
8.1 Introduction and synopsis

This chapter, like Chapter 6, is a collection of case studies. They illustrate the use of material indices
which include shape. Remember: they are only necessary for the restricted class of problems in
which ~ection shape directly influences performance, thatis, when the prime function of a component
is to carry loads which cause it to bend, twist or buckle. And even then they are needed only when
the shape is itself a variable, that is, when different materials come in different shapes. When all
candidate-materials can be made to the same shapes, the indices reduce to those of Chapter 6.

Indices which include shape provide a tool for optimizing the co-selection of material-and-shape.
The important ones are summarized in Table 8.1. Many were derived in Chapter 7; the others are
derived here. Minimizing cost instead of weight is achieved by replacing density p by CmP, where
C m is the cost per kilogram.

The selection procedure is, first, to identify candidate-materials and the section shapes in which
each is available, or could be made. The relevant material properties* and shape factors for each are
tabulated. The best material-and-shape combination is that with the greatest value of the appropriate
index. The same information can be plotted onto Materials Selection Charts, allowing a graphical
solution to the problem -one which often suggests further possibilities.

The method has other uses. It gives insight into the way in which natural materials -many of
which are very efficient -have evolved. Bamboo is an example: it has both internal or microscopic
shape and a tubular, macroscopic shape, giving it very attractive properties. This and other aspects
are brought out in the case studies which now follow.

8.2 Spars for man-powered planes

Most engineering dasign is a difficult compromise: it must meet, as best it can, the conflicting
demands of multiple objectives and constraints. But in designing a spar for a man-powered plane
the objective is simple: the spar must be as light as possible, and still be stiff enough to maintain
the aerodynamic efficiency of the wings (Table 8.2). Strength, safety, even cost, hardly matter when
records are to be broken. The plane (Figure 8.1) has two main spars: the transverse spar supporting
the wings, and the longitudinal spar carrying the tail assembly. Both are loaded primarily in bending
(torsion cannot, in reality, be neglected, although we shall do so here).

Some 60 man-powered planes have flown successfully. Planes of the first generation were built
of balsa wood and spruce. The second generation relied on aluminium tubing for the load-bearing

* The material properties used in this chapter are taken from the CMS compilation published by Granta Design, Trump-

ington Mews, 40B High Street, Trumpington CB2 2LS, UK.
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Table 8.1 Examples of indices which include shape 

(a) Stiffness and strength-limited design at minimum weight (or cost*) 

Component shape, loading and constraints Stifiess-limited Strength-limited 

Tie (tensile member) 

design design 

Uf E 
P P 

- Load, stiffness and length specified, section-area free - 

Beam (loaded in bending) 

Loaded externally or by self weight, stiffness, strength and length 

Torsion bar or tube 

Loaded externally , stiffness, strength and length specified, section 

Column (compression strut) 

Collapse load by buckling or plastic crushing and length specified, 

(GO l’* (4LBf.f )*I3 

(@;w* ( 4 U . f  )*I3 

(W)‘l2 “i 

specified, section area free P P 

area free P P 

section area free P P 

*For cost, replace p by C,p in the indices. 

(a) Springs, specified energy storage at minimum volume or weight (or cost*) 

Component shape, loading and constraints Flexural springs Torsion springs 

Spring 

Specified energy storage, volume to be minimized 

Spring 

Specified energy storage, mass to be minimized 

*For cost, replace p by C,p in the indices. 

(&bf )* (&f )* 

(&f l2 (&d2 

G E  G E  

4 F P  @EP 

Table 8.2 Design requirements for wing spars 

Function Wing spar 
Objective Minimum mass 
Constraints (a) Specified stiffness 

(b) Length specified 

Fig. 8.1 The loading on a man-powered plane is carried by two spars, one spanning the wings and the 
other linking the wings to the tail. Both are designed for stiffness at minimum weight. 
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structure. The present, third, generation uses carbon-fibre/epoxy spars, moulded to appropriate 
shapes. How has this evolution come about? And how much further can it go? 

The model and the selection 
We seek a material-and-shape combination that minimizes weight for a given bending stiffness. The 
index to be maximized, read from Table 8.1, is 

Data for four materials are assembled in Table 8.3. If all have the same shape, M I  reduces to the 
familiar E ’ / 2 / p  and the ranking is that of the second last column. Balsa and spruce are significantly 
better than the competition. Woods are extraordinarily efficient. That is why model aircraft builders 
use them now and the builders of real aircraft relied so heavily on them in the past. 

