
7 Bending moments and shearing forces 

7.1 Introduction 

In Chapter 1 we discussed the stresses set up in a bar due to axial forces of tension and 
compression. When a bar carries lateral forces, two important types of loading action are set up 
at any section: these are a bending moment and a shearing force. 

Consider first the simple case of a beam which is fixed rigidly at one end B and is quite free at 
its remote end D, Figure 7.1 ; such a beam is called a cantilever, a familiar example of which is a 
fishing rod held at one end. Imagine that the cantilever is horizontal, with one end B embedded 
in a wall, and that a lateral force W is applied at the remote end D. Suppose the cantilever is 
dwided into two lengths by an imaginary section C; the lengths BC and CD must individually be 
in a state of statical equilibrium. If we neglect the mass of the cantilever itself, the loading actions 
over the section C of CD balance the actions of the force Wat C. The length CD of the cantilever 
is in equilibrium if we apply an upwards vertical force F and an anti-clockwise couple A4 at C; F 
is equal in magnitude to W, and M is equal to W(L - z), where z is measured from B. The force F 
at Cis  called a shearing force, and the couple M is a bending moment. 

Figure 7.1 Bending moment and shearing Figure 7.2 Cantilever with and inclined 
force in a simple cantilever beam. end load. 

But at the imaginary section C of the cantilever, the actions F and M on CD are provided by 
the length BC of the cantilever. In fact, equal and opposite actions F and M are applied by CD to 
BC. For the length BC, the actions at Care a downwards shearing force F, and a clockwise couple 
M. 
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When the cantilever carries external loads which are not applied normally to the axis of the 
beam, Figure 7.2, axial forces are set up in the beam. If W is inclined at an angle 8 to the axis of 
the beam, Figure 7.2, the axial thrust in the beam at any section is 

P = w COS e (7.1) 

The bending moment and shearing force at a section a distance z from the built-in end are 

M = ~ ( L - z )  sin 8 F = W sin 8 (7.2) 

7.2 Concentrated and distributed loads 

A concentrated load on a beam is one whch can be regarded as acting wholly at one point of the 
beam. For the purposes of calculation such a load is localised at a point of the beam; in reality this 
would imply an infinitely large bearing pressure on the beam at the point of application of a 
concentrated load. All loads must be distributed in practice over perhaps only a small length of 
beam, thereby giving a finite bearing pressure. Concentrated loads arise frequently on a beam 
where the beam is connected to other transverse beams. 

In practice there are many examples of distributed loads: they arise when a wall is built on a 
girder; they occur also in many problems of fluid pressure, such as wind pressure on a tall building, 
and aerodynamic forces on an aircraft wing. 

7.3 Relation between the intensity of loading, the shearing force, 
and bending moment in a straight beam 

Consider a straight beam under any system of lateral loads and external couples, Figure 7.3; an 
element length 6z of the beam at a distance z from one end is acted upon by an external lateral load, 
and internal bending moments and shearing forces. Suppose external lateral loads are distributed 
so that the intensity of loading on the elemental length 6z is w. 

Figure 7.3 Shearing and bending actions on an elemental length of a straight beam. 
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Then the external vertical force on the element is W ~ Z ,  Figure 7.3; this is reacted by an internal 
bending moment M and shearing force F on one face of the element, and M + 6M and F + 6F on 
the other face of the element. For vertical equilibrium of the element we have 

( F  + 6F) - F + W ~ Z  = 0 

If 6z is infinitesimally small, 

- -  dF - -w 
dz 

Suppose th ls relation is integrated between the limits z ,  and z,, then 

If F ,  and F, are the shearing forces at z = z ,  and z = z2 respectively, then 

(F ,  - F , )  = -E. 
or 

F ,  - F, = 

(7.3) 

(7.4) 

Then, the decrease of shearing force from z ,  to z2 is equal to the area below the load distribution 
curve over this length of the beam, or the difference between F ,  and F2 is the net lateral load over 
this length of the beam. 

