[J/s] / 10⁻²⁰[J/bit] = 10⁻¹⁵/10⁻²⁰ = 10⁵ bits/sec