MIT OpenCourseWare http://ocw.mit.edu

6.013 Electromagnetics and Applications Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ELECTROMAGNETICS AND APPLICATIONS

Electromagnetics and Applications

- Maxwell's equations: statics, quasistatics, and wave phenomena
- Applications: wireless, media, circuits, forces and generators, computer speed, microwaves, antennas, photonics, acoustics, etc.

Mathematical Methods

Partial differential and difference equations, phasors, vector calculus

Problem Solving Techniques

Perturbation, boundary-value, and energy methods; duality

Academic Review

 Mechanics, quantum phenomena, devices, circuits, signals, linear systems

Capstone Subject—Professional Preparation

Follow-on Subjects:

Electromagnetic waves: 6.632, Quasistatics: 6.641

ACOUSTIC ANTENNAS

Monopole Radiators: $\nabla p = -\rho_0 \frac{\partial u}{\partial t}$ [Nm⁻³] [kg m⁻²s⁻²]

$$\nabla p = -\rho_o \frac{\partial u}{\partial t}$$

Wave equation: $(\nabla^2 + k^2)p = 0^*$ $(k = \omega/c_s)$

$$(\nabla^2 + k^2)p = 0^*$$

$$(k = \omega/c_s)$$

$$\partial/\partial\phi=0$$

 $\partial/\partial\theta = \partial/\partial\phi = 0$ (radial source)

Yields:

$$d^2p/dr^2 + (2/r)dp/dr + k^2p = 0$$

Equivalent to:
$$d^2(rp)/dr^2 + k^2(rp) = 0$$

General solution: rp ∝ e^{±jkr}

$$rp \propto e^{\pm jkr}$$

Radiation outward: $\underline{p}(r) = (A/r)e^{-jkr}$

$$\underline{p}(r) = (A/r)e^{-jkr}$$

Velocity field u:

$$\underline{\overline{u}}(r) = -\frac{\nabla \underline{p}}{j\omega\rho_0} = \hat{r}\frac{A}{\eta_s r} \left(1 + \frac{1}{jkr}\right) e^{-jkr}$$

Far-Field: kr >> 1 \Rightarrow r >> $\lambda/2\pi$):

$$p(r) = (A/r)e^{-jkr}$$

$$\bar{u}(r) = (A/r\eta_s)e^{-jkr} = p(r)/\eta_s$$

Near-Field Radiation: Since
$$\nabla \overline{p} = -j\omega \underline{\overline{u}}$$
 therefore:

$$p(r) = (A/r)e^{-jkr}$$

$$\bar{u}(r) = (-jA/r^2k\eta_s)e^{-jkr} = -jp(r)/\rho_o\omega r$$

"Velocity mikes" close to the lips boost lows; need ×∞ compensation

*
$$\left(\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial}{\partial r}) + \frac{1}{r^2 \sin\theta} \frac{\partial}{\partial \theta} (\sin\theta \frac{\partial}{\partial \theta}) + \frac{1}{r^2 \sin^2\theta} \frac{\partial^2}{\partial \phi^2}\right)$$

Velocity

microphone

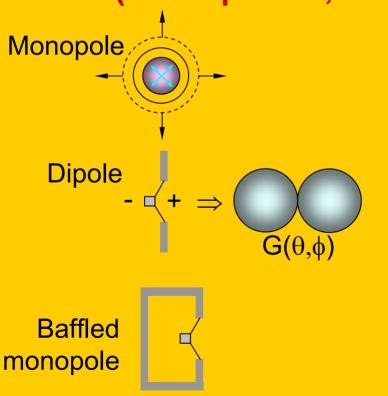
ACOUSTIC ANTENNAS (2)

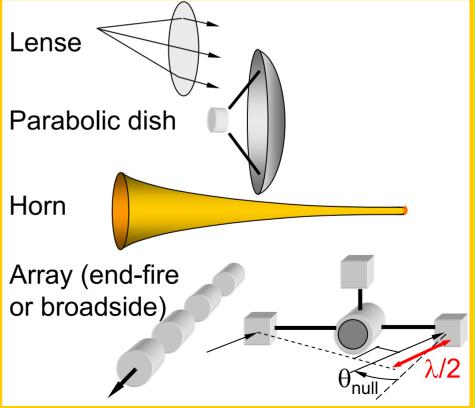
Antenna Gain $G(\theta,\phi)$, Effective Area $A(\theta,\phi)$ [m²]:

$$G(\theta,\phi) = \frac{P_{r}(\theta,\phi)}{(P_{t}/4\pi r^{2})}$$

$$P_{received} = I(\theta,\phi) A(\theta,\phi) [W]$$

Antenna (Loudspeaker, Microphone) Configurations:





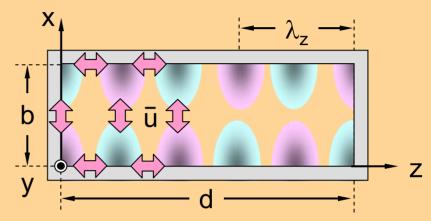
ACOUSTIC RESONATORS

A_{mnp} Resonances of a Box:

$$m(\frac{\lambda_y}{2}) = a \Rightarrow \lambda_y = \frac{2a}{m}$$

$$n(\frac{\lambda_x}{2}) = b, \quad p(\frac{\lambda_z}{2}) = d$$

$$(\nabla^2 + k^2)\underline{p} = 0$$
e.g., $\underline{p} = p_o e^{-jk_x x - jk_y y - jk_z z}$



$$k^{2} = \frac{\omega^{2}}{c_{s}^{2}} = k_{x}^{2} + k_{y}^{2} + k_{z}^{2} = \left(\frac{2\pi}{\lambda_{x}}\right)^{2} + \left(\frac{2\pi}{\lambda_{y}}\right)^{2} + \left(\frac{2\pi}{\lambda_{z}}\right)^{2}$$

Resonant Frequencies of the A_{mnp} Mode in a Box:

$$f_{mnp}^2 = \left(\frac{\omega}{2\pi}\right)^2 = c_s^2 \left(\frac{1}{\lambda_x^2} + \frac{1}{\lambda_y^2} + \frac{1}{\lambda_z^2}\right), \text{ where } \lambda_x = \frac{2b}{n}$$

$$f_{mnp} = c_s \sqrt{(\frac{m}{2a})^2 + (\frac{n}{2b})^2 + (\frac{p}{2d})^2}$$
 [Hz]

$$f_{000} = 0$$
 Hz (constant pressure)

$$f_{001} = 340/2d \Rightarrow 170 \text{ Hz for a one-meter closed pipe}$$

RESONATOR MODAL DENSITY

Modal Density in Rectangular Resonators:

Recall: $f_{mnp} = c_s \sqrt{(\frac{m}{2a})^2 + (\frac{n}{2b})^2 + (\frac{p}{2d})^2}$ [Hz]

Each cube has volume = $c_s^3/8V$

where V = abd (volume of resonator)

Number of modes in $\Delta f \cong$ (Volume of shell)/(vol. of cell) \cong $4\pi f^2 \Delta f/[8(c_s^3/8V)] \cong$

 $4\pi f^2 \Delta f V/c_s^3$ modes in Δf

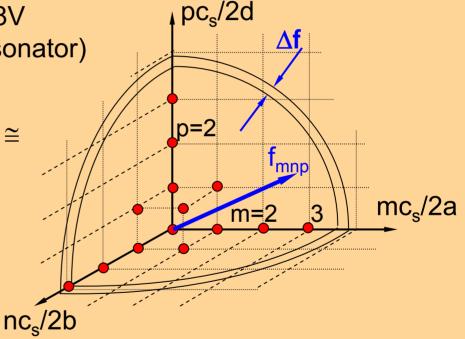
Example:

Bathroom 3×3×3 meters

 \Rightarrow lowest $f_{100} = c_s/2a \approx 340/6 \approx 57 \text{ Hz}$

Modal density at 500 Hz $\cong 4\pi \times 500^2 \times 1 \times 3^3/340^3 \cong 2$ modes/Hz

How can we select just one mode when we sing a single note?