Furthermore, for rotational equilibrium of the elemental length 6z, 

(F  + 6F) 6~ - ( M  + 6M) + M + ~ d z  (3 c) = 0 

Then, to the first order of small quantities, 

F ~ z  - 6M = 0 

Then, in the limit as 6z approaches zero, 

On integrating between the limits z = z ,  and z = z2, we have 

[:zydM = 
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where M, and M2 are the values M at z = z1 and z = z,, respectively. Then the increase of 
bending moment from zl to z, is the area below the shearing force curve for that length of the beam. 

Equations (7.4) and (7.6) are extremely useful for finding the bending moments and shearing 
forces in beams with irregularly distributed loads. From equation (7.4) the shearing force F a t  a 
section distance z from one end of the beam is 

F = 4 - wdz I[ 
On substituting this value of F into equation (7.6), 

M 2 - M 1  = 

Thus 

(7.7) 

From equation (7.5) we have that the bending moment Mhas a stationary value when the shearing 
force F is zero. Equations (7.3) and (7.5) give 

For the directions of M, F and w considered in Figure 7.3, M is mathematically a maximum, since 
&M/d? is negative; the significance of the word mathematically will be made clearer in Section 
7.8. 

All the relations developed in this section are merely statements of statical equilibrium, and are 
therefore true independently of the state of the material of the beam. 

7.4 Sign conventions for bending moments and shearing forces 

The bending moments on the elemental length 6z of Figure 7.3 tend to make the beam concave on 
its upper surface and convex on its lower surface; such bending moments are sometimes called 
sagging bending moments. The shearing forces on the elemental length tend to rotate the element 
in a clockwise sense. In deriving the equations in this section it is assumed implicitly, therefore, 
that 
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(i) downwards vertical loads are positive; 

(ii) sagging bending moments are positive; and 

(iii) clockwise shearing forces are positive. 

These sign conventions are shown in Figure 7.4. Any other system of sign conventions can be 
used, provided the signs of the loads, bending moments and shearing forces are considered when 
equations (7.3) and (7.5) are applied to any particular problem. 

Figure 7.4 Positive values of w, F and M, (i) downward vertical loading, 
(ii) clockwise shearing forces, (iii) sagging bending-moment. 

Figures that show graphlcally the variations of bending moment and shearing force along the 
length of a beam are called bending moment diagrams and shearing force diagrams. Sagging 
bending moments are considered positive, and clockwise shearing forces taken as positive. The 
two quantities are plotted above the centre line of the beam when positive, and below when 
negative. Before we can calculate the stresses and deformations of beams, we must be able to find 
the bending moment and shearing force at any section. 

7.5 Cantilevers 

A cantilever is a beam supported at one end only; for example, the beam already discussed in 
Section 7.1, and shown in Figure 7.1, is held rigidly at B. Consider first the cantilever shown in 
Figure 7.5(a), which carries a concentrated lateral load W at the free end. The bending moment 
at a section a distance z from B is 

M = -W(L-z )  

the negative sign occurring since the moment is hogging, as shown in Figure 7.5(b). The variation 
of bending moment is linear, as shown in Figure 7.5(c). The shearing force at any section is 

F = +W 
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the shearing force being positive as it is clockwise, as shown in Figure 7.5(d). The shearing force 
is constant throughout the length of the cantilever. We note that 

- -  d M - W = F  
dz 

Further dF/dz = 0, as there are no lateral loads between B and D. 

shown in Figure 7 4 e )  
The bending moment diagram is shown in Figure 7.5(c) and the shearing force diagram is 

Figure 7.5 Bending-moment and shearing-force diagrams for a cantilever 
with a concentrated load at the free end. 

Now consider a cantilever carrying a uniformly distributed downwards vertical load of intensity 
w, Figure 7.6(a). The shearing force at a distance z from B is 

F = +w(L - 2 )  

as shown in Figure 7.6 (d). The bending moment at a distance z from B is 

M = -1 w(t - z)* 
2 

as shown inFigure 7.6(b). The shearing force varies linearly and the bending moment parabolically 
along the length of the beam, as shown in Figure 7.6(e) and 7.6(c), respectively. We see that 

- -  dM - 4 L  - z )  = +F 
dz 
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Figure 7.6 Bending-moment and shearing-force diagrams for a 
cantilever under uniformly distributed load. 