The effect of shaping the section, to a rectangle for the woods, to a box-section for aluminium 
and CFRP, gives the results in the last column. (The shape factors listed here are typical of commer- 
cially available sections, and are well below the maximum for each material.) Aluminium is now 
marginally better than the woods; CFRP is best of all. 

The same information is shown graphically in Figure 8.2, using the method of Chapter 7. Each 
shape is treated as a new material with modulus E* = E/@$ and p* = p / @ i .  The values of E* and 
p* are plotted on the chart. The superiority of both the aluminium tubing with @ = 20 and the 
CFRP box-sections with @ = 10 are clearly demonstrated. 

Postscript 
Why is wood so good? With no shape it does as well or better than heavily-shaped steel. It is 
because wood is shaped: its cellular structure gives it internal shape (see p. 182), increasing the 
performance of the material in bending; it is nature’s answer to the I-beam. Bamboo, uniquely, 
combines microscopic and macroscoptic shape (see next section). 

But the technology of drawing thin-walled aluminium tubes has improved. Aluminium itself is 
stiffer than balsa or spruce, but it is also nearly 10 times denser, and that makes it, as a solid, far less 
attractive. As a tube, though, it can be given a shape factor which cannot be reproduced in wood. 
An aluminium tube with a shape factor 4; = r / t  = 20 is as good as solid balsa or spruce; one with 
a thinner wall is better - a fact that did not escape the designers of the second generation of man- 
powered planes. There is a limit, of course: tubes that are too thin will kink (a local elastic buckling); 
as shown in Chapter 7, this sets an upper limit to the shape factor for aluminium at about 40. 

Table 8.3 Materials for wing spars 

Muterial Modulus E Density p Shape factor Index Index M;  
(GPO) (Mg/m3 ) 4; E ’ / ’ l p  ((GPa)‘I2/Mg/m3) 

Balsa 4.2-5.2 0.17-0.24 1-2 11 11-15 

Steel 200- 2 10 7.82 -7.84 25-30 1.8 9- 10 
AI 7075 T6 71 -73 2.8 -2.82 15-25 3 12-15 
CFRP 100- 160 1.5-1.6 10- 15 7 23-28 

Spruce 9.8- 11.9 0.36-0.44 1-2 9 9- 12 

*The range of values of the indices are based on means of the material properties and corresponds to the range of values 
of (b;. 
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Fig. 8.2 The materials-and-shapes for wing-spars, plotted on the modulus-density chart. A spar made 
of CFRP with a shape factor of 10 outperforms spars made of aluminium (4 = 20) and wood (4 = 1 ). 

The last 20 years has seen further development: carbon-fibre technology has reached the market 
place. As a solid beam, carbon-fibre reinforced polymer laminates are nearly as efficient as spruce. 
Add a bit of shape (Table 8.3) and they are better than any of the competing materials. Contemporary 
composite technology allows shape factors of at least 10, and that gives an increase in performance 
that - despite the cost - is attractive to plane builders. 

Further reading: man-powered flight 
Drela, M. and Langford, J.D. (1985) Man-powered flight, Scient&- American, January issue, p. 122. 
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Related case studies 
Case Study 8.3: Forks for a racing bicycle 
Case Study 8.4: Floor joists 

8.3 Forks for a racing bicycle 
The first consideration in bicycle design (Figure 8.3) is strength. Stiffness matters, of course, but 
the initial design criterion is that the frame and forks should not yield or fracture in normal use. 
The loading on the forks is predominantly bending. If the bicycle is for racing, then the mass is a 
primary consideration: the forks should be as light as possible. What is the best choice of material 
and shape? Table 8.4 lists the design requirements. 

The model and the selection 
We model the forks as beams of length l which must carry a maximum load P (both fixed by 
the design) without plastic collapse or fracture. The forks are tubular, of radius r and fixed wall- 
thickness t .  The mass is to be minimized. The fork is a light, strong beam. Further details of load 
and geometry are unnecessary: the best material and shape, read from Table 8.1, is that with the 

Fig. 8.3 The bicycle. The forks are loaded in bending. The lightest forks which will not collapse plastically 
under a specified design load are those made of the material and shape with the greatest value of 
(&n)2 ’3 /P .  

