MIT OpenCourseWare <http://ocw.mit.edu>

6.013 Electromagnetics and Applications Spring 2009

For information about citing these materials or our Terms of Use, visit: [http://ocw.mit.edu/terms.](http://ocw.mit.edu/terms)

LASERS

Representative applications:

Amplifiers: Broad-band communications (avoid down-conversion)

- Oscillators: Frequency/distance reference, local oscillators, illuminators, transmitters, CD/DVD players, sensors
- Blasting: Laser machining, labeling, weapons, laser fusion (pellet compression). Peak > 1015W, average > 1kw; high intensity because I $\propto |\sum\limits_{\mathsf{i}}|\frac{\mathsf{E}}{\mathsf{i}}|^2$ i

Energy States:

Chromium atoms in lattice (e.g. ruby), Erbium atoms in glass

Rate Equation: STIMULATED EMISSION AND ABSORPTION

Assume: \quad Two-level system, E_2 $>$ E_1 , and n_i = atoms $\mathsf{m}^{\text{-1}}$ in state i

Then: $d n_{2}/dt =$ - An $_{2}$ - B(n $_{2}$ – n $_{1})$ [m⁻¹s⁻¹] (collisionless system)

 \overline{n}_{2}

A

 n_1

 n_2

 n_1

B

Spontaneous emission Induced emission

Spontaneous emission, states i to j:

 $A_{ii} = \omega^3 |D_{ii}|^2 (2/3 \text{h} \epsilon c^3)$ [s⁻¹] (Decay time $\tau_A = A^{-1}$)

 D_{ii} [C m] = quantum dipole moment (electric or magnetic)

Note: $\tau_\mathsf{A}\varpropto \omega^{‐3} \implies$ very brief "visible" τ 's, long microwave τ 's

Stimulated emission and absorption:
\n
$$
\int_{-\infty}^{\infty} g_{ij}(f) df = 1
$$
\n
$$
\int_{0}^{\infty} g_{ij}(f) df = 1
$$
\n
$$
\int_{0}^{\
$$

BASIC LASER AMPLIFIER PHYSICS

PUMPING OF LASERS

Two-Level Lasers:

Radiation pumping alone never yields n $_{2}$ > n $_{\rm 1}$ (some 2-level lasers spatially isolate n_2 group)

Three-Level Lasers:

Pumping the 1-3 transition yields $\mathsf{n}_\mathsf{1} \cong \mathsf{n}_\mathsf{3}$ Large A_{32} populates L2 so $\mathsf{n}_2 >> \mathsf{n}_1 \cong \mathsf{n}_3 \cong \mathsf{0}$

More levels can utilize transitions with larger A's Large A_{23} fills L_2 , and large A_{41} empties L_4

Laser Power Efficiency (P_{out}/P_{in}):

Intrinsic efficiency: B/A efficiency @ 2: A/A efficiency @ 3: Total efficiency:

 $\eta_{\sf i} = {\sf f}_{\sf L}/{\sf f}_{\sf p}$ (P \propto nhf [W]) $<$ 1 $\eta_{\rm B} = {\mathsf B}_{21} / ({\mathsf A}_{21} {\mathsf +}{\mathsf B}_{21}) < 1$ $\eta^{}_{\rm A} = {\sf A}^{}_{32}/({\sf A}^{}_{31}$ + ${\sf A}^{}_{32})$ < 1 $\eta_\mathsf{B} \eta_\mathsf{A}$

Pump photons s⁻¹ \propto B >> A \propto ω^3 , so x-ray lasers need pump power \propto hfB \propto hfA \propto ω^4

LASER OSCILLATORS

Laser Oscillation:

Lossless: With perfect mirrors at both ends a losslessamplifier must oscillate and saturate

- Lossy: Round-trip gain must exceed round-trip loss (threshold condition); gain \propto pump power $\mathsf{P}_{\mathsf{p}},$ so need P_{p} > $\mathsf{P}_{\mathsf{thresh}}$
- Mirrors: Exit mirror has power transmission coefficient $T > 0$ At threshold, Gain \cong Loss, so: $P_+(1-T)e^{2(g\cdot\alpha)L}\geq P_+$ \Rightarrow round-trip gain = e $^{2(\text{g}-\alpha)\text{L}}$ \geq 1/(1 $-$ T) for oscillation
- Q-switching: $\;$ Set mirror reflectivity low \Rightarrow round-trip gain < threshold. When laser is fully pumped, increase mirror reflectivity over threshold, yielding very large "Q-switched pulse"

LASER RESONANCES

Oscillator Resonant Frequencies f:

Resonances

m λ_{m} m _m 'm i+1 ^{— ı}i $\frac{1.135 \text{ m}}{2}$ = L (mirrors \approx short circuits) $\lambda_{\sf m} = \frac{2{\sf L}}{\sf m},\ \ {\sf f}_{\sf m} = \frac{{\sf cm}}{2{\sf L}{\sf N}}\ \ \ ({\sf N}={\sf refractive\ index})$ $f_{i+4} - f_i = \frac{C}{C}$ 2LN− ⁼ $\frac{\lambda_{\sf m}}{\texttt{S}}$ = L (mirrors \approx

 \cong 10 8 Hz (100 MHz) for 1-meter fiber;

≅ 50 GHz line spacing for 0.5-mm diodes

Laser Output Spectrum:

If every atom can amplify at all frequencies, then the strongest round-trip gain wins \Rightarrow line narrowing -(homogeneous line broadening)

If atoms can amplify only a portion of the band, then all lines over threshold can yield output (inhomogeneous line broadening)

Line narrowing

EXAMPLES OF LASERS

Electrically Pumped Solid-State Lasers:

Forward-biased GaAs p-n junction injects carriers into conduction band Compact (grain of sand) ~50 percent efficiency >100 W/cm 2 for arrays 1 mW/micron2 for diodes1-1000 mW typical

stai

Astrophysical Masers:

Stellar Pumping: $\qquad \qquad$ UV-IR pumped: $\rm\ H_2O$, OH, CO, etc. Interstellar collisions: OH, etc.

Chemical lasers:

Weapons (high energy, fast)