Problem 7.1 A cantilever 5 m long carries a uniformly distributed vertical load 480 N per 
metre from C from H, and a concentrated vertical load of 1000 N at its mid- 
length, D. Construct the shearing force and bending moment diagrams. 
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Solution 

The shearing force due to the distributed load increases uniformly from zero at H to + 1920 N at 
C, and remains constant at +1920 N from C to B; this is shown by the lines (i). Due to the 
concentrated load at D, the shearing force is zero from H to D, and equal to +lo00 N from D to B, 
as shown by lines (ii). Adding the two together we get the total shearing force shown by lines (iii). 

Bending moments and shearing forces 

The bending moment due to the distributed load increases parabolically from zero at H to 

1 
2 

--(480)(4)’ = -3840 Nm 

2t C. The total load on CH is 1920 N with its centre of gravity 3 m from B; thus the bending 
moment at B due to this load is 

-(1920)(3) = -5760 Nm 

From C to B the bending moment increases uniformly, giving lines (i). The bending moment due 
to the concentrated load increases uniformly from zero at D to 

-(1000)(2.5) = -2500 Nm 

at B, as shown by lines (ii). Combining (i) and (ii), the total bending moment is given by (iii). 

The method used here for determining shearing-force and bendmg-moment diagrams is known as 
the principle of superposition. 
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7.6 Cantilever with non-uniformly distributed load 

Where a cantilever carries a distributed lateral load of variable intensity, we can find the bending 
moments and shearing forces from equations (7.4) and (7.6). When the loading intensity w cannot 
be expressed as a simple analytic function of z, equations (7.4) and (7.6) can be integrated 
numerically. 

Problem 7.2 A cantilever of length 10 m, built in at its left end, carries a distributed lateral 
load of varying intensity w N per metre length. Construct curves of shearing 
force and bending moment in the cantilever. 

Solution 

If z is the distance from the free end of cantilever, the shearing force at a distance z from the free 
end is 

F = wdz 6 
We find first the shearing force F by numerical integration of the w-curve. The greatest force 
occurs at the built-in end, and has the value 

F,, i 3400N 

The bending moment at a section a distance z from the free end is 

M = - Fdz 6 
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and is found therefore by numerical integration of the F-curve. The greatest bending moment 
occurs at the built-in end, and has the value 

M,, = 22500Nm 

NB It should be noted that by inspection the bending moment and the shearing force at the 
free end of the cantilever are zero; these are boundary conditions. 

7.7 Simply-supported beams 

By simply-supported we mean that the supports are of such a nature that they do not apply any 
resistance to bending of a beam; for instance, knife-edges or fnctionless pins perpendicular to the 
plane of bending cannot transmit couples to a beam. The remarks concerning bending moments 
and shearing forces, which were made in Section 7.5 in relation to cantilevers, apply equally to 
beams simply-supported at each end, or with any conditions of end support. 

As an example, consider the beam shown in Figure 7.7(a), which is simply-supported at B and 
C, and cames a vertical load W a distance a from B. If the ends are simply-supported no bending 
moments are applied to the beam at B and C. By taking moments about B and C we find that the 
reactions at these supports are 

W W a  - - ( L - a ) a d -  
L L 

respectively. Now consider a section of the beam a distance z from B; ifz < a, the bending moment 
and shearing force are 

wz 
L L 

M = +- (L - a), F = +E (L - a), as shown by Figures 7.7(b) and 7.7(d) 

If z > a, 

The bending moment and shearing force diagrams show discontinuities at z =a; the maximum 
bending moment occurs under the load W, and has the value 

W a  
L 

M,, = - (L - a) (7.10) 
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Figure 7.7 Bending-moment and shearing-force diagrams for a 
simply-supported beam with a single concentrated lateral load. 

The simply-supported beam of Figure 7.8(a) carries a uniformly-distributed load of intensity w. 
The vertical reactions at B and Care %wL. Consider a section at a distance z from B. The bending 
moment at this section is 

1 1 
2 2 

1 
2 

M = -WLZ - -WZ’ 

= -wz (L  - z) 

as shown in Figure 7.8(b) and the shearing force is 
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as shown in Figure 7.8(d). 