Table 8.4 Design requirements for bicycle forks 

Function Bicycle forks 
Objective Minimize mass 
Constraints (a) Must not fail under design loads - a strength constraint 

(b) Length specified 
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Table 8.5 Material for bicycle forks 

Mate rial Strength of Density p Shape factor Index Index M; 
(MPa) ( Mgh' ) 44 / p ((MPa)2f3/Mg/m3) 

Spruce (Norwegian) 70-80 0.46-0.56 1-1.5 36 36-50 
Bamboo 80-160 0.6-0.8 2.4-2.8 (33) 59-65 
Steel (Reynolds 531) 770-990 7.82-7.83 7-8 12 44-48 
Alu (6061 -T6) 240-260 2.69-2.71 5.5-6.3 15 47-51 
Titanium 6-4 930-980 4.42-4.43 5.5-6.3 22 69-75 
Magnesium AZ 91 160- 170 1.80- 1.81 4-4.5 17 42-46 
CFRP 300-450 1.5- 1.6 4-4.5 33 83-90 

*The range of values of the indices are based on means of the material properties and corresponds to the range of values 
of I&. 

greatest value of 

Table 8.5 lists seven candidate materials. Solid spruce or bamboo are remarkably efficient; without 
shape (second last column) they are better than any of the others. Bamboo is special because it grows 
as a hollow tube with a macroscopic shape factor between 3 and 5, giving it a bending strength 
which is much higher than solid spruce (last column). When shape is added to the other materials, 
however, the ranking changes. The shape factors listed in the table are achievable using normal 
production methods. Steel is good; CFRP is better; Titanium 6-4 is better still. In strength-limited 
applications magnesium is poor despite its low density. 

f 

Postscript 
Bicycles have been made of all seven of the materials listed in the table - you can still buy 
bicycles made of six of them (the magnesium bicycle was discontinued in 1997). Early bicy- 
cles were made of wood; present-day racing bicycles of steel, aluminium or CFRP, sometimes 
interleaving the carbon fibres with layers of glass or Kevlar to improve the fracture-resistance. 
Mountain bicycles, for which strength and impact resistance are particularly important, have steel 
or titanium forks. 

The reader may be perturbed by the cavalier manner in which theory for a straight beam with 
an end load acting normal to it is applied to a curved beam loaded at an acute angle. No alarm is 
necessary. When (as explained in Chapter 5) the variables describing the functional requirements 
( F ) ,  the geometry (G) and the materials ( M )  in the performance equation are separable, the details 
of loading and geometry affect the terms F and G but not M .  This is an example: beam curvature 
and angle of application of load do not change the material index, which depends only on the design 
requirement of strength in bending at minimum weight. 

Further reading: bicycle design 
Sharp, A. (1 993) Bicycles and Tricycles, an Elementary Treatise on their Design and Construction, The MIT 

Watson, R. and Gray, M. (1978) The Penguin Book of the Bicycle, Penguin Books, Harmondsworth. 
Whitt, F.R. and Wilson, D.G. (1985) Bicycling Science, 2nd edition, The MIT Press, Cambridge, MA. 
Wilson, D.G. (1986) A short history of human powered vehicles, The American Scientist, 74, 350. 

Press, Cambridge, MA. 
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Related case studies 
Case Study 8.2: Wing spars for man powered planes 
Case Study 8.4: Floor joists: wood or steel? 

8.4 Floor joists: wood or steel? 
Floors are supported on joists: beams which span the space between the walls. Let us suppose that a 
joist is required to support a specified bending load (the ‘floor loading’) without sagging excessively 
or failing; and it must be cheap. Traditionally, joists are made of wood with a rectangular section 
of aspect ratio 2: 1, giving an elastic shape factor (Table 7.2) of 4; = 2.1. But steel, shaped to an 
I-section, could be used instead (Figure 8.5). Standard steel I-section joists have shape factors in 
the range 15 5 4; 5 25 (special I- sections can have much larger values). Are steel I-joists a better 
choice than wooden ones? Table 8.6 summarizes the design requirements. 

Fig. 8.4 The cross-section of a typical bamboo cane. The tubular shape shown here gives ‘natural’ 
shape factors of 4; = 3.3 and 4& = 2.6. Because of this (and good torsional shape factors also) it 
is widely used for oars, masts, scaffolding and construction. Several bamboo bicycles have been 
marketed. 

