MIT OpenCourseWare <http://ocw.mit.edu>

6.013 Electromagnetics and Applications Spring 2009

For information about citing these materials or our Terms of Use, visit: [http://ocw.mit.edu/terms.](http://ocw.mit.edu/terms)

ELECTROMAGNETICSAND APPLICATIONS

Electromagnetics and Applications

- Maxwell's equations: statics, quasistatics, and wave phenomena
- \bullet Applications: wireless, media, circuits, forces and generators, computer speed, microwaves, antennas, photonics, acoustics, etc.

Mathematical Methods

• Partial differential and difference equations, phasors, vector calculus

Problem Solving Techniques

• Perturbation, boundary-value, and energy methods; duality

Academic Review

 \bullet Mechanics, quantum phenomena, devices, circuits, signals, linear systems

Capstone Subject—Professional Preparation

Follow-on Subjects:

Electromagnetic waves: 6.632, Quasistatics: 6.641

ACOUSTIC ANTENNAS

ACOUSTIC ANTENNAS (2)

Antenna Gain G(θ**,**φ**), Effective Area A(** θ**,**φ**) [m 2]:** $\mathsf{P}_{\mathsf{received}}^{} = \mathsf{I}(\theta,\phi) \; \mathsf{A}(\theta,\phi) \; [\mathsf{W}]$ $\frac{r(\text{v},\text{v})}{r}$ رام $\mathbf{G}(\theta, \phi) = \frac{\mathsf{P}_r(\theta, \phi)}{2}$ $(\mathsf{P}_{\mathsf{t}}\,/\,4\pi \mathsf{r}^{\texttt{2}})$ $(\theta, \phi) = \frac{P_r(\theta, \phi)}{P_r(\phi, \phi)}$ π

Antenna (Loudspeaker, Microphone) Configurations:

ACOUSTIC RESONATORS

RESONATOR MODAL DENSITY

Modal Density in Rectangular Resonators:

 \Rightarrow lowest f $_{100}$ =c $_{\rm s}$ /2a \cong 340/6 \cong 57 Hz Modal density at 500 Hz \cong 4 $\pi \times$ 500 $^2 \times$ 1 \times 3 3 /340 3 \cong 2 modes/Hz How can we select just one mode when we sing a single note?

EXCITATION OF RESONATORS

TEM Resonators (with loss):

l(t) = $\,$ l $_{\rm o}$ cos $\omega_{\rm o}$ t $V(\delta,t)$ = $V^{}_{\rm o}$ cos($\omega^{}_{\rm o}$ t + φ) sin(2πδ/d) $\phi = 0$ exactly at resonance $\mathsf{P}_{\mathsf{in}}(\mathsf{t}) \cong~\mathsf{I}_{\mathsf{o}}\mathsf{V}_{\mathsf{o}}$ cos^2 = 0 at voltage nulls ($ω_0$ t) sin(2πδ/d) [W]

Cannot excite TEM_m modes by driving current into voltage nulls! (Or by voltage sources in series at current nulls). $P_{in}(t) = 0$ in both cases.

Acoustic Resonators:

 $\mathsf{I} \big[\mathsf{W} \mathsf{m}^{-2} \big] \! = \! \mathsf{p} \overline{\mathsf{u}} \bullet \hat{\mathsf{n}}$

Cannot excite acoustic modes with: velocity sources at pressure nulls ($\bm{{\mathsf{p}}}_\textsf{k}$ = 0), or pressure sources at velocity nulls (v $_{\sf k}$ = 0)

Bathroom Opera:

Mouth \approx velocity source

Place mouth near a pressure maximum of desired mode

Put u here

HUMAN ACOUSTIC RESONATORS

Human Vocal Tract:

- $\rm{f_1}=\rm{c_s/\lambda_1}=\rm{c_s/4d}$
	- = 340/(4 \times 0.16)
	- = 531 Hz

Higher Resonances:

 \rm{f}_{2} = 3 \rm{f}_{1} = 1594 Hz f_3 = 5 f_1 = 2655 Hz

Energy Densities at Location " "

At f_1 : $_{\mathsf{p}}\cong\mathsf{W}_{\mathsf{u}}$ At f $_2$: w_u >> w_p At f_3 : $_{\rm p}$ << $_{\rm W_u}$

RESONANCE SHIFTS IN HUMAN VOICES

Human Vocal Tract:

Average force exerted by waves: Outward at maximum <mark>|p</mark>| (max w_p) lnward at maximum |<u>u</u>| (max w_u) (Bernoulli force)

Resonator Total Energy w T = nhf o: Pressing inward at $\bm{{\mathsf{p}}}_{\mathsf{max}}$ increases $\bm{{\mathsf{w}}}_\mathsf{T}$ and $\bm{{\mathsf{f}}}_\mathsf{o}$ (Phonon number n = constant for slow changes) Recall: $\,$ pressure {N m⁻²] \propto energy density [J m⁻³]

Resonance Perturbations:

p ''u T $\frac{1}{\rho_0} \propto C_S \propto \sqrt{\frac{1 + \rho_0}{\rho_0}}$ $\frac{\Delta f}{f} = \frac{\Delta (w_{\rm p} - w_{\rm u})}{w_{\rm m}}$ P $f_{\circ} \propto c_{\circ} \propto \sqrt{\frac{\gamma}{\tau}}$ $\frac{\Delta f}{f} = \frac{\Delta (W_p$ ρ Tongue position determines vowel

$$
w_p \gg w_u \text{ at } f_3
$$

$$
w_u \gg w_p \text{ at } f_2
$$

$$
w_p \cong w_u \text{ at } f_1
$$