Figure 7.8 Bending-moment and shearing-force diagrams for a 
simply-supported beam with a uniformly distributed lateral load. 

The bending moment is a maximum at z = Y L ,  where 

(7.1 1) WL 2 M,, = - 
8 
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Atz = %L,wenotethat 

- -  - + F = O  dM 
dz 

The bending moment diagram is shown in Figure 7.8(c) and the shearing force diagram is shown 
in Figure 7.8(e). 

Problem 7.3 A simply-supported beam carries concentrated lateral loads at C and D, and a 
uniformly distributed lateral load over the length DF. Construct the bending 
moment and shearing force diagrams. 

Solution 

First we calculate the vertical reactions at B and F. On taking moments about F, 

60 R, = (200 x lo3) (45) + (50 x lo3) (30) + (300 x lo3) (15) = 15 000 x lo3 

Then 
R, = 250kN 

and 
R, = (200 x io3) + (50  x io3) + (300 x 10’) - R, = 300 k~ 

The bending moment varies linearly between B and C, and between C and D, and parabolically 
from D to F. The maximum bending moment is 4.5 MNm, and occurs at D. The maximum 
shearing force is 300 kN, and occurs at F. 
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Problem 7.4 

Bending moments and shearing forces 

A beam rests on knife-edges at each end, and cames a clockwise moment M, 
at B, and an anticlockwise moment M, at C. Construct bending moment and 
shearing force diagrams for the beam. 

Solution 

Suppose R, and R ,  are vertical reactions at B and C; then for statical equilibrium of the beam 

1 

L 
R = - R  c = - ( M c - % )  

B 

The shearing force at all sections is then 

F = R, = - ( M c  - M B )  
1 

L 

The bending moment a distance z from B is 

M = M, + R , z  = - ( L -  M B  z )  + - Mcz 
L L 

so M vanes linearly between B and C. 

Problem 7.5 A simply-supported beam cames a couple Mo applied at a point distant a from 
B. Construct bending moment and shearing force diagrams for the beam. 
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Solution 

The vertical reactions R at B and C are equal and opposite. For statical equilibrium of BC, 

M,= RL, or R = M, 
L 

The shearing force at all sections is 

F = - R  = -% 
L 

as shown in Figure (d), above. The bending moment at z < a is 

M = -& = -Moz 
L 

as shown in Figure (c), above, and for z > a 

M = - R z + M o = M o  1 - 1  ( 1) 
as shown in Figure (c), above. 

7.8 Simply-supported beam carrying a uniformly distributed load 
and end couples 

Consider a simply-supported beam BC, carrying a uniformly distributed load w per unit length, and 
couples MB and M, applied to ends, Figure 7.9(i). The reactions R, and R ,  can be found directly 
by taking moments about B and C in turn; we have 
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(7.12) 

Bending moments 
due to walone 

Bending moments 
due to positive 
MB and Mc alone 

Combined bending 
moments 

Figure 7.9 Simply-supported beam with uniformly distributed lateral load and end couples. 

These give the shearing forces at the end of the beam, and the shearing force at any point of the 
beam can be deduced, Figure 7.9(ii). In discussing bending moments we consider the total loading 
actiom on the beam as the superposition of a uniformly distributed load and end couples; the 
distributed load gives rise to a parabolic bending moment curve, BDC in Figure 7.9(iii), whereas 
the end couples MB and M, give the straight line HJ, Figure 7.9(iv). The combined effects of the 
lateral load and the end couples give the curve BHDYC, Figure 7.9(v). The bending moment at 
a distance z from B is 
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(7.13) 4 - z  (L - z) + - 1 4 3  M = -wz (L - z)  + - 
2 L L 

The ‘maximum’ bending moment occurs when 

- -  dM - + ( L - Z z ) - - + - -  1 MB M, = 0 
cir 2 L L 

that is, when 

( M B  - MC) 
1 1 r = - L - -  
2 W L  

The value of M for this value of z is 

2 
(7.14) 

- 1  2 1 1 
Mmax -swL + T ( M B + M C ) + - ( M B -  M C )  

2wL2 

Thls, however, is only a mathematical ‘maximum’; if MB or M, is negative, the numerically 
greatest bending moment may occur at B or C. Care should therefore be taken to find the truly 
greatest bending moment in the beam. 