Fig. 8.5 The cross-sections of a wooden beam (4; = 2) and a steel I-beam (4; = 10). The values of 4 
are calculated from the ratios of dimensions of each beam, using the formulae of Table 7.2. 

Table 8.6 Design requirements for floor joists 

Function Floor joist 
Objective Minimum material cost 
Constraints (a) Length specified 

(b) Minimum stiffness specified 
(c) Minimum strength specified 
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The model and the selection 
Consider stiffness first. The cheapest beam, for a given stiffness, is that with the largest value of 
the index (read from Table 8.1 with p replaced by C,p  to minimize cost): 

Data for the modulus E ,  the density p ,  the material cost C,n and the shape factor 4; are listed in 
Table 8.7, together with the values of the index M I  with and without shape. The steel beam with 
4; = 25 has a slightly larger value M I  than wood, meaning that it is a little cheaper for the same 
stiffness. 

But what about strength? The best choice for a light beam of specified strength is that which 
maximizes the material index: 

f The quantities of failure strength of, shape factor dB and index M3 are also given in the table. 
Wood performs better than even the most efficient steel I-beam. 

As explained in Chapter 7, a material with a modulus E and cost per unit volume C,p ,  when 
shaped, behaves in bending like a material with modulus E* = E/@; and cost (C,p)* = C, , ,p /@i .  
Figure 8.6 shows the E-C,p chart with data for the wooden joists and the steel I-beams plotted 
onto it. The heavy broken line shows the material index M I  = (@;E)1’2/C,p, positioned to leave 
a small subset of materials above it. Woods with a solid circular section (4; = 1) lie comfortably 
above the line; solid steel lies far below it. Introducing the shape factors moves the wood slightly 
(the shift is not shown) but moves the steel a lot, putting it in a position where it performs as well 
as wood. 

Strength is compared in a similar way in Figure 8.7. It shows the of -C,,,p chart. The heavy 
broken line, this time, is the index M3 = (#Bf~r f )* /~ /C, ,p ,  again positioned just below wood. Intro- 
ducing shape shifts the steel as shown, and this time it does not do so well: even with the largest 
shape factor (4Bf = IO) steel performs less well than wood. Both conclusions are exactly the same 
as those of Table 8.7. 

Table 8.7 Materials for floor joists 

Property Wood (pine) Steel (standard) 

Density (Mg/m3) 
Flexural modulus (GPa) 
Failure strength - MOR (MPa) 
Material cost ($/kg) 
4; 
4i 
E ‘ 1’ IC,,, p (GPa) ‘/*/(k$/m3 )* 
a:/3/C,p (MPa)2/3/(k$/m3)* 
M I  (GPa)’/’/(k$/m’ )* 
M z  (MPa)’i3/(k$/m3)* 

0.52-0.64 
9.8- 11.9 
56-70 

0.8- 1 .O 
2.0-2.2 
1.6- 1.8 

6.3 
30 

8.9-9.3 
41 -44 

7.9-7.9 1 
208 -2 12 
350-360 
0.6-0.7 
15-25 

5.5-7.1 
2.8 
9.7 

10.8- 14.0 
30-36 

*The range of values of the indices are based on means of the material properties 
and corresponds to the range of values of @;. 
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Fig. 8.6 A comparison of light, stiff beams. The heavy broken line shows the material index 
MI = 5 (GPa)’/’/(Mg/rn3). Steel I-beams are slightly more efficient than wooden joists. 

Postscript 
So the conclusion: as far as performance per unit material-cost is concerned, there is not much 
to choose between the standard wood and the standard steel sections used for joists. As a general 
statement, this is no surprise - if one were much better than the other, the other would no longer 
exist. But - looking a little deeper - wood dominates certain market sectors, steel dominates 
others. Why? 

Wood is indigenous to some countries, and grows locally; steel has to come further, with associ- 
ated transport costs. Assembling wood structures is easier than those of steel; it is more forgiving 
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Fig. 8.7 A comparison of light, strong beams. The heavy broken line shows the material index 
M2 = 25(MPa)213/(Mg/m3). Steel I-beams are less efficient than wooden joists. 

of mismatches of dimensions, it can be trimmed on site, you can hammer nails into it anywhere. It 
is a user-friendly material. 

But wood is a variable material, and, like us, is vulnerable to the ravishes of time, prey to 
savage fungi, insects and small mammals. The problems so created in a small building - family 
home, say - are easily overcome, but in a large commercial building - an office block, for 
instance - they create greater risks, and are harder to fix. Here, steel wins. 