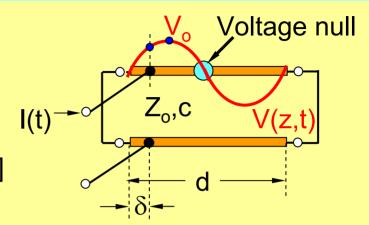


EXCITATION OF RESONATORS

TEM Resonators (with loss):

$$\begin{split} & I(t) = I_o \cos \omega_o t \\ & V(\delta,t) = V_o \cos(\omega_o t + \phi) \sin(2\pi\delta/d) \\ & \phi = 0 \text{ exactly at resonance} \\ & P_{in}(t) \cong I_o V_o \cos^2(\omega_o t) \sin(2\pi\delta/d) \text{ [V]} \end{split}$$

 $P_{in}(t) \cong I_o V_o \cos^2(\omega_o t) \sin(2\pi\delta/d)$ [W] = 0 at voltage nulls



Cannot excite TEM_m modes by driving current into voltage nulls! (Or by voltage sources in series at current nulls). $P_{in}(t) = 0$ in both cases.

Acoustic Resonators:

$$I[Wm^{-2}] = pu - \hat{n}$$

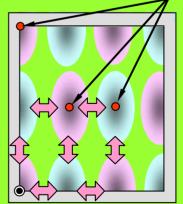
Cannot excite acoustic modes with: velocity sources at pressure nulls ($p_k = 0$), or pressure sources at velocity nulls ($v_k = 0$)

Bathroom Opera:

Mouth ≈ velocity source

Place mouth near a pressure maximum of desired mode

Put u here



HUMAN ACOUSTIC RESONATORS

Human Vocal Tract:

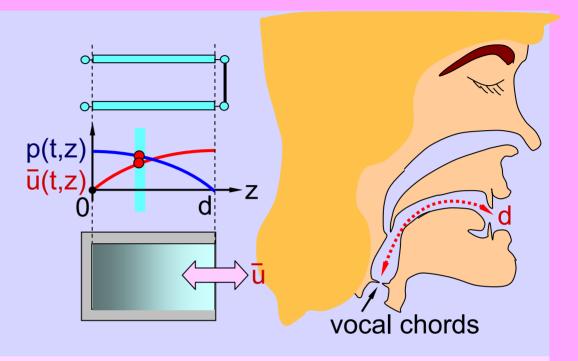
$$f_1 = c_s/\lambda_1 = c_s/4d$$

= 340/(4 × 0.16)
= 531 Hz

Higher Resonances:

$$f_2 = 3f_1 = 1594 \text{ Hz}$$

 $f_3 = 5f_1 = 2655 \text{ Hz}$

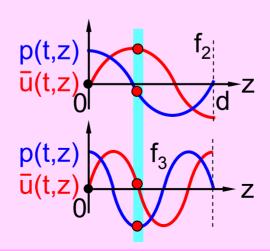


Energy Densities at Location " "

At f_1 : $w_p \cong w_u$

At f_2 : $w_u >> w_p$

At f_3 : $W_p \ll W_u$



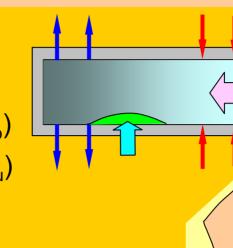
RESONANCE SHIFTS IN HUMAN VOICES

Human Vocal Tract:

Average force exerted by waves:

Outward at maximum $|\underline{p}|$ (max w_p)
Inward at maximum $|\underline{u}|$ (max w_u)

(Bernoulli force)



Resonator Total Energy $w_T = nhf_o$:

Pressing inward at p_{max} increases w_T and f_o

(Phonon number n = constant for slow changes)

Recall: pressure {N m⁻²] ∝ energy density [J m⁻³]

Resonance Perturbations:

$$\frac{\Delta f}{f} = \frac{\Delta (w_p - w_u)}{w_T}$$

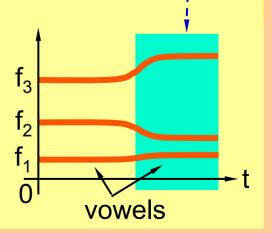
$$f_o \propto c_s \propto \sqrt{\frac{\gamma P_o}{\rho_o}}$$

Tongue position determines vowel

$$w_p >> w_u$$
 at f_3

$$w_u >> w_p$$
 at f_2

$$w_p \cong w_u$$
 at f_1



vocal chords