7.9 Points of inflection 

When either, or both, of the end couples in Figure 7.9 is reversed in direction, there is at least one 
section of the beam where the bendmg moment is zero. 

Figure 7.10 Single point of inflection in a beam. 

In Figure 7.10 the end couple MB is applied in an anticlockwise direction; the bending moment at 
a distance z from B is 
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M = -wz 1 (L - z )  - - ME ( L  - z)  + - MCJ (7.15) 
2 L L 

and th ls  is zero when 

(7.16) 2 4  [ME + M.i) + - = 0 ( wL2 W 

z 2 - Z L  1 + - ( M B - M C j + -  2 [ wL2 W 

2 z 2 - Z L  1 + -  

The distance PB is the relevant root of this quadratic equation. 
When the end couple M, is also reversed in direction, Figure 7.1 1, there are two points, P and 

Q, in the beam at which the bending moment is zero. The distances P and Q from B are given by 
the roots of the equation 

(7.17) 2MB = 0 

L 2  M B -  MC ME - MC (7.18) 
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7.10 Simply-supported beam with a uniformly distributed load over 
part of a span 

The beam BCDF, shown in Figure 7.12, carries a uniformly distributed vertical load w per unit 
length over the portion CD. On takmg moments about B and F, 

bw bw 
31 2L 

V,  = - (b + 2c), VF = - (b + 2a) (7.19) 

Figure 7.1 2 Shearing-force and bending-moment diagrams for simply-supported beam 
with distributed load over part of the span. 

The bending moments at C and D are 

baw 
2L 

M, = aV, = - (b + 2c) 

bcw 
2L 

MD = cVF = - (b + 2a) (7.20) 

The bending moments in BC and FD vary linearly. The bending moment in CD, at a distance z 
from C, is 

(7.21) 
Z 1 

2 
M = [ 1 - t) M, + b M,, + -wz (b - z) 
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Then 

1 1 * = - (MD - M,) + -w (b - 22) 
a2 b 2 

On substituting for M, and MD from equations (7.20) 

bw 1 - (c - u) + --w (b  - 22) dM - 

a!? 2L 2 
- -  

At C, z = 0, and 

bw - (b + 2c) = VB 
a!? 2L 
dM - - -  

But V, is the slope of the line BG in the bending moment diagram, so the curve of equation (7.21) 
is tangential to BG at G. Similarly, the curve of equation (7.2 1) is tangential to FJa t  J. Between 
C and D the bending moment varies parabolically; the simplest method of constructing the 
bendmg moment diagram for CD is to produce BG and FJ to meet at H, and then to draw a 
parabola between G and J ,  having tangents BG and FJ. 

7.1 1 Simply-supported beam with non-uniformly distributed load 

Suppose a simply-supported beam of span L,  Figure 7.13, carries a lateral distributed load of 
variable intensity w. Then, from equation (7.4), if F is the shearing force a distance z from B, 

Ibz w* F , - F  = 

Figure 7.13 Simply-supported beam with lateral load of varying intensity. 
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where F, is the shearing force at z = 0. Then 

(7.22) 1,' wdz 
F = F o -  

Furthermore, from equation (7.6), the bending moment a distance z from B is 

M = Mo + F+ - loz S,' w&& (7.23) 

where Mo is the bending moment at z = 0. However, as the beam is simply-supported at z = 0, 
we have M, = 0, and so 

The end z = L is also simply-supported, so for this end M = 0; then 

F& - loL S,'w&dz = o 

This gives 

(7.24) 

Equations (7.22), (7.23) and (7.24) may be used in the graphlcal solution of problems in which 
w is not an analytic function of z. The value of F, is found firstly from equation (7.24); numerical 
integrations then give the values of F and M, from equations (7.22) and (7.23), respectively. 

7.12 Plane curved beams 

Consider a beam BCD, Figure 7.14, which is curved in the plane of the figure. The beam is loaded 
so that no twisting occurs, and bending is confined to the plane of Figure 7.14. Suppose an 
imaginary cross-section of the beam is taken at C; statical equilibrium of the length CD of the 
beam is ensured if, in general, a force and a couple act at C; it is convenient to consider the 
resultant force at Cas consisting of two components-an axial force P, acting along the centre line 
of the beam, and a lateral force F, acting along the normal to the centre line of the beam. The 
couple M at C acts about an axis perpendicular to the plane of bending and passing through the 
centre line of the beam. The actions at Con the length BC of the beam, are equal and opposite to 
those at C on the length CD. 

As before the couple M is the bending moment in the beam at C, and the lateral force F is the 
shearing force. 
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As an example, consider the beam of Figure 7.15, which has a centre line of constant radius R. 
The beam carries a radial load W at its free end. Consider a section of the beam at some angular 
position 0: for statical equilibrium of the length of the bar shown in Figure 7.15(ii), 

M = WRsin0 

F = Wcos0 

P = wsine (7.25) 

Figure 7.14 Bending and shearing actions in Figure 7.15 Plane curved beam of circular 
a plane curved beam. form carrying an end load. 

Consider again, the beam shown in Figure 7.16, consisting of two straight limbs, BC and CD, 
connected at C. In CD the bending moment varies linearly, from zero at D to 70 000 Nm at C. 
In BC the bending moment is constant and equal to 70 000 Nm. In Figure 7.17 the bending 
moments are plotted on the concave sides of the bent limbs; this is equivalent to following the sign 
convention of Section 7.4, that sagging bending moments are positive. 

Figure 7.16 Bending moments in a bracket. 
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AB is a vertical post of a crane; the sockets at A and B offer no constraint 
against flexure. The horizontal arm CD is hinged to AB at C and supported by 
the strut FE which is freely hinged at its two extremities to AB and CD. 
Construct the bending moment diagrams for AB and CD. (Cambridge) 

Problem 7.6 

Solution 

It is clear from considering the equilibrium of the whole crane that the horizontal reactions at A 
and B must be equal and opposite, and that the couple due to them must equal the moment of the 
20 kN force. Let R be the magnitude of the horizontal reactions at A and B, then 

7R = 7(20000) 

and therefore 

R = 20000 N 

Let P = the pull in CE, and Q = the thrust in FE. Then taking moments about C for the rod CD 
we have 

4~ sine = ~ ( ~ O O O O )  

and therefore 

Q = 58300 N 

Resolving horizontally for AB we have 

1 
2 

P = Q case = - (70000) cote = 46700 N 

The vertical reaction at E = Q sine = 35 000 N. 
We can now draw the bending moment diagrams for AB and CD, considering only the forces 

at right-angles to each beam; let us take CD first. CD is a beam freely supported at C and E and 
loaded at D. The bending moment at E = 3 x 20 000 = 60 000 Nm, to which value it rises 
uniformly from zero at D; from E to C the bending moment decreases uniformly to zero. 
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AB is supported at A and B and loaded with equal and opposite loads at C and F. 

The bending moment at C is 

Bending moments and shearing forces 

(2) (20 000) = 40 000 Nm. 

The bending moment at F is 

(2) (-20 000) = -40 000 Nm. 

At any point z between C and F, the bending moment is 

M = 20 000 (Z + 2) - 46 7002 = 40 000 - 26 7002 

In the bending moment diagram positive bending moments are those which make the beam 
concave to the left, and are plotted to the left in the figure. 

7.13 More general case of bending of a curved bar 

In Figure 7.17, OBC represents the centre line of a beam of any shape; the line OBC is curved in 
space in general. Suppose the beam carries any system of external loads; consider the actions over 
a section of the beam at B.  For statical equilibrium of BC we require at B a force and a couple. 

The force is resolved into two components-an axial force P along the centre line of the beam, 
and a shearing force F normal to the centre line; the couple is resolved into two components-a 
torque T about the centre line of the beam, and a bending moment M about an axis perpendicular 
to the centre line. The axis of M is not necessarily coincident with the axis of F. 

Fig. 7.17 Lateral loading of a curved beam. 

Problem 7.7 The centre line of a beam is curved in the plane xz with a radius a. Find the 
loading actions at any section of the beam when a concentrated load W is 
applied at C in a direction parallel to y o .  
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Solution 

Consider any section at an angular position 0 in the xz-plane; there is no axial force on the centre 
line, and the shearing force at any section is W. The torque about he centre line is 

w ( ~  - u cod)  = wu (1 - case) 

The bending moment acts about the radws, and has the value 

wu sine 

Problem 7.8 The axis of a beam consists of two lines BC and CD in a horizontal plane and 
at right angles to each other. Estimate the greatest bending moment and torque 
when the beam carries a vertical load of 10 kN at D. 

Solution 

Consider the statical equilibrium of DC alone; there is no torque in DC, and the only internal 
actions at C in DC are a shearing force of 10 kN and a bending moment of 50 kNm. Now reverse 
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the actions at C on DC and consider these reversed actions at C on BC. Equilibrium of BC is 
ensured if there is a shearing force of 10 kN at B, a bending moment of 70 kNm, and a torque of 
50 kNm. 

7.14 Rolling loads and influence lines 

In the design of bridge girders it is frequently necessary to know the maximum bending moment 
and shearing force which each section will have to bear when a travelling load, such as a train, 
passes from one end of the bridge to the other. The diagrams which we have considered so far 
show the simultaneous values of the bending moment, or shearing force, for all sections of the 
beam with the loads in one fixed position; we shall now see how to construct a diagram which 
shows the greatest value of these quantities for all positions of the loads. These diagrams are 
called maximum bending moment or maximum shearing force, diagrams. 

We assume that the loads on a beam are moving slowly; then there are negligible inertia effects 
from the mass of the beam and any moving masses. 

7.15 A single concentrated load traversing a beam 

Suppose a single concentrated vertical load W travels slowly along a beam BC, whch is simply- 
supported at each end, Figure 7.18(i). If a is the distance of the load from B, the reactions at B and 
C are 

Wa R, = (L - a) R, = - 
L L 

The bending moment at a distance z from B, is 

wz 
L 

M = - ( L - a ) f o r z < a  

Wa 
L 

M = - ( L - z ) f o r z > a  

(7.26) 

(7.27) 

Consider the load rolling slowly from C to B: initially z < a, and the bending moment, given by 
equation 7.26, increases as a decreases; when a = z, 

wz 
L 

M = - ( L - z )  (7.28) 

As W proceeds further, we have z > a, and the bending moment, given by equation (7.27), 
decreases as a decreases further. 
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Figure 7.18 Bending moments and shearing forces due to a rolling load 
traversing a simply-supported beam. 

Clearly, equation 7.28 is the greatest bending moment which can occur at the section; thus, for any 
section a distance z from B, the maximum bending moment that can be induced is 

w z  
L 

Mm, = - (L  - 2) (7.29) 

and this occurs when the load W is at that section of the beam. The variation of M,, for different 
values ofz is shown in Figure 7.18(ii); the curve of M,, is a parabola, attaining a peak value when 
z = U, for which 

WL 
4 

Mm, = - 

The shearing force a distance z from B is 

F = R, = 4 4 : ( ~ - a )  for z < a  (7.30) 
L 

Wa 
L 

F = -R, = -- for z > a (7.31) 

Consider again a load rolling slowly from C to B; initially z < a,  and the shearing force, given by 
equation (7.30), is positive and increases as a diminishes. The greatest positive shearing force 
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occurs just before the load W passes the section under consideration; it has the value 

Bending moments and shearing forces 

F,,(+) = E (L - z) (7.32) 
L 

After the load has passed the section being considered, that is, when z > a, the shearing force, 
given by equation (7.3 1) is negative and decreases as a diminishes further. The greatest negative 
shearing force occurs when the load W has just passed the section at a distance z; it has the value 

wz 
L 

Fmm(-) = -- (7.33) 

The variations of maximum positive and negative shearing forces are shown in Figure 7.18(iii). 

