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ELECTROMAGNETICS
AND APPLICATIONS

Electromagnetics and Applications
• Maxwell’s equations: statics, quasistatics, and wave phenomena
• Applications: wireless, media, circuits, forces and generators, 

computer speed, microwaves, antennas, photonics, acoustics, etc.

Mathematical Methods
• Partial differential and difference equations, phasors, vector calculus

Problem Solving Techniques
• Perturbation, boundary-value, and energy methods; duality

Academic Review
• Mechanics, quantum phenomena, devices, circuits, signals, linear

systems

Capstone Subject—Professional Preparation

Follow-on Subjects:
Electromagnetic waves: 6.632, Quasistatics: 6.641
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ACOUSTIC ANTENNAS
Monopole Radiators:

Wave equation: (∇2 + k2)p = 0*       (k = ω/cs)
∂/∂θ = ∂/∂φ = 0      (radial source) 

Yields: d2p/dr2 + (2/r)dp/dr + k2p = 0
Equivalent to: d2(rp)/dr2 + k2(rp) = 0
General solution: rp ∝ e±jkr

Radiation outward: p(r) = (A/r)e-jkr

Velocity field u:
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Far-Field: kr >> 1  ⇒ r >> λ/2π):

Near-Field Radiation:
p(r) = (A/r)e-jkr u(r) = (A/rηs)e-jkr = p(r)/ηs

p(r) = (A/r)e-jkr u(r) = (-jA/r2kηs)e-jkr = -jp(r)/ρoωr
“Velocity mikes” close to the lips boost lows; need ×ω compensation
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ACOUSTIC ANTENNAS (2)
Antenna Gain G(θ,φ), Effective Area A(θ,φ) [m2]:

Antenna (Loudspeaker, Microphone) Configurations:
Preceived = I(θ,φ) A(θ,φ) [W]
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ACOUSTIC RESONATORS
Amnp Resonances of a Box:

Resonant Frequencies of the Amnp Mode in a Box:
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RESONATOR MODAL DENSITY
Modal Density in Rectangular Resonators:

Example:

Recall:

Each cube has volume = cs
3/8V

where V = abd (volume of resonator)

Number of modes in Δf ≅
(Volume of shell)/(vol. of cell) ≅
4πf2 Δf/[8(cs

3/8V)] ≅

4πf2 Δf V/cs
3 modes in Δf

Bathroom 3×3×3 meters
⇒ lowest f100 =cs/2a ≅ 340/6 ≅ 57 Hz 
Modal density at 500 Hz ≅ 4π × 5002 × 1 × 33/3403 ≅ 2 modes/Hz
How can we select just one mode when we sing a single note?

ncs/2b

pcs/2d

mcs/2a

Δf

fmnp

p=2

m=2 3

2 2 2
mnp s

pm nf  c ( ) ( ) ( )   [Hz]2a 2b 2d= + +
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EXCITATION OF RESONATORS
TEM Resonators (with loss):

I(t) =  Io cos ωot
V(δ,t) = Vo cos(ωot + φ) sin(2πδ/d)

φ =  0 exactly at resonance
Pin(t) ≅ IoVo cos2(ωot) sin(2πδ/d)  [W]

= 0 at voltage nulls
Cannot excite TEMm modes by driving current into voltage nulls!  (Or 
by voltage sources in series at current nulls). Pin(t) = 0 in both cases.

I(t)

Vo

V(z,t)Zo,c

d
δ

Voltage null

Acoustic Resonators:
[ ]2 ˆI Wm pu n− = •

Cannot excite acoustic modes with:
velocity sources at pressure nulls (pk = 0), or
pressure sources at velocity nulls (vk = 0)

Bathroom Opera:

Put u here

Mouth ≈ velocity source
Place mouth near a pressure maximum of desired mode
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HUMAN ACOUSTIC RESONATORS

d

vocal chords

Human Vocal Tract:
f1 = cs/λ1 = cs/4d

= 340/(4 × 0.16)
= 531 Hz

Higher Resonances:
f2 = 3f1 = 1594 Hz
f3 = 5f1 = 2655 Hz

Energy Densities at 
Location “ ”

At f1: wp ≅ wu

At f2: wu >> wp

At f3: wp << wu

p(t,z)
u(t,z) z0

u

d

p(t,z)
u(t,z)

p(t,z)
u(t,z)

f3
z

0

z
0 d
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RESONANCE SHIFTS IN HUMAN VOICES

d

vocal chords

Human Vocal Tract:
Average force exerted by waves:
Outward at maximum     (max wp)
Inward at maximum        (max wu)

(Bernoulli force)

p
u

Resonator Total Energy wT = nhfo:
Pressing inward at pmax increases wT and fo
(Phonon number n = constant for slow changes)
Recall:  pressure {N m-2] ∝ energy density [J m-3]

Resonance Perturbations:
wp >> wu at f3
wu >> wp at f2
wp ≅ wu at f1 t

f1
f2

f3

0 vowels

p u

T

o
o s

o

(w w )f
f w

Pf c

Δ −Δ =

γ
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ρ
Tongue position 

determines vowel 
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