MIT OpenCourseWare http://ocw.mit.edu

6.013 Electromagnetics and Applications Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

LASERS

Representative applications:

Amplifiers: Broad-band communications (avoid down-conversion)

Oscillators: Frequency/distance reference, local oscillators,

illuminators, transmitters, CD/DVD players, sensors

Blasting: Laser machining, labeling, weapons, laser fusion (pellet

compression). Peak > 10¹⁵W, average > 1kw; high

intensity because $I \propto |\sum_{i} \overline{E}_{i}|^{2}$

Energy States:

Water vapor H₂O

States:

electronic (visible, UV) vibrational (visible)

bending (IR)

rotational (microwave)

Chromium atoms in lattice (e.g. ruby), Erbium atoms in glass

STIMULATED EMISSION AND ABSORPTION

Rate Equation:

Assume: Two-level system, $E_2 > E_1$, and $n_i = atoms m^{-1}$ in state i

 $\frac{dn_2/dt = -An_2 - B(n_2 - n_1) [m^{-1}s^{-1}]}{(collisionless system)}$ Then:

Spontaneous emission Induced emission

Spontaneous emission, states i to j:

$$A_{ij} = \omega^3 |D_{ij}|^2 (2/3h\epsilon c^3) [s^{-1}]$$
 (Decay time $\tau_A = A^{-1}$)

D_{ii} [C m] = quantum dipole moment (electric or magnetic)

Note: $\tau_A \propto \omega^{-3} \Rightarrow$ very brief "visible" τ 's, long microwave τ 's

Stimulated emission and absorption:

Photon flux density F: $F = \frac{\left|\mathbb{E}\right|^2}{2\eta_o} \frac{1}{hf}$ [photons m⁻²s⁻¹] B coefficient: $B_{ij} = F\sigma_{ij} \propto F g_{ij}(f) A_{ij}/\omega^3$

 $g_{ij}(f) = \frac{2}{\pi \Delta f} \frac{1}{1 + 4 \frac{(f - f_o)^2}{(A f_o)^2}}$ (Lorentzian) Line shape g_{ii}(f):

ENERGY LEVEL POPULATION AND WIDTH

Linewidth Broadening Mechanisms:

Electron energy E in semiconductor

Level Populations—Kinetic Temperature T_k:

Thermal equilibrium ⇒ Boltzmann distribution:

$$\frac{n_{j}}{n_{j}} = e^{-\left(E_{j} - E_{j}\right)/kT} = \text{kinetic temperature}$$
if collisions dominate
$$T = \text{radiation temperature if}$$

$$\text{radiation dominates } f_{ii}$$

$$\Rightarrow$$
 $n_i \rightarrow n_j$ if $T_{rad} \rightarrow \infty$, $n_2 > n_1$ if $T_{rad} < 0$

BASIC LASER AMPLIFIER PHYSICS

Intensity-limited amplification

[Each • is a separate atom or molecule; need $n_2 > n_1$ for amplification]

n₂ replacement-rate limited amplification

Amplification frequency f [Hz]:

$$E_2 - E_1 = hf [J],$$

h = $6.625 \times 10^{-34} [Js]$

PUMPING OF LASERS

Two-Level Lasers:

Radiation pumping alone never yields $n_2 > n_1$ (some 2-level lasers spatially isolate n_2 group)

Three-Level Lasers:

Pumping the 1-3 transition yields $n_1 \cong n_3$ Large A_{32} populates L2 so $n_2 >> n_1 \cong n_3 \cong 0$

More levels can utilize transitions with larger A's Large A_{23} fills L_2 , and large A_{41} empties L_4

Laser Power Efficiency (Pout/Pin):

Intrinsic efficiency: $\eta_i = f_L/f_p \text{ (P} \propto \text{nhf [W])} < 1$

B/A efficiency @ 2: $\eta_B = B_{21}/(A_{21}+B_{21}) < 1$

A/A efficiency @ 3: $\eta_A = A_{32}/(A_{31}+A_{32}) < 1$

Total efficiency: $\eta = \eta_i \eta_B \eta_A$

Pump photons s⁻¹ \propto B >> A \propto ω^3 , so x-ray lasers need pump power \propto hfB \propto hfA \propto ω^4

$$dn_2/dt = -An_2 - B(n_2 - n_1)$$

LASER OSCILLATORS

Laser Oscillation:

Lossless: With perfect mirrors at

both ends a lossless

amplifier must oscillate

and saturate

Lossy: Round-trip gain must exceed round-trip loss (threshold

condition); gain ∞ pump power P_p , so need $P_p > P_{thresh}$

Mirrors: Exit mirror has power transmission coefficient T > 0

At threshold, Gain \cong Loss, so: $P_{+}(1 - T)e^{2(g-\alpha)L} \ge P_{+}$

 \Rightarrow round-trip gain = $e^{2(g-\alpha)L} \ge 1/(1-T)$ for oscillation

Q-switching: Set mirror reflectivity low ⇒

round-trip gain < threshold.

When laser is fully pumped,

increase mirror reflectivity

over threshold, yielding very

large "Q-switched pulse"

LASER RESONANCES

Oscillator Resonant Frequencies f:

Resonances

$$\begin{split} \frac{m\lambda_m}{2} &= L \qquad \text{(mirrors } \approx \text{ short circuits)} \\ \lambda_m &= \frac{2L}{m}, \ \ f_m = \frac{cm}{2LN} \ \ \text{(N = refractive index)} \\ f_{i+1} - f_i &= \frac{c}{2LN} \end{split}$$

 \approx 10⁸ Hz (100 MHz) for 1-meter fiber;

≈ 50 GHz line spacing for 0.5-mm diodes

Laser Output Spectrum:

If every atom can amplify at all frequencies, then the strongest round-trip gain wins ⇒ line narrowing (homogeneous line broadening)

If atoms can amplify only a portion of the band, then all lines over threshold can yield output (inhomogeneous line broadening)

EXAMPLES OF LASERS

Electrically Pumped Solid-State Lasers:

Forward-biased GaAs p-n junction injects carriers into conduction band

Compact (grain of sand)

- ~50 percent efficiency
- >100 W/cm² for arrays
- 1 mW/micron² for diodes
- 1-1000 mW typical

sta

Astrophysical Masers:

Stellar Pumping: UV-IR pumped: H₂O, OH, CO, etc.

Interstellar collisions: OH, etc.

Chemical lasers:

Weapons (high energy, fast)