7.16 Influence lines of bending moment and shearing force 

A c w e  that shows the value of the bending moment at a given section of a beam, for all positions 
of a travelling load, is called the bending-moment influence line for that section; similarly, a curve 
that shows the shearing force at the section for all positions of the load is called the shearing force 
influence line for the section. The distinction between influence lines and maximum bending- 
moment (or shearing force) diagrams must be carefully noted: for a given load there will be only 
one maximum bending-moment diagram for the beam, but an infinite number ofbending-moment 
influence linpa n m p  fnr pirh c e r t i n n  nf thn helm 

Figure 7.19 (i) Single rolling load on a simply-supported beam. (ii) Bending-moment 
influence line for section C. (iii) Shearing force influence line for Section C. 
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Consider a simply-supported beam, Figure 7.19, carrying a single concentrated load, W. As the 
load rolls across the beam, the bending moments at a section C of the beam vary with the position 
of the load. Suppose W is a distance z from B; then the bending moment at a section C is given 
by 

wz 
L 

M = - ( L -  a )  for z < a 

and 
Wa 
L 

M = -(L-z) for z > a  

The first of these equations gives the straight line BH in Figure 7.19(ii), and the second the line 
HD. The mfluence line for bendmg moments at C is then BHD; the bending moment is greatest 
when the load acts at the section. 

Again, the shearing force at C is 

wz 
L 

F =  -- for z < a 

W 
L 

and F = +-(L-Z) for z > a  

These relationshps give the lines BFCGD for the shearing force influence line for C. There is an 
abrupt change of shearing force as the load W crosses the section C. 
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Further problems (answers on page 692) 

7.9 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

Bending moments and shearing forces 

Draw the shearing-force and bending-moment diagrams for the following beams: 

A cantilever of length 20 m carrying a load of 10 kN at a distance of 15 m from the 
supported end. 
A cantilever of length 20 m carrying a load of 10 kN uniformly distributed over the 
inner 15 m of its length. 
A cantilever of length 12 m carrying a load of 8 kN, applied 5 m from the supported 
end, and a load of 2kNlm over its whole length. 
A beam, 20 m span, simply-supported at each end and carrying a vertical load of 20 
kN at a distance 5 m from one support. 
A beam, 16 m span, simply-supported at each end and carrying a vertical load of 2.5 
kN at a distance of 4 m from one support and the beam itself weighing 500 N per 
metre. 

A pair of lock gates are strengthened by two girders AC and BC. If the load on each 
girder amounts to 15 kN per metre run, find the bending moment at the middle of 

7.10 

,""L -:-,la- /P,....z.";,J~"l 

7.1 1 A girder ABCDE bears on a wall for a length BC and is prevented from overturning 
by a holding-down bolt at A .  The packing under BC is so arranged that the pressure 
over the bearing is uniformly distributed and the 30 kN load may also be taken as a 
uniformly distributed load. Neglecting the mass of the beam, draw its bending 
moment and shearing force diagrams. (Cambridge) 

7.12 Draw the bending moment and shearing force diagrams for the beam shown. The 
beam is supported horizontally by the strut DE, hinged at one end to a wall, and at the 
other end to the projection CD which is firmly fixed at right angles to AB. The beam 
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is freely hinged to the wall at B. The masses of the beam and strut can be neglected. 
(Cam bridge) 

7.1 3 A timber dam is made of planking backed by vertical piles. The piles are built-in at 
the section A where they enter the ground and they are supported by horizontal struts 
whose centre lines are 10 m above A .  The piles are spaced 1 m apart between centres 
and the depth of water against the dem ;E 10 m -. - ~ 

u 

Assuming that the thrust in the strut is two-sevenths the total water pressure 
resisted by each pile, sketch the form of the bending moment and shearing 
force diagrams for a pile. Determine the magnitude of the bending moment 
at A and the position of the section which is free from bending moment. 
(Cam bridge) 

7.1 4 Thc load distribution (fill lines) and upward water thrust (dotted lines) for a ship are 
given, the numbers indicating kN per metre run. Draw the bending moment diagram 
for the ship. (Cambridge) 