Further reading 
Cowan, H.J. and Smith, P.R. (1988) The Science and Technology of Building Mutericrls, Van Nostrand Reinhold, 

New York. 
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Related case studies 
Case Study 8.2: Spars for man-powered planes 
Case Study 8.3: Forks for a racing bicycle 

8.5 Increasing the stiffness of steel sheet 
How could you make steel sheet stiffer? There are many reasons you might wish to do so. The most 
obvious: to enable stiffness-limited sheet structures to be lighter than they are now; to allow panels 
to carry larger compressive loads without buckling; and to raise the natural vibration frequencies 
of sheet structures. Bending stiffness is proportional to EZ ( E  is Young’s modulus, I is the second 
moment of area of the sheet, equal to t3/12 per unit width). There is nothing much you can do to 
change the modulus of steel, which is always close to 210GPa. But you can add a bit of shape. So 
consider the design brief of Table 8.8. 

The model 
The age-old way to make sheet steel stiffer is to corrugate it, giving it a roughly sinusoidal profile. 
The corrugations increase the second moment of area of the sheet about an axis normal to the 
corrugations themselves. The resistance to bending in one direction is thereby increased, but in the 
cross-direction it is not changed at all. 

Corrugations are the clue, but - to be useful - they must stiffen the sheet in all directions, 
not just one. A hexagonal grid of dimple (Figure 8.8) achieves this. There is now no direction of 
bending that is not dimpled. The dimples need not be hexagons; any pattern arranged in such a way 
that you cannot draw a straight line across it without intersecting dimples will do. But hexagons 
are probably about the best. 

Dimples improve all the section-properties of a sheet, in a way that can be estimated as follows. 
Consider an idealized cross-section as in the lower part of Figure 8.8, which shows the section 
A-A, enlarged. As before, we define the shape factor as the ratio of the stiffness of the dimpled 
sheet to that of the flat sheet from which it originated. The second moment of area of the flat 
sheet is 

t3 
I --A (8 .5)  
O -  12 

That of the dimpled sheet with amplitude a is 

1 
12 

I RZ -(2a + t)%t 

Table 8.8 Design requirements for stiffened steel sheet 

Function 
Objective 
Constraints 

Steel sheet for stiffness-limited structures 
Maximize bending stiffness of sheet 
(a) Profile limited to a maximum deviation f 5  times the 

sheet thickness from flatness 
(b) Cheap to manufacture 
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Fig. 8.8 A sheet with a profile of adjacent hexagonal dimples which increases its bending stiffness and 
strength. Shape factors for the section A-A are calculated in the text. Those along other trajectories are 
lower but still significantly greater than 1. 

giving a shape factor, defined as before as the ratio of the stiffness of the sheet before and after 
corrugating (see the Appendix of Chapter 7): 

I (2a + t ) 2  

I 0 t 2  
@ r , = - =  (8.7) 

Note that the shape factor has the value unity when the amplitude is zero, but increases as the 
amplitude increases. The equivalent shape factor for failure in bending is 

(8.8) z 0 t 

These equations predict large gains in stiffness and strength. The reality is a little less rosy. This 
is because, while all cross-sections of the sheet are dimpled, only those which cut through the peaks 
of the dimples have an amplitude equal to the peak height (all others have less) and, even among 
these, only some have adjacent dimples; the section B-B, for example does not. Despite this, and 
limits set by the onset of local buckling, the gain is real. 

& - = -  z (2a + t )  

Postscript 
Dimpling can be applied to most rolled-sheet products. It is done by making the final roll-pass 
through mating rolls with meshing dimples, adding little to the cost. It is most commonly applied to 
sheet steel. Here it finds applications in the automobile industry including bumper armatures, seat 
frames, side impact bars: the material offers weight saving without loss of mechanical performance. 
Stiffening sheet also raises its natural vibration frequencies, making them harder to excite, thus 
helping to suppress vibration in panels. 
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But a final word of warning: stiffening the sheet may change its failure mechanism. Flat sheet 
yields when bent; dimpled sheet, if thin, could fail by a local buckling mode. It is this which 
ultimately limits the useful extent of dimpling. 

Further reading 
Fletcher, M. (1998) Cold-rolled dimples improve gauge strength, Eureka, May, p. 28. 

8.6 Ultra-eff icient springs 
Springs, we deduced in Case Study 6.7, store energy. They are best made of a material with a high 
value of a; /E ,  or, if mass is more important than volume, then of a;/pE. Springs can be made 
more efficient still by shaping their section. Just how much more is revealed below. 

We take as a measure of performance the energy stored per unit volume of solid of which the 
spring is made; we wish to maximize this energy. Energy per unit weight and per unit cost are 
maximized by similar procedures (Table 8.9). 

The model 
Consider a leaf spring first (Figure 8.9(a)). A leaf spring is an elastically bent beam. The energy 
stored in a bent beam, loaded by a force F ,  is 

1 F 2  u = - -  (8.9) 

where S B ,  the bending stiffness of the spring, is given by equation (7.1), or, after replacing I by 
@$, by equation (7.25), which, repeated, is 

2 S B  

(8.10) 
C1 A* 

S B  = G@ioE 

Table 8.9 Design requirements for ultra-efficient springs 

Function Material-efficient spring 
Objective 
Constraint 

Maximum stored energy per unit volume (or mass, or cost) 
Must remain elastic under design loads 

Fig. 8.9 Hollow springs use material more efficiently than solid springs. Best in bending is the hollow 
elliptical section; best in torsion is the tube. 



Shape - case studies 207 

The force F in equation (8.9) is limited by the onset of yield; its maximum value is 

(8.11) 

(The constants C 1  and Cz are tabulated in Appendix A Section A3 and A4). Assembling these gives 
the maximum energy the spring can store: 

(8.12) 

where V = A t  is the volume of solid in the spring. The best material and shape for the spring - the 
one that uses the least material - is that with the greatest value of the quantity 

(8.13) 

For a fixed section shape, the ratio involving the two @s is a constant: then the best choice of material 
is that with the greatest value of ":/E - the same result as before. When shape is a variable, the 
most efficient shapes are those with large (@i)2/@$. Values for these ratios are tabulated for common 
section shapes in Table 8.10; hollow elliptical sections are up to three times more efficient than solid 
shapes. 

Torsion bars and helical springs are loaded in torsion (Figure 8.9(b)). The same calculation, but 
using equations (7.28) and (7.33), in the way that equations (8.10) and (8.1 1) were used, gives 

The most efficient material and shape for a torsional spring is that with the largest value of 

7 

(8.14) 

(8.15) 

(where G has been replaced by 3El8). The criteria are the same: when shape is not a variable, the 
best torsion-bar materials are those with high values of CT;/E. Table 8.10 shows that the best shapes 
are hollow tubes, which have a ratio of (@{)2/@F which is twice that of a solid cylinder; all other 
shapes are less efficient. Springs which store the maximum energy per unit weight (instead of unit 
volume) are selected with indices given by replacing E by E p  in equations (8.13) and (8.15). For 
maximum energy per unit cost, replace E p  by EC,p where C,, is the cost per kg. 

Postscript 
Hollow springs are common in vibrating and oscillating devices and for instruments in which 
inertial forces must be minimized. The hollow elliptical section is widely used for springs loaded 
in bending; the hollow tube for those loaded in torsion. More about this problem can be found in 
the classic paper by Boiten. 



208 Materials Selection in Mechanical Design 

Table 8.10 Shape factors for the efficiency of springs 
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Further reading: design of efficient springs 
Boiten, R.G. (1963) Mechanics of instrumentation, Proc. I. Mech. E., 177, p. 269. 

Related case studies 
Case Study 6.9: Materials for springs 

8.7 Summary and conclusions 
In designing components which are loaded such that they bend, twist or buckle, the designer has 
two groups of variables with which to optimize performance: the material properties and the shape 
of the section. The best choice of material depends on the shapes in which it is available, or to 
which it could potentially be formed. The procedure of Chapter 7 gives a method for optimizing 
the choice of material and shape. 

Its use is illustrated in this chapter. Often the designer has available certain stock materials 
in certain shapes. Then that with the greatest value of the appropriate material index (of which 
a number were listed in Table 8.1) maximizes performance. Sometimes sections can be specially 
designed; then material properties and design loads determine a maximum practical value for the 
shape factor above which local buckling leads to failure; again, the procedure gives an optimal 
choice of material and shape. Further gains in efficiency are possible by combining microscopic 
with macroscopic shape